
Invitation to

Dynamical Systems

Edward R. Scheinerman

Department of Mathematical Sciences
The Johns Hopkins University

The following is the Library of Congress information from the original version of
this book.

Library of Congress Cataloging-in-Publication Data

Scheinerman, Edward R.
Invitation to dynamical systems / Edward R. Scheinerman

p. cm.
Includes bibliographical references and index.
ISBN 0-13-185000-8
1. Differentiable dynamical systems. I. Title.

QA614.8.S34 1996
003’.85--dc20 95-11071

CIP

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the author.

The names Excel, Macintosh, Maple, Mathcad, Mathematica, MATLAB, Monopoly, Mosaic, MS-DOS,
Unix, Windows, and X-Windows are trademarks or registered trademarks of their respective manufac-
turers.

To Amy

iv

Foreword

This is the internet version of Invitation to Dynamical Systems. Unfortunately,
the original publisher has let this book go out of print. The version you are now
reading is pretty close to the original version (some formatting has changed, so page
numbers are unlikely to be the same, and the fonts are different).

If you would like to use this book for your own personal use, you may do so. If
you would like to photocopy this book for use in teaching a course, I will give you
my permission (but please ask). Please contact me at ers@jhu.edu. Thanks.

Please note: Some of the supporting information in this version of the book
is obsolete. For example, the description of some Matlab commands might be
incorrect because this book was written when Matlab was at version 4. In partic-
ular, the syntax for the Matlab commands ode23 and ode45 have changed in the
new release of Matlab. Please consult the Matlab documentation. The various
supporting materials (web site, answer key, etc.) are not being maintained at this
time.

Ed Scheinerman
June, 2000

v

vi Foreword

Contents

Forward v

Preface ix

1 Introduction 1
1.1 What is a dynamical system? . 1

1.1.1 State vectors . 1
1.1.2 The next instant: discrete time 1
1.1.3 The next instant: continuous time 3
1.1.4 Summary . 4
Problems . 4

1.2 Examples . 6
1.2.1 Mass and spring . 6
1.2.2 RLC circuits . 7
1.2.3 Pendulum . 9
1.2.4 Your bank account . 12
1.2.5 Economic growth . 12
1.2.6 Pushing buttons on your calculator 14
1.2.7 Microbes . 16
1.2.8 Predator and prey . 17
1.2.9 Newton’s Method . 19
1.2.10 Euler’s method . 20
1.2.11 “Random” number generation 23
Problems . 23

1.3 What we want; what we can get . 25

2 Linear Systems 27
2.1 One dimension . 27

2.1.1 Discrete time . 27
2.1.2 Continuous time . 32
2.1.3 Summary . 35
Problems . 35

2.2 Two (and more) dimensions . 36
2.2.1 Discrete time . 37
2.2.2 Continuous time . 41
2.2.3 The nondiagonalizable case* 60
Problems . 63

2.3 Examplification: Markov chains . 66
2.3.1 Introduction . 66
2.3.2 Markov chains as linear systems 67
2.3.3 The long term . 69
Problems . 70

vii

viii CONTENTS

3 Nonlinear Systems 1: Fixed Points 73
3.1 Fixed points . 73

3.1.1 What is a fixed point? . 73
3.1.2 Finding fixed points . 74
3.1.3 Stability . 75
Problems . 78

3.2 Linearization . 79
3.2.1 One dimension . 79
3.2.2 Two and more dimensions . 85
Problems . 91

3.3 Lyapunov functions . 93
3.3.1 Linearization can fail . 93
3.3.2 Energy . 95
3.3.3 Lyapunov’s method . 96
3.3.4 Gradient systems . 100
Problems . 104

3.4 Examplification: Iterative methods for solving equations 106
Problems . 109

4 Nonlinear Systems 2: Periodicity and Chaos 111
4.1 Continuous time . 111

4.1.1 One dimension: no periodicity 111
4.1.2 Two dimensions: the Poincaré-Bendixson theorem 112
4.1.3 The Hopf bifurcation* . 116
4.1.4 Higher dimensions: the Lorenz system and chaos 118
Problems . 121

4.2 Discrete time . 122
4.2.1 Periodicity . 123
4.2.2 Stability of periodic points 126
4.2.3 Bifurcation . 127
4.2.4 Sarkovskii’s theorem* . 137
4.2.5 Chaos and symbolic dynamics 147
Problems . 157

4.3 Examplification: Riffle shuffles and the shift map 159
4.3.1 Riffle shuffles . 159
4.3.2 The shift map . 160
4.3.3 Shifting and shuffling . 162
4.3.4 Shuffling again and again . 165
Problems . 166

5 Fractals 169
5.1 Cantor’s set . 169

5.1.1 Symbolic representation of Cantor’s set 170
5.1.2 Cantor’s set in conventional notation 170
5.1.3 The link between the two representations 172
5.1.4 Topological properties of the Cantor set 173
5.1.5 In what sense a fractal? . 175
Problems . 176

5.2 Biting out the middle in the plane 177
5.2.1 Sierpiński’s triangle . 177
5.2.2 Koch’s snowflake . 177
Problems . 178

5.3 Contraction mapping theorems . 180
5.3.1 Contraction maps . 180
5.3.2 Contraction mapping theorem on the real line 181
5.3.3 Contraction mapping in higher dimensions 182
5.3.4 Contractive affine maps: the spectral norm* 182

CONTENTS ix

5.3.5 Other metric spaces . 185
5.3.6 Compact sets and Hausdorff distance 186
Problems . 188

5.4 Iterated function systems . 189
5.4.1 From point maps to set maps 190
5.4.2 The union of set maps . 191
5.4.3 Examples revisited . 193
5.4.4 IFSs defined . 197
5.4.5 Working backward . 197
Problems . 201

5.5 Algorithms for drawing fractals . 202
5.5.1 A deterministic algorithm . 202
5.5.2 Dancing on fractals . 203
5.5.3 A randomized algorithm . 206
Problems . 208

5.6 Fractal dimension . 209
5.6.1 Covering with balls . 209
5.6.2 Definition of dimension . 211
5.6.3 Simplifying the definition . 212
5.6.4 Just-touching similitudes and dimension 218
Problems . 222

5.7 Examplification: Fractals in nature 223
5.7.1 Dimension of physical fractals 224
5.7.2 Estimating surface area . 225
5.7.3 Image analysis . 228
Problems . 230

6 Complex Dynamical Systems 231
6.1 Julia sets . 231

6.1.1 Definition and examples . 231
6.1.2 Escape-time algorithm . 235
6.1.3 Other Julia sets . 238
Problems . 238

6.2 The Mandelbrot set . 238
6.2.1 Definition and various views 238
6.2.2 Escape-time algorithm . 242
Problems . 243

6.3 Examplification: Newton’s method revisited 243
Problems . 245

6.4 Examplification: Complex bases . 245
6.4.1 Place value revisited . 245
6.4.2 IFSs revisited . 246
Problems . 248

A Background Material 249
A.1 Linear algebra . 249

A.1.1 Much ado about 0 . 249
A.1.2 Linear independence . 249
A.1.3 Eigenvalues/vectors . 250
A.1.4 Diagonalization . 250
A.1.5 Jordan canonical form* . 251
A.1.6 Basic linear transformations of the plane 251

A.2 Complex numbers . 253
A.3 Calculus . 254

A.3.1 Intermediate and mean value theorems 254
A.3.2 Partial derivatives . 255

A.4 Differential equations . 256

x CONTENTS

A.4.1 Equations . 256
A.4.2 What is a differential equation? 256
A.4.3 Standard notation . 257

B Computing 259
B.1 Differential equations . 259

B.1.1 Analytic solutions . 259
B.1.2 Numerical solutions . 260

B.2 Triangle Dance . 266
B.3 About the accompanying software 267

Bibliography 269

Index 271

Preface

Popular treatments of chaos, fractals, and dynamical systems let the public know You are cordially invited to
explore the world of
dynamical systems.

there is a party but provide no map to the festivities. Advanced texts assume their
readers are already part of the club. This Invitation, however, is meant to attract
a wider audience; I hope to attract my guests to the beauty and excitement of
dynamical systems in particular and of mathematics in general.

For this reason the technical prerequisites for this book are modest. Students Prerequisites: calculus and
linear algebra, but no
differential equations. This
Invitation is designed for a
wide spectrum of students.

need to have studied two semesters of calculus and one semester of linear algebra.
Although differential equations are used and discussed in this book, no previous
course on differential equations is necessary. Thus this Invitation is open to a
wide range of students from engineering, science, economics, computer science,
mathematics, and the like. This book is designed for the sophomore-junior level
student who wants to continue exploring mathematics beyond linear algebra but
who is perhaps not ready for highly abstract material. As such, this book can serve
as a bridge between (for example) calculus and topology.

My focus is on ideas, and not on theorem-proof-remark style mathematics. Rig- Philosophy.

orous proof is the jealously guarded crown jewel of mathematics. But nearly as
important to mathematics is intuition and appreciation, and this is what I stress.
For example, a technical definition of chaos is hard to motivate or to grasp un-
til the student has encountered chaos in person. Not everyone wants to be a
mathematician—are such people to be excluded from the party? Dynamical sys-
tems has much to offer the nonmathematician, and it is my goal to make these
ideas accessible to a wide range of students. In addition, I sought to

• present both the “classical” theory of linear systems and the “modern” theory
of nonlinear and chaotic systems;

• to work with both continuous and discrete time systems, and to present these
two approaches in a unified fashion;

• to integrate computing comfortably into the text; and

• to include a wide variety of topics, including bifurcation, symbolic dynamics,
fractals, and complex systems.

Chapter overview

Here is a synopsis of the contents of the various chapters.

• The book begins with basic definitions and examples. Chapter 1 introduces
the concepts of state vectors and divides the dynamical world into the discrete
and the continuous. We then explore many instances of dynamical systems
in the real world—our examples are drawn from physics, biology, economics,
and numerical mathematics.

• Chapter 2 deals with linear systems. We begin with one-dimensional systems
and, emboldened by the intuition we develop there, move on to higher di-
mensional systems. We restrict our attention to diagonalizable systems but
explain how to extend the results in the nondiagonalizable case.

xi

xii Preface

• In Chapter 3 we introduce nonlinear systems. This chapter deals with fixed
points and their stability. We present two methods for assessing stability:
linearization and Lyapunov functions.

• Chapter 4 continues the study of nonlinear systems. We explore the periodic
and chaotic behaviors nonlinear systems can exhibit. We discuss how peri-
odic points change as the system is changed (bifurcation) and how periodic
points relate to one another (Sarkovskii’s theorem). Symbolic methods are
introduced to explain chaotic behavior.

• Chapter 5 deals with fractals. We develop the notions of contraction maps
and of distance between compact sets. We explain how fractals are formed
as the attractive fixed points of iterated function systems of affine functions.
We show how to compute the (box-counting) dimension of fractals.

• Finally, Chapter 6 deals with complex dynamics, focusing on Julia sets and
the Mandelbrot set.

As the chapters progress, the material becomes more challenging and more
abstract. Sections that are marked with an asterisk may be skipped without anyStarred sections may be

skipped. effect on the accessibility of the sequel. Likewise, starred exercises are either based
on these optional sections or draw on material beyond the normal prerequisites of
calculus and linear algebra.

Two appendices follow the main material.

• Appendix A is a bare-bones reminder of important background material from
calculus, linear algebra, and complex numbers. It also gives a gentle intro-
duction to differential equations.

• Appendix B deals with computing and is designed to help students use some
popular computing environments in conjunction with the material in this
book.

Every section of every chapter ends with a variety of problems. The problems
cover a range of difficulties. Some are best solved with the aid of a computer.
Problems marked with an asterisk use ideas from starred sections of the text or
require background beyond the prerequisites of calculus and linear algebra.

Examplifications

Whereas Chapter 1 contains many examples and applications, the subsequent chap-Examplification = Examples
+ Applications +
Amplification.

ters concentrate on the mathematical aspects of dynamical systems. However, each
of Chapters 2–6 ends with an “Examplifications” section designed to provide addi-
tional examples, applications, and amplification of the material in the main portion
of the chapter. Some of these supplementary sections require basic ideas from prob-
ability.

In Chapter 2 we show how to use linear system theory to study Markov chains.
In Chapter 3 we reexamine Newton’s method from a dynamical system perspective.
Chapter 4’s examplification deals with the question, How many times should one
shuffle a deck of cards in order to be sure it is thoroughly mixed? In Chapter 5 we
explore the relevance of fractal dimension to real-world problems. We explore how
to use fractal dimension to estimate the surface area of a nonsmooth surface and
the utility of fractal dimension in image analysis. Finally, in Chapter 6 we have two
examplifications: a third visit to Newton’s method (but with a complex-numbers
point of view) and a revisit of fractals by considering complex-number bases.

Because there may not be time to cover all these supplementary sections in a
typical semester course, they should be encouraged as outside reading.

Preface xiii

Computing

This book could be used for a course which does not use the computer, but such an
omission would be a shame. The computer is a fantastic exploration tool for dy-
namical systems. Although it is not difficult to write simple computer programs to
perform many of the calculations, it is convenient to have a basic stock of programs
for this purpose.

A collection of programs written in Matlab, is available as a supplement for
this book. Complete and mail the postcard which accompanies this book to receive
a diskette containing the software. See §B.3 on page 267 for more information,
including how to obtain the software via ftp. Included in the software package is
documentation explaining how to use the various programs.

The software requires Matlab to run. Matlab can be used on various comput-
ing environments including Macintosh, Windows, and X-windows (Unix). Matlab
is a product of The MathWorks, Inc. For more information, the company can
be reached at (508) 653-1415, or by electronic mail at info@mathworks.com. A
less expensive student version of Matlab (which is sufficient to run the programs
offered with this book) is available from Prentice-Hall.

Extras for instructors

In addition to the software available to everyone who purchases this book, instruc-
tors may also request the following items from Prentice-Hall:

• a solutions book giving answers to the problems in this book, and

• a figures book, containing all the figures from the book, suitable for photo-
copying onto transparencies.

Planning a course

There is more material in this book than can comfortably be covered in one
semester, especially for students with less than ideal preparation. Here are some
suggestions and options for planning a course based on this text.

The examplification sections at the end of each chapter may be omitted, but
this would be a shame, since some of the more fun material is found therein. At a
minimum, direct students to these sections as supplemental reading. All sections
marked with an asterisk can be safely omitted; these sections are more difficult and
their material is not used in the sequel.

It is also possible to concentrate on just discrete or just continuous systems, but
be warned that the two theories are developed together, and analogies are drawn
between the two approaches.

Some further, chapter-by-chapter suggestions:

• A quick review of eigenvalues/vectors at the start of the course (in parallel
with starting the main material) is advisable. Have students read Appendix A.

• Chapter 1: Section 1.1 is critical and needs careful development. Section 1.2
contains many examples of “real” dynamical systems. To present all of them
in class would be too time consuming. I suggest that one or two be presented
and the others assigned as outside reading. The applications in this section
can be roughly grouped into the following categories:

(1) physics (1.2.1, 1.2.2, 1.2.3),

(2) economics (1.2.4, 1.2.5),

(3) biology (1.2.7, 1.2.8), and

(4) numerical methods (1.2.6, 1.2.9, 1.2.10, 1.2.11).

xiv Preface

The Newton’s method example (1.2.9) ought to be familiar to students from
their calculus class. Newton’s method is revisited in two of the examplification
sections.

• In Chapter 2, section 2.2.3 can safely be omitted.

• In Chapter 3, section 3.3 (Lyapunov functions) may be omitted. Lyapunov
functions are used occasionally in the sequel (e.g., in section 4.1.2 to show
that a certain system tends to cyclic behavior).

• In Chapter 4, section 4.1.3 can be omitted (although it is not especially chal-
lenging). Presentation of section 4.1 can be very terse, as this material is not
used later in the text.

The section on Sarkovski’s Theorem (4.2.4) is perhaps the most challenging in
the text and may be omitted. Instructors can mention the “period 3 implies
all periods” result and move on.

The symbolic methods in section 4.2.5 resurface in Chapter 5 in explaining
how the randomized fractal drawing algorithms work.

• Chapter 5 is long, and some streamlining can be accomplished. Section 5.1.4
can be omitted, but we do use the concept of compact set later in the chapter.

Section 5.3 can be compressed by omitting some proofs or just giving an
intuitive discussion of the contraction mapping theorem, which forms the
theoretical basis for the next section.

Section 5.4 is the heart of this chapter.

Section 5.5 can be omitted, but students might be disappointed. It’s great
fun to be able to draw fractals.

The cover-by-balls definition of fractal dimension in section 5.6 is quite nat-
ural, but time can be saved by just using the grid-box counting formula.

• In Chapter 6, it is possible to omit sections 6.1 and 6.2 and proceed directly
to the examplifications.

On the Internet

Readers with access to the Internet using the World Wide Web (e.g., using Mosaic)
can visit the home page for this book at

http://www.mts.jhu.edu/~ers/invite.html

There, readers can find further information about this book including a list of
errata, a gallery of pretty pictures, and access to the accompanying software (see
§B.3, especially page 267).

Acknowledgments

During the course of writing this book, I have been fortunate to have had wonderful
assistance and advice from students, friends, family, and colleagues.

Thanks go first to my department chair, John Wierman, who manages (amaz-
ingly) to be simultaneously my boss, colleague, and friend. Some years ago—despite
my protests—he assigned me to teach our department’s Dynamical Systems course.
To my suprise, I had a wonderful time teaching this course and this book is a direct
outgrowth.

Next, I’d like to thank all my students who helped me to develop this course and
gave comments on early versions of the book. In particular, I would like to thank
Robert Fasciano, Hayden Huang, Maria Maroulis, Scott Molitor, Karen Singer,
and Christine Wu. Special thanks to Gregory Levin for his close reading of the
manuscript and for his work on the solutions manual and accompanying software.

Preface xv

Several colleagues at Hopkins gave me valuable input and I would like to thank
James Fill, Don Giddens, Alan Goldman, Charles Meneveau, Carey Priebe, Wilson
J. Rugh, and James Wagner.

I also received helpful comments and contributions from colleagues at other
universities. Many thanks to Steven Alpern (London School of Economics), Terry
McKee (Wright State University), K. R. Sreenivasan (Yale University), and Daniel
Ullman (George Washington University).

Prentice-Hall arranged for early versions of this manuscript to be reviewed by a
number of mathematicians. Their comments were very useful and their contribu-
tions improved the manuscript. Thanks to: Florin Diacu (University of Victoria),
John E. Franke (North Carolina State), Jimmie Lawson (Louisiana State Univer-
sity), Daniel Offin (Queens University), Joel Robbin (University of Wisconsin),
Klaus Schmitt (University of Utah), Richard Swanson (Montana State University),
Michael J. Ward (University of British Columbia), and Andrew Vogt (Georgetown
University).

Thanks also to George Lobell and Barbara Mack at Prentice-Hall for all their
hard work and assistance.

Thanks to Naomi Bulock and Cristina Palumbo of The MathWorks for setting
up the software distribution.

Many thanks to my sister-in-law Suzanne Reyes for her help with the economics
material.

Extra special thanks to my wife, Amy, and to our children, Rachel, Daniel,
Naomi, and Jonah, for their love, support, and patience throughout this whole
project.

And many thanks to you, the reader. I hope you enjoy this Invitation and
would appreciate receiving your RSVP. Please send your comments and suggestions RSVP

by e-mail to ers@jhu.edu or by conventional mail to me at the Department of
Mathematical Sciences, The Johns Hopkins University, Baltimore, Maryland 21218,
USA.

This book was developed from a sophomore-junior level course in Dynamical
Systems at Johns Hopkins.

—ES, Baltimore
May 24, 1995

xvi Preface

Chapter 1

Introduction

1.1 What is a dynamical system?

A dynamical system is a function with an attitude. A dynamical system is doing
the same thing over and over again. A dynamical system is always knowing what
you are going to do next.

Cryptic? I apologize. The difficulty is that virtually anything that evolves
over time can be thought of as a dynamical system. So let us begin by describing
mathematical dynamical systems and then see how many physical situations are
nicely modeled by mathematical dynamical systems.

A dynamical system has two parts: a state vector which describes exactly the
state of some real or hypothetical system, and a function (i.e., a rule) which tells
us, given the current state, what the state of the system will be in the next instant
of time.

1.1.1 State vectors

Physical systems can be described by numbers. This amazing fact accounts for the The state vector is a
numerical description of the
current configuration of a
system.

successful marriage between mathematics and the sciences. For example, a ball
tossed straight up can be described using two numbers: its height h above the
ground and its (upward) velocity v. Once we know these two numbers, h and v,
the fate of the ball is completely determined. The pair of numbers (h, v) is a vector
which completely describes the state of the ball and hence is called the state vector
of the system. Typically, we write vectors as columns of numbers, so more properly,

the state of this system is
[

h
v

]
.

It may be possible to describe the state of a system by a single number. For
example, consider a bank account opened with $100 at 6% interest compounded
annually (see §1.2.4 on page 12 for more detail). The state of this system at any
instant in time can be described by a single number: the balance in the account.
In this case, the state vector has just one component.

On the other hand, some dynamical systems require a great many numbers to
describe. For example, a dynamical system modeling global weather might have
millions of variables accounting for temperature, pressure, wind speed, and so on at
points all around the world. Although extremely complex, the state of the system
is simply a list of numbers—a vector.

Whether simple or complicated, the state of the system is a vector; typically we
denote vectors by bold, lowercase letters, such as x. (Exception: When the state
can be described by a single number, we may write x instead of x.)

1.1.2 The next instant: discrete time

The second part of a dynamical system is a rule which tells us how the system Given the current state,
where will the system be
next?

1

2 CHAPTER 1. INTRODUCTION

changes over time. In other words, if we are given the current state of the system,
the rule tells us the state of the system in the next instant.

In the case of the bank account described above, the next instant will be one
year later, since interest is paid only annually; time is discrete. That is to say, time
is a sequence of separate chunks each following the next like beads on a string. For
the bank account, it is easy to write down the rule which takes us from the state of
the system at one instant to the state of the system in the next instant, namely,

x(k + 1) = 1.06x(k). (1.1)

Some comments are in order. First, we have said that the state of the system isWe write x(k) to denote the
state of the system at
discrete time k.

a vector1 x. Since the state changes over time, we need a notation for what the
state is at any specific time. The state of the system at time k is denoted by x(k).
Second, we use the letter k to denote discrete time. In this example (since interest
is only paid once a year) time is always a whole number. Third, equation (1.1) does
not give a complete description of the dynamical system since it does not tell us
the opening balance of the account. A complete description of the system is

x(k + 1) = 1.06x(k), and
x(0) = 100.

It is customary to begin time at 0, and to denote the initial state of the system by
x0. In this example x0 = x(0) = 100.

The state of the bank account in all future years can now be computed. We see
that x(1) = 1.06x(0) = 1.06× 100 = 106, and then x(2) = 1.06x(1) = 1.06× 106 =
112.36. Indeed, we see that

x(k) = (1.06)k × 100,

or more generally,
x(k) = 1.06kx0. (1.2)

Now it isn’t hard for us to see directly that 1.06kx0 is a general formula for
x(k). However, we can verify that equation (1.2) is correct by checking two things:
(1) that it satisfies the initial condition x(0) = x0, and (2) that it satisfies equa-
tion (1.1). Now (1) is easy to verify, since

x(0) = (1.06)0 × x0 = x0.

Further, (2) is also easy to check, since

x(k + 1) = 1.06k+1x0 = (1.06)× (1.06)kx0 = 1.06x(k).

A larger context

Let us put this example into a broader context which is applicable to all discrete
time dynamical systems. We have a state vector x ∈ Rn and a function f : Rn →
Rn for whichThe general form of a

discrete time dynamical
system.

x(k + 1) = f(x(k)).

In our simple example, n = 1 (the bank account is described by a single number:
the balance) and the function f : R → R is simply f(x) = 1.06x. Later, we
consider more complicated functions f . Once we are given that x(0) = x0 and that

1In this case, our vector has only one component: the bank balance. In this example we are
still using a boldface x to indicate that the state vector typically has several entries. However,
since this system has only one state variable, we may write x in place of x.

1.1. WHAT IS A DYNAMICAL SYSTEM? 3

x(k + 1) = f(x(k)), we can, in principle, compute all values of x(k), as follows:

x(1) = f(x(0)) = f(x0)
x(2) = f(x(1)) = f(f(x0))
x(3) = f(x(2)) = f(f(f(x0)))
x(4) = f(x(3)) = f(f(f(f(x0))))

...
x(k) = f(x(k − 1)) = f(f(. . . (f(x0)) . . .))

where in the last line we have f applied k times to x0 . We need a notation for
repeated application of a function. Let us write f2(x) to mean f(f(x)), write We write fk(x) to denote

the result computed by k
applications of the function
f to the value x.

f3(x) = f(f(f(x))), and in general, write

fk(x) = f(f(f(. . . f︸ ︷︷ ︸
k times

(x)) . . .)).

WARNING: In this book, the notation fk(x) does not mean (f(x))k (the
number f(x) raised to the kth power), nor does it mean the kth derivative
of f .

1.1.3 The next instant: continuous time

Bank accounts which change only annually or computer chips which change only
during clock cycles are examples of systems for which time is best viewed as pro-
gressing in discrete packets. Many systems, however, are better described with time
progressing smoothly. Consider our earlier example of a ball thrown straight up.

Its instantaneous status is given by its state vector x =
[

h
v

]
. However, it doesn’t

make sense to ask what its state will be in the “next” instant of time—there is no
“next” instant since time advances continuously.

We reflect this different perspective on time by using the letter t (rather than Continuous time is denoted
by t.k) to denote time. Typically t is a nonnegative real number and we start time at

t = 0.
Since we cannot write down a rule for the “next” instant of time, we instead

describe how the system is changing at any given instant. First, if our ball has
(upward) velocity v, then we know that dh/dt = v; this is the definition of velocity.
Second, gravity pulls down on the ball and we have dv/dt = −g where g is a positive
constant.2 The change in the system can thus be described by

h′(t) = v(t) (1.3)
v′(t) = −g, (1.4)

which can be rewritten in matrix notation:[
h′(t)
v′(t)

]
=
[

0 1
0 0

] [
h(t)
v(t)

]
+
[

0
−g

]
.

Since x(t) =
[

h(t)
v(t)

]
, this can all be succinctly written as

x′ = f(x), (1.5)

where f(x) = Ax+b, A is the 2× 2 matrix
[

0 1
0 0

]
, and b is the constant vector[

0
−g

]
.

4 CHAPTER 1. INTRODUCTION

Indeed, equation (1.5) is the form for all continuous time dynamical systems.
A continuous time dynamical systems has a state vector x(t) ∈ Rn and we are The general form for a

continuous time dynamical
system.

given a function f : Rn → Rn which specifies how quickly each component of x(t)
is changing, i.e., x′(t) = f(x(t)), or more succinctly, x′ = f(x).

Returning to the example at hand, suppose the ball starts at height h0 and with

upward velocity v0, i.e., x0 =
[

h0

v0

]
. We claim that the equations

h(t) = h0 + v0t−
1
2
gt2, and

v(t) = v0 − gt

describe the motion of the ball. We could derive these answers from what we
already know3, but it is simple to verify directly the following two facts: (1) when
t = 0 the formulas give h0 and v0, and (2) these formulas satisfy the differential
equations (1.3) and (1.4).

For (1) we observe that h(0) = h0 + v00 − 1
202 = h0 and, v(0) = v0 − g0 = v0.

For (2) we see that

h′(t) =
d

dt

[
h0 + v0t−

1
2
gt2
]

= v0 − gt = v(t),

verifying equation (1.3) and that

v′(t) =
d

dt
[v0 − gt] = −g,

verifying equation (1.4).

1.1.4 Summary

A dynamical system is specified by a state vector x ∈ Rn, (a list of numbers which
may change as time progresses) and a function f : Rn → Rn which describes how
the system evolves over time.

There are two kinds of dynamical systems: discrete time and continuous time.
For a discrete time dynamical system, we denote time by k, and the system is

specified by the equations

x(0) = x0, and
x(k + 1) = f(x(k)).

It thus follows that x(k) = fk(x0), where fk denotes a k-fold application of f to
x0.

For a continuous time dynamical system, we denote time by t, and the following
equations specify the system:

x(0) = x0, and
x′ = f(x).

Problems for §1.1

�1. Suppose you throw a ball up, but not straight up. How would you model the
state of this system (the flying ball)? In other words, what numbers would
you need to know in order to completely describe the state of the system? For
example, the height of the ball is one of the state variables you would need to
know. Find a complete description. Neglect air resistance and assume gravity
is constant.

2Near the surface of the earth, g is approximately 9.8 m/s2.
3We could derive these answers by integrating equation (1.4) and then (1.3).

1.1. WHAT IS A DYNAMICAL SYSTEM? 5

[Hint: Two numbers suffice to describe a ball thrown straight up: the height
and the velocity. To model a ball thrown up, but not straight up, requires
more numbers. What numerical information about the state of the ball do
you require?]

�2. For each of the following functions f find f2(x) and f3(x).

(a) f(x) = 2x.

(b) f(x) = 3x− 2.

(c) f(x) = x2 − 3.

(d) f(x) =
√

x + 1.

(e) f(x) = 2x.

�3. For each of the functions in the previous problem, compute f7(0). If you have
difficulty, explain why.

�4. Consider the discrete time system

x(k + 1) = 3x(k); x(0) = 2.

Compute x(1), x(2), x(3), and x(4).

Now give a formula for x(k).

�5. Consider the discrete time system

x(k + 1) = ax(k), x(0) = b

where a and b are constants. Find a formula for x(k).

�6. Consider the continuous time dynamical system

x′ = 3x, x(0) = 2.

Show that for this system x(t) = 2e3t.

[To do this you should check that the formula x(t) = 2e3t satisfies (1) the
equation x′ = 3x and (2) the equation x(0) = 2. For (1) you need to check
that the derivative of x(t) is exactly 3x(t). For (2) you should check that
substituting 0 for t in the formula gives the result 2.]

�7. Based on your experience with the previous problem, find a formula for x(t)
for the system

x′ = ax; x(0) = b,

where a and b are constants. Check that your answer is correct. Does your
formula work in the special cases a = 0 or b = 0?

�8. Killing time. Throughout this book we assume that the “rule” which describes
how the system is changing does not depend on time. How can we model a
system whose dynamics change over time? For example, we might have the
system with state vector x for which

x′1 = 3x1 + (2− t)x2

x′2 = x1x2 − t.

Thus the rate at which x1 and x2 change depends on the time t.

Create a new system which is equivalent to the above system for which the
rule doesn’t depend on t.

[Hint: Add an extra state variable which acts just like time.]

6 CHAPTER 1. INTRODUCTION

x

v

Figure 1.1: A mass on a frictionless surface attached to a wall by a spring.

�9. Killing time again. Use your idea from the previous problem to eliminate the
dependence on time in the following discrete time system.

x1(k + 1) = 2x1(k) + kx2(k)
x2(k + 1) = x1(k)− k − 3x2(k)

�10. The Collatz 3x + 1 problem. Pick a positive integer. If it is even, divide it
by two. Otherwise (if it’s odd) multiply it by three and add one. Now repeat
this procedure on your answer. In other words, consider the function

f(x) =

{
x/2 if x is even,
3x + 1 if x is odd.

If we begin with x = 10 and we iterate f we get

10 7→ 5 7→ 16 7→ 8 7→ 4 7→ 2 7→ 1 7→ 4 7→ · · ·

Notice that from this point on we get an endless stream of 4,2,1,4,2,1,. . . .

Write a computer program to compute f and iterate f for various starting
values. Do the iterates always fall into the pattern 4,2,1,4,2,1,. . . regardless
of the starting value? No one knows!

1.2 Examples

In the previous section we introduced the concept of a dynamical system. Here we
look at several examples—some continuous and some discrete.

1.2.1 Mass and spring

Our first example of a continuous time dynamical system consists of a mass sliding
on a frictionless surface and attached to a wall by an ideal spring; see Figure 1.1.
The state of this system is determined by two numbers: x, the distance the block
is from its neutral position, and v, its velocity to the right. When x = 0 we assume
that the spring is neither extended nor compressed and exerts no force on the block.
As the block is moved to the right (x > 0) of this neutral position, the spring pulls

The spring exerts a force
proportional to the distance
it is compressed or stretched.
This is known as Hooke’s
law.

it to the left. Conversely, if the block is to the left of the neutral position (x < 0),
the spring is compressed and pushes the block to the right. Assuming we have an
ideal spring, the force F on the block when it is at position x is −kx, where k is a
positive constant. The minus sign reflects the fact that the direction of the force is
opposite the direction of the displacement.

1.2. EXAMPLES 7

From basic physics, we recall that F = ma, where m is the mass of the block,
and acceleration, a, is the rate of change of velocity (i.e., a = dv/dt). Substituting
F = −kx, we have

v′ = − k

m
x. (1.6)

By definition, velocity is the rate of change of position, that is,

x′ = v. (1.7)

We can simplify matters further by taking k = m = 1. Finally, we combine equa-
tions (1.6) and (1.7) to give[

x′

v′

]
=
[

0 1
−1 0

] [
x
v

]
, (1.8)

or equivalently,
y′ = Ay, (1.9)

where y =
[

x
v

]
is the state vector and A =

[
0 1
−1 0

]
. Let us assume that the

block starts in state y0 =
[

x0

v0

]
=
[

1
0

]
, i.e., the block is not moving but is

moved one unit to the right. Then we claim that

y(t) =
[

cos t
− sin t

]
(1.10)

describes the motion of the block at future times. Later (in Chapter 2) we show
how to derive this. For now, let us simply verify that this is correct. There are

two things to check: (1) that y(0) =
[

1
0

]
and (2) that y satisfies equation (1.8),

or equivalently, equation (1.9). To verify (1) we simply substitute t = 0 into
equation (1.10) and we see that

y(0) =
[

cos 0
− sin 0

]
=
[

1
0

]
= y0,

as required. For (2), we take derivatives as follows:

y′(t) =
[

cos t
− sin t

]′
=
[
− sin t
− cos t

]
=
[

0 1
−1 0

] [
cos t
− sin t

]
= Ay(t),

as required.
Since the position is x(t) = cos t, we see that the block bounces back and forth

forever. This, of course, is not physically realistic. Friction, no matter how slight,
eventually will slow the block to a stop.

1.2.2 RLC circuits

Consider the electrical circuit in Figure 1.2. The capacitance of the capacitor C,
the resistance of the resistor R, and the inductance of the coil L are constants; they
are part of the circuit design. The current in the circuit I and the voltage drop V
across the resistor and the coil vary with time.4

These can be measured by inserting an ammeter anywhere in the circuit and
attaching a voltmeter across the capacitor (see the figure). Once the initial current
and voltage are known, we can predict the behavior of the system. Here’s how.

4We choose V to be positive when the upper plate of the capacitor is positively charged with
respect to the bottom plate.

8 CHAPTER 1. INTRODUCTION

R

L

C
V

I

Figure 1.2: An electrical circuit consisting of a resistor, a capacitor, and an inductor
(coil).

The charge on the capacitor is Q = −CV . The current is the rate of change in
the charge, i.e., I = Q′. The voltage drop across the resistor is RI and the voltage
drop across the coil is LI ′, so in all we have V = LI ′ + RI. We can solve the three
equations

Q = −CV,

I = Q′, and
V = LI ′ + RI

for V ′ and I ′. We get

V ′ = −Q′/C = − 1
C

I

I ′ =
1
L

V − R

L
I,

which can be rewritten in matrix notation as[
V
I

]′
=
[

0 −1/C
1/L −R/L

] [
V
I

]
. (1.11)

Let’s consider a special case of this system. If the circuit has no resistance (R = 0)
and if we choose L = C = 1, then the system becomes[

V
I

]′
=
[

0 −1
1 0

] [
V
I

]
,

which is nearly the same as equation (1.8) on page 7 for the mass-and-spring system.
Indeed, if V (0) = 1 and I(0) = 0, you should check thatA resistance-free RLC circuit

oscillates in just the same
way as the frictionless mass
and spring.

V (t) = cos t

I(t) = sin t

describes the state of the system for all future times t. The resistance-free RLC
circuit and the frictionless mass-and-spring systems behave in (essentially) identical
fashions.

In reality, of course, there are no friction-free surfaces or resistance-free circuits.
In Chapter 2 (see pages 48-51) we revisit these examples and analyze the effect of
friction/resistance on these systems.

1.2. EXAMPLES 9

mg

L

m

mg sin θ

θ

Figure 1.3: A simple pendulum.

1.2.3 Pendulum

Consider an ideal pendulum as shown in Figure 1.3. The bob has mass m and is
attached by a rigid pole of length L to a fixed pivot. The state of this dynamical
system can be described by two numbers: θ, the angle the pendulum makes with
the vertical, and ω, the rate of rotation (measured, say, in radians per second). By
definition, ω = dθ/dt.

Gravity pulls the bob straight down with force mg. This force can be resolved
into two components: one parallel to the pole and one perpendicular. The force
parallel to the pole does not affect how the pendulum moves. The component
perpendicular to the pole has magnitude mg sin θ; see Figure 1.3.

Now we want to apply Newton’s law, F = ma. We know that the force is
mg sin θ. We need to relate a to the state variable θ. Since distance s along
the arc of the pendulum is Lθ, and a = s′′, we have a = (Lθ)′′ = Lω′. Thus
ω′ = a/L = (ma)/(mL) = −(mg sin θ)/(mL) = −(g/L) sin θ. We can summarize
what we know as follows:

θ′(t) = ω(t), and (1.12)

ω′(t) = − g

L
sin θ(t). (1.13)

(The minus sign in equation (1.13) reflects the fact that when θ > 0, the force tends

to send the pendulum back to the vertical.) Let x =
[

θ
ω

]
be the state vector;

then equations (1.12) and (1.13) can be expressed

x′ = f(x),

where f : R2 → R2 is defined by

f

[
x
y

]
=
[

y
− g

L sinx

]
. (1.14)

Although we were able to present an exact description of the motion of the mass This is a more complicated
system because of the sine
function. An exact solution
is too hard.

10 CHAPTER 1. INTRODUCTION

and spring of §1.2.1 (see equation (1.10)), we cannot give an exact formula for the
dynamical system of equations (1.12) and (1.13).

We can still gain a feel for the action of the pendulum, however, by two methods:
(1) linear approximation and (2) numerical methods.

Linear approximation

The function f in equation (1.14) is nonlinear; it contains the sine function. How-If θ is small, we can
approximate sin θ by θ. ever, if the angular displacement of the pendulum is very small, then sin θ ≈ θ; this

is an instance of the limit
lim
θ→0

sin θ

θ
= 1.

Replacing sin θ by θ in equation (1.13) we can rewrite our system as[
θ
ω

]′
=
[

0 1
−g/L 0

] [
θ
ω

]
(1.15)

If we take L = g (e.g., assume the pole is 9.8 meters long), then equation (1.15) is
exactly the same as equation (1.8); hence if we begin the pendulum with a slight
displacement, we would expect the angle to vary with time sinusoidally. In other
words, the pendulum will swing back and forth—amazing!

Numerical methods

Some systems of differential equations (such as equation (1.8)) can be solved ex-When an exact formula
cannot be found, numerical
methods may help.

actly by analytic means, others (such as equation (1.14)) cannot. A computer,
however, may be useful in such cases. Euler’s method (see §1.2.10 on page 20) is
one technique for working numerically with differential equations. Although Eu-
ler’s method is easy to explain, it is not very accurate. Other methods, while more
accurate are harder to analyze. Nonetheless, these more sophisticated methods are
readily available in various mathematical computer environments such as Matlab,
Maple, Mathematica, and Mathcad.

There are various drawbacks to numerical methods (see §4.1.4 on page 118 where
we discuss how they may be totally useless), including the fact they do not give us
a formula from which we can make conclusions. However, we can still get a good
idea of how a system behaves by using numerical methods.

In §B.1.2 on page 260 we show how to use packages such as Matlab to find
approximate (numerical) solutions to differential equations. With these methods,
we can examine the pendulum system. To simplify matters, we take g = L = 9.8,
so our system from equation (1.14) becomes[

θ
ω

]′
=
[

ω
− sin θ

]
. (1.16)

Let us start the pendulum system at x0 =
[

θ(0)
ω(0)

]
=
[

0.1
0

]
; physically, we

move the weight a small distance away from the straight-down position. The result
is illustrated in Figure 1.4. Notice that the curves look identical to sine and cosine
waves, as we might expect from our discussion on linear approximations.

Next, let us try a large initial displacement. When θ = π, the bob is straight
up; we begin with θ = 3 (nearly vertical). The resulting plot is shown in Figure 1.5.
Although periodic, the curves do not look at all like sine waves.

Finally, let us begin with the bob hanging straight down (θ = 0) but give it a
hefty initial spin (ω = 2). The result is Figure 1.6 The surprise is that the plot of θ
appears to go up and up and is not periodic! What is going on? What we see is that
the pendulum is continually rotating in the same direction (notice that ω is always
positive) and so the pendulum is winding around and around. It is interesting to
notice that the mass spends most of its time near the vertical position, where it is
moving the most slowly.

1.2. EXAMPLES 11

0 2 4 6 8 10 12 14 16 18 20
-0.1

-0.05

0

0.05

0.1

Figure 1.4: The motion of a pendulum with θ0 = 0.1 and ω0 = 0. The solid curve
is the angle θ and the dotted curve is the rate of rotation ω. The horizontal axis is
time, t.

0 5 10 15 20 25 30
-4

-3

-2

-1

0

1

2

3

Figure 1.5: The motion of a pendulum with θ0 = 3 and ω0 = 0. The solid curve is
θ and the dotted curve is ω.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Figure 1.6: The motion of a pendulum with θ0 = 0 and ω0 = 2. The solid curve is
θ and the dotted curve is ω.

12 CHAPTER 1. INTRODUCTION

1.2.4 Your bank account

Earlier we discussed bank accounts as examples of discrete time dynamical systems.
Let us revisit this example. We discussed a deposit of $100 in the bank (x(0) = 100)
and we supposed that each year the bank pays 6% interest, i.e., x(k+1) = 1.06x(k).

Let us try to make this example more realistic. Some banks pay interest monthly.
If the annual interest rate is r, then the account increases by a factor of (1 + r/12)Monthly compounding.

each month. Let us also suppose that we make a deposit each month in the amount
b. Our system becomes

x(k + 1) = (1 + r/12)x(k) + b. (1.17)

Notice that equation (1.17) has the form x(k+1) = f(x(k)), where f(x) = ax+b—a
linear equation. Such linear systems are discussed at length in Chapter 2.

Now, many banks post interest monthly, but, in fact pay interest continuously.Continuous compounding.

The instant the account earns another penny, interest on that penny starts to
accumulate. If say, our account has x dollars and is paying 6% interest, then at
this instant it is increasing in value at a rate of 0.06x dollars per year. In symbols,
dx/dt = 0.06x. Imagine we continuously deposit money into our account at a rate
of b dollars per year, then we can view our bank deposit as a continuous time
dynamical system for which

dx
dt

= rx + b. (1.18)

Notice, again, that equation (1.18) is of the form x′ = f(x), where f is a lin-
ear5function: f(x) = rx+b. In Chapter 2 we show how to solve this kind of system
exactly. For now we can take advantage of the fact that this differential equation is
readily handled by computer algebra systems such as Mathematica. Here we showUsing the computer to get

an exact formula. See
§B.1.1.

the input and output to Mathematica to solve x′ = rx + b with x(0) = x0:

DSolve[{x’[t] == r x[t] + b, x[0] == x0}, x[t], t]

r t r t
-b + b E + E r x0

{{x[t] -> -----------------------}}
r

Rewriting Mathematica’s answer we see that

x(t) = ertx0 +
b

r

(
ert − 1

)
. (1.19)

This formula is especially interesting when x0 is negative. What does a negativeA negative balance: a loan
to repay. bank balance mean? It might indicate that we are overdrawn (uh oh), or it might

represent a loan we are paying off (such as a car loan or a mortgage). Given that
the loan is at interest rate r and we are paying b dollars per year (typically as
b/12 dollars per month), the expression for x(t) in equation (1.19) tells us our
indebtedness at any given point in the loan.

For example, suppose we borrow $1000 at 6% interest and pay back at a rate
of $100 per year (paid continuously over the course of the year). Figure 1.7 shows
our indebtedness over time. We see that it takes just over 15 years to pay back the
loan (for a total of over $1500 in payments).

1.2.5 Economic growth

Let us switch from economics on the small scale (a bank account) to economicsA simplified version of a
model of economic growth
due to Solow.

on the grand scale: a nation’s economy. Here we are concerned with the extent to
which a nation invests in capital (the machinery and equipment it uses to produce
goods and services).

5More properly, f is an affine function.

1.2. EXAMPLES 13

-1000

-800

-600

-400

-200

0

200

0 2 4 6 8 10 12 14 16

Figure 1.7: Indebtedness as a function of time on a $1000 loan at 6% interest, paid
back at a rate of $100 per year.

We begin by listing the various economic quantities which are relevant to capi-
talization.

• K: the total amount the nation has invested in capital.

• d: the rate at which the capital depreciates. Thus K is decreasing at a rate
dK. We assume that d is a constant.

• N : the population of the nation.

• ρ: the rate of growth of the population. We assume that ρ is constant. Thus
N ′ = ρN .

• Y : the output (total of goods and services) produced by the nation. The
level of output depends on the total capital (equipment) K and total labor
(population) N . In order to double the amount produced, both the amount of
labor and amount of capital would need to be doubled. A reasonable formula
for Y in terms of K and N is

Y = A
√

KN, (1.20)

where A is a constant.

• k: the per capita capitalization, i.e., k = K/N .

• y: the per capita output, i.e., y = Y/N ; this is a measure of worker produc-
tivity.

• s: the savings rate. Since savings are equivalent to investment (money de-
posited into bank accounts is loaned to firms to buy capital), K is increasing
at a rate of sY .

We now organize these quantities into a dynamical system. This system has a
single state variable, k, the per-capita capitalization.

We know that k = K/N , so we compute the derivative of k by the derivative of
quotients rule:

k′ =
NK ′ −KN ′

N2
=

K ′

N
− KN ′

N2
. (1.21)

14 CHAPTER 1. INTRODUCTION

Now, K ′ = sY − dK (capital increases thanks to savings but decreases due to
depreciation). Also, N ′ = ρN (population increases at a fixed rate ρ). Substituting
these into equation (1.21) we get

k′ =
sY − dK

N
− KρN

N2
.

We substitute Y = A
√

KN to get

k′ =
sA
√

KN − dK

N
− K

N
,

and since k = K/N , we arrive at

k′ = sA
√

k − (d + ρ)k. (1.22)

We can use Mathematica to solve equation (1.22). It gives

2 2 2
A s 2 A s C[1] C[1]

-------- + ---------------------- + ----------
2 ((d + p) t)/2 (d + p) t

(d + p) E (d + p) E

(Here we use p to stand for ρ. The term C[1] stands for a constant; the value of
this constant can be determined given the value of k(0).)

We can now analyze what happens as t→∞. The second and third terms have
denominators which go to infinity as t→∞, so these terms vanish. Thus as t→∞,
we see that k(t)→ [As/(d+ρ)]2. Our model predicts that per capita capitalization
approaches a constant level.

To learn that k(t) tends to a limit as t→∞ we relied on Mathematica to find anWhat if we can’t solve?

explicit formula for k(t). However, this is not necessary. We explore (in Chapter 3)
how to reach the same conclusion without solving any differential equations.

1.2.6 Pushing buttons on your calculator

Do you ever just play with your calculator? One fun thing to do is to enter anyIterating a function is the
same as repeatedly pushing
the same button on a
calculator.

number, and start pressing the
√

button. What happens? After pressing the
button many times, the display always reads 1.0000. Well, not always. If you put
put in a negative number, you get an error. And if you start with 0, then you
always have 0. But if you start with any positive number, you eventually reach 1.
Try it!

Try playing with your cosine button. Set your calculator to Radians, enter any
number, and keep pressing the cos x button. What happens? Try it!

It’s not hard to explain why iterating the square-root key leads to 1. Let’s recast
this example as a dynamical system. The state of the system is simply the number
on the display, x. The rule to get to the next state is simply f : x 7→

√
x, or in our

usual notation,
x(k + 1) =

√
x(k), (1.23)

or, equivalently, x(k + 1) = x(k)1/2. Iterating, we have

x(0) = x0

x(1) = [x(0)]1/2 = (x0)1/2

x(2) = [x(1)]1/2 = (x0)1/4

x(3) = [x(2)]1/2 = (x0)1/8

...
x(k) = (x0)1/2k

.

1.2. EXAMPLES 15

Figure 1.8: Iterating cos x starting with x = 0.

Figure 1.9: Computing iterates of the cosine function using a spreadsheet program.

Since 1/2k → 0 as k → ∞, we see that, provided x0 > 0, x(k) = (x0)1/2k → 1 as
k →∞.

The example of repeatedly pressing cos x is a bit harder to explain directly,
but we look at it carefully in Chapter 3. Formally, we are looking at the dynamical
system

x(k + 1) = cos x(k).

Let us plot a graph of what happens when we iterate cos x starting with, say,
x = 0. Figure 1.8 is a plot of the values produced by successive iterates of cos x.
The horizontal axis counts the number of iterations.

Incidentally, the easiest computer software to use to produce this plot is spread Spread sheet programs are
ideal for performing
computations for discrete
time dynamical systems.

sheet software, most commonly used for financial matters! Indeed, Figure 1.8 was
created using Microsoft Excel, although other spreadsheet programs would work
nicely as well; see Figure 1.9. We enter the values of the vector x(0) in the first row
of the spread sheet. In the next row, we enter formulas to compute each component
of x(1) from the entries in the previous row. Now comes the fun part. We use x(1)
to find x(2) using exactly the same computations as those which brought us from
x(0) to x(1). Thus we simply copy the formulas in the second row to the third row,

16 CHAPTER 1. INTRODUCTION

and then to the fourth, fifth, etc. This can be done easily using “copy and paste”
features of spread sheet software and does not require retyping.

In Figure 1.9 we entered the value “0” into cell B2. Then we entered the formula
“=cos(B2)” into cell B3 and then copied it into subsequent cells in column B. Notice
that each entry in column B is the cosine of the number above it. Now, if we want to
compute cosine iterates starting with a different x0 (say x0 = 2) we simply retype
the entry in cell B2 and the entire spread sheet recomputes (and even updates the
graph).

1.2.7 Microbes

A jar is filled with a nutritive solution and some bacteria. As time progresses, theA universe in a jar.

bacteria reproduce (by dividing) and die. Let b (for birth) be the rate at which the
microbes reproduce and p (for perish) be the rate at which they die. Then, net,
the population is growing at the rate b− p. This means that if there are x bacteria
in the jar, then the rate at which the number of bacteria is increasing is (b − p)x,
that is, dx/dt = rx, where r = b − p. If we begin with x0 bacteria at time t = 0,
then (see problems 6 and 7 on page 5)

x(t) = ertx0. (1.24)

In the short run, this makes sense; the formula says that there are x0 bacteria at
time 0 and then the number grows at an exponential rate. However, as time goes
on, equation (1.24) implies that the number of bacteria will be exceedingly large
(larger than the number of atoms in the universe if we take it literally). Thus the
simple model dx/dt = rx is not realistic in the long haul.

As the number of bacteria reproduce, they tend to crowd each other, produce
toxic waste products, etc. It makes sense to postulate a death rate that increases
with the population.

Again, let us assume a constant rate of reproduction b, so that if there are x
bacteria, they are increasing in number at a rate bx. Now instead of a constant death
rate, let us suppose that the death rate is px, and so if there are x bacteria, they
are decreasing in number at a rate px2. Combining these, we have the dynamical
system

dx

dt
= bx− px2. (1.25)

Now this is a differential equation for which an analytic solution is known (and we
present that solution in a moment). Often, however, it is difficult or impossible to
find analytic solutions to differential equations. We try not to rely on finding ana-
lytic solutions. Instead, let us see what we can learn directly from equation (1.25).

Let us consider the question, Is there a self-sustaining population in this model?
We are looking for a number x̃ for which bx̃− px̃2 = 0; at this special level, the net
reproduction/death rates are exactly in balance and (since this x̃ makes dx/dt = 0)
the population is neither increasing nor decreasing.

By setting the right-hand-side of equation (1.25) equal to zero we get

dx

dt
= bx− px2 = 0 ⇒ x = 0 or x =

b

p
.

We see there are two self-sustaining population levels: x̃ = 0 and x̃ = b/p. These
two values, of course, correspond to the two roots of the quadratic equation bx −
px2 = 0. This is the equation of a parabola, and its graph is given in Figure 1.10.

First, let’s consider x̃ = 0. Clearly this is self-sustaining! There are no bacteria,
so none can be born and none can die. Forever there will be no bacteria in the
jar. Of course, with the slightest contamination (x > 0, but smaller than b/p)
we see that dx/dt = bx − px2 > 0 (look at the graph in Figure 1.10). Thus the
number of bacteria will start to increase as soon as the jar has been contaminated.
The equilibrium value of x̃ = 0 is unstable; slight perturbations away from this An example of what we call

an unstable fixed point.

1.2. EXAMPLES 17

b/p

Figure 1.10: A graph of the right-hand side of equation (1.25).

equilibrium will destroy the equilibrium.
On the other hand, consider x̃ = b/p. At this population level, bacteria are being

born at a rate bx̃ = b(b/p) = b2/p and are dying at a rate px̃2 = p(b/p)2 = b2/p,
so birth and death rates are exactly in balance. But let us consider what happens
in case the population x is slightly above or slightly below x̃ = b/p. If x is slightly
above b/p, we see that dx/dt is negative (look at the graph in Figure 1.10); hence,
the number of bacteria will drop back toward b/p. Conversely, if x is slightly below
b/p, we see that dx/dt is positive, so the population will tend to increase back
toward b/p. We see that b/p is a stable equilibrium. Small perturbations away from

An example of what we call
a stable fixed point.

x̃ = b/p will self-correct back to b/p.
Now, as promised, we present an analytic solution to equation (1.25), using the

computer algebra package Mathematica:

DSolve[{x’[t] == b x[t] - p x[t]^2, x[0]==x0},x[t],t]

b t
b E

{{x[t] -> ----------------}}
b t b

-p + E p + --
x0

We can rewrite this answer in conventional notation as

x(t) =
x0be

bt

(b− px0) + px0ebt
. (1.26)

Examine equation (1.26) and observe that if x0 is any positive number, then x(t)→
b/p as t→∞. This confirms what we previously discussed: The system gravitates
toward the stable fixed point b/p.

1.2.8 Predator and prey

In the previous section we considered a simple model of a biological system involving A classical model of an
ecological system developed
by Lotka and Volterra.

only one species. Now we consider a more complex model involving two species.
The first (the prey) we imagine is some herbivore (say, rabbits) whose population
at time t is r(t). The second (the predator) feeds on the prey; let’s say they are
wolves and their population at time t is w(t).

Left on their own the rabbits will reproduce, well, like rabbits: dr/dt = ar
for some positive constant a. The wolves, on the other hand, will starve without
rabbits to eat and their population will decline: dw/dt = −bw for some b > 0.

However, when brought into the same environment, the wolves will eat the
rabbits with the expected effects on each population: more wolves, fewer rabbits.
Suppose there are w wolves and r rabbits. What is the likelihood that a wolf will

18 CHAPTER 1. INTRODUCTION

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180 200

Figure 1.11: Variation in predator and prey populations over time. The solid curve
is the prey (rabbit) and the dotted curve is the predator (wolf) population.

catch a rabbit? The more wolves or the more rabbits there are, the more likely
that a wolf will meet a rabbit. For this reason, we assume there is loss to the rabbit
population proportional to rw and a gain to the wolf population, also proportional
to rw. We write these changes in the population as follows:

dr

dt
= ar − grw (1.27)

dw

dt
= −bw + hrw, (1.28)

where a, b, g, h are positive constants. We can write this pair of equations in the

form x′ = f(x), where x =
[

r
w

]
and f

[
r
w

]
=
[

ar − grw
−bw + hrw

]
.

We can numerically approximate the solution to the system of differential equa-
tions (1.27) and (1.28), for example, using the ode45 routine of Matlab. (See
§B.1.2 on page 260.) For example, let

a = 0.2, b = 0.1, g = 0.002, h = 0.001, r0 = 100, and w0 = 25.

Looking at the results in Figure 1.11; we see that the rabbit and wolf populationsWhile real populations of
predators and prey have
been observed to oscillate,
the pattern is rarely this
clean. This predator-prey
model is too simple to
capture the intricacies of an
ecosystem.

fluctuate over time. You should notice that the population behavior is periodic—
roughly every 50 time units the pattern repeats. When there are few wolves, the
rabbit population soars; then, as food (i.e., rabbits) becomes more plentiful, the
wolf population rises. But as the wolf population climbs, the wolves overhunt the
rabbits, and the rabbit population falls. This causes food to become scarce for the
wolves, and their numbers fall in turn. Finally, the number of wolves is low enough
for the rabbit population to begin to recover, and the cycle begins again.

To fully appreciate the cyclic nature of this process, we can plot the rabbitA phase diagram for the
predator-prey system. and wolf population sizes on a single graph with the x-axis denoting the number

of rabbits and the y-axis the number of wolves; see Figure 1.12. Each point on
the curve represents a state of the system; the curve is called a phase diagram.
Just as each point on the curve represents a snapshot of the system, the curve
in its entirety represents the full story of how the system progresses. The state
of the system is a point which travels counterclockwise around the curve. Trace
your finger counterclockwise around the curve and interpret what each population
is doing at each point.

1.2. EXAMPLES 19

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Figure 1.12: Phase diagram for predator-prey model. Horizontal axis is the number
of prey (rabbits), and the vertical axis is the number of predators (wolves).

y

x

y=g(x)

x
0

x
1

∆x

(x
0
,g(x

0
))

∆y

Figure 1.13: Newton’s method for finding the root of an equation g(x) = 0.

1.2.9 Newton’s Method

How much is 5
√

9? For what number x does cos x = x? Find a root of the equation Using dynamical systems to
solve equations.x5 + x− 1 = 0. Find a number x so that xx = 2.

Each of these problems requires a numerical answer. How can we find it? New-
ton’s method is a clever numerical procedure for solving equations of the form
g(x) = 0.

Here is how it works. We begin with a guess, x0, for a root to the equation g(x) =
0. If we are incredibly lucky, g(x0) = 0; otherwise, we use the following procedure
to find (we hope) a better guess x1. This method is illustrated in Figure 1.13. We
know x0, so we compute y0 = g(x0). We would like to find the magic number x̃ so
that g(x̃) = 0. If the curve were a straight line, then, since we know the slope of
the curve at the point (x0, g(x0)) is g′(x0), we could find exactly where the curve
y = g(x) crossed the x-axis. Regrettably, the curve is not straight, but perhaps it
is not too far off. We pretend, for the moment, the curve is straight and we seek
the point (x1, y1) where y1 = g(x1) = 0. Again, if the curve were straight, we’d
have

g′(x0) =
∆y

∆x
=

y1 − y0

x1 − x0
=

0− g(x0)
x1 − x0

.

20 CHAPTER 1. INTRODUCTION

Solving this equation for x1 we get

x1 = x0 −
g(x0)
g′(x0)

.

The hope is that although x1 is not really going to be a root of the equation
g(x) = 0, it is closer to being a root than x0 was. (Of course, for this method to
have any chance of working, we need g to be differentiable and g′(x0) 6= 0.)

Now, if x1 is a better guess than x0, how can we gain even more accuracy?
Simple! By using exactly the same procedure, this time starting with x1. You
should smell a discrete time dynamical system. Here it is:

x(k + 1) = x(k)− g(x(k))
g′(x(k))

. (1.29)

In other words, if we let f(x) = x− g(x)/g′(x), then we iterate f starting with x0

with the hope that fk(x) converges to a root of the equation g(x) = 0.
In §3.4 (page 106) we show that if x0 is a reasonable guess, then this procedure

converges quickly to a root of g(x). For now, let’s do an example.
Suppose we wish to compute 5

√
9. In other words, we want a root of the equation

x5 − 9 = 0, i.e., let g(x) = x5 − 9. What is a reasonable first guess? Well g(1) =
−9 < 0, and g(2) = 32 > 0, so there must be a root between 1 and 2. Let’s start
with x(0) = 1.5. Our next guess is

x(1) = x(0)− g(x(0))
g′(x(0))

= x(0)− x(0)5 − 9
5x(0)4

= 1.5− 1.55 − 9
5× 1.54

= 1.55555 . . .

Repeating this procedure, we compile the following results:

x(0) = 1.5
x(1) = 1.55555555 . . .

x(2) = 1.55186323 . . .

x(3) = 1.55184557 . . .

Amazingly, x(3) is the correct value of 5
√

9 to the number of digits shown! Further
iterations of Newton’s method changes only less significant digits.

Although Newton’s method does not converge this rapidly for all problems, it
is still a very quick and powerful method.

1.2.10 Euler’s method

Consider the differential equationUsing the discrete to
approximate the continuous.

dy

dx
= x + y. (1.30)

In other words, we seek a function f(x) (also called y) for which f ′(x) equals
x + f(x). Courses on differential equations give a variety of tools for finding such
functions. Computer algebra systems such as Mathematica or Maple can actually
solve this equation analytically. Here is how Maple solves it:

dsolve(diff(y(x),x) = y(x) + x, y(x));

y(x) = - x - 1 + exp(x) _C1

In common notation, the solution is y = aex − x− 1, where a is any constant. To
see that this is correct, just observe that

y′ = (aex − x− 1)′ = aex − 1 = (aex − x− 1) + x = y + x.

1.2. EXAMPLES 21

If we are also told that y(0) = 1, then, since y = aex − x− 1, we can solve for a:

1 = y(0) = ae0 − 0− 1 ⇒ a = 2.

Thus if the problem is
y′ = x + y; y(0) = 1, (1.31)

then the answer is
y = 2ex − x− 1. (1.32)

If, ultimately, we just want to know the value of y(1), we simply plug in 1 for x
and get y(1) = 2e− 2 ≈ 3.4366.

The differential equation (1.31) is easy to solve either by a computer or by the What if I don’t know how to
solve differential equations?human who has had a course in differential equations. It is not hard, however, to

write a differential equation which can stump the best human or computer differen-
tial equation solver. In such cases, we often rely on numerical methods (see §B.1.2).

Euler’s method is a simple method for finding numerical solutions to differential
equations. It is simple but, regrettably, not very accurate.

Here is how Euler’s method works. We are given a differential equation of the
form

dy

dx
= f(x, y) with y(0) = y0 (1.33)

and we want to know the value of, say, y(1). [The initial condition we give need
not be at x = 0, and the value we seek need not be at x = 1; these choices were
made to simplify the exposition.]

We divide the interval between 0 and 1 into n equal-size pieces, where n is a
large number (the larger n is, the more accurate the answer, but it requires more
computations). We are given that y(0) = y0, and we use this to estimate y(1/n).
If the function y were a straight line, then

y(1/n) = y(0) + y(1/n)− y(0)

= y(0) +
y(1/n)− y(0)

(1/n)− 0
· 1
n

= y(0) + (1/n)
∆y

∆x
= y(0) + (1/n)y′(0)
= y(0) + (1/n)f(0, y0).

Of course, ∆y/∆x is only approximately dy/dx = f ′(0); however, we know how to
compute f ′(0) but not ∆y/∆x.

How do we find y(2/n)? By the same method:

y(2/n) = y(1/n) + (1/n)f(1/n, y(1/n)).

Because we don’t really know y(1/n), we use the approximation from before. In
this manner we compute y(3/n), y(4/n), . . . , y(n/n) = y(1).

We can express this as a discrete time dynamical system. Let z be our state
variable with

z(k) =
[

z1(k)
z2(k)

]
=
[

k/n
y(k/n)

]
.

Then the system is

z(k + 1) =
[

z1(k + 1)
z2(k + 1)

]
=
[

z1(k) + 1/n
z2(k) + (1/n)f(z1(k), z2(k))

]
. (1.34)

Let’s look at our example, equation (1.31), which we repeat here:

y′ = x + y; y(0) = 1.

22 CHAPTER 1. INTRODUCTION

x x+1/n

∆x

∆y

(x,y)

True y value at x+1/n

Estimated y value at x+1/n

slope = f(x,y)

Figure 1.14: Taking a single step of the Euler method for numerically approximating
the solution to a differential equation.

We want to compute y(1). [We know that y = 2ex − x− 1 and so y(1) = 2e− 2 ≈
3.4366, but we’ll ignore that for the moment.] Instead, we’ll use Euler’s method
with

f(x, y) = x + y, y(0) = 1, and n = 10.

Thus from y(0) = 1, we have

y(0.1) = y(0) + (1/n)f(0, 1) = 1 + 0.1× (0 + 1) = 1.1
y(0.2) = y(0.1) + (1/n)f(0.1, 1.1) = 1.1 + 0.1× (0.1 + 1.1) = 1.22
y(0.3) = y(0.2) + (1/n)f(0.2, 1.22) = 1.22 + 0.1× (0.2 + 1.22) = 1.362

...

Continuing in this fashion, we obtain the following list of values:

x y
0.0 1.0000
0.1 1.1000
0.2 1.2200
0.3 1.3620
0.4 1.5282
0.5 1.7210
0.6 1.9431
0.7 2.1974
0.8 2.4872
0.9 2.8159
1.0 3.1875

Thus Euler’s method (with step size 0.1) computes y(1) ≈ 3.1875, when, in fact,Euler’s method is not very
accurate. Better methods
are available. See §B.1.2.

y(1) = 3.4366—a relative error of over 7%, which is pretty bad.
Figure 1.15 shows the curve (actually only 11 points joined by line segments)

we found and the actual solution (shown as a dotted curve).
If we decrease the step size to 0.01, then Euler’s method predicts y(1) ≈ 3.4096,

which has relative error under 1%. With 1000 steps of size 0.001, we arrive at y(1) ≈
3.4338, which is pretty good, but we had to do a lot of computation. By contrast,
sophisticated routines for computing numerical solutions to differential equations
(such as Matlab’s ode45) attain greater accuracy with much less computation.

1.2. EXAMPLES 23

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
o

o

o

o

o

o

o

o

o

o

o

Figure 1.15: Ten steps of Euler’s method (solid) and the true solution (dotted) to
differential equation (1.31).

1.2.11 “Random” number generation

Random number generation is a feature of many computer programming languages Totally deterministic
random numbers!and environments. Matlab, Mathematica, adn the like all have ways to provide

users with random values.
How does a computer make a random number? Interestingly, the numbers are

not random at all! They are produced by a deterministic procedure which we will
recognize as a discrete time dynamical system.

The Unix operating system provides the C language computer programmer with
a function called lrand48 for producing random integers in the set {0, 1, 2, . . . , 248−
1}. The manual page for lrand48 explains how these “random” values are pro-
duced.

If the last produced random number was x, then the next random number will
be

(ax + b) mod m,

where a, b, and m are positive integers. The value of m is 248, the value of a is
11 (eleven), and the value of b is given in base-16 as 5DEECE66D and in base-8 as
273673163155.

Thus if x(0) = x0 is the initial “random” number, we have that

x(k + 1) = ax(k) + b mod m.

[Note: a mod b means the remainder in the division problem a ÷ b. For example,
10 mod 4 = 2, 30 mod 8 = 6 and 12 mod 3 = 0.]

Problems for §1.2

�1. Explain the comments at the beginning of this chapter: “A dynamical system
is a function with an attitude. A dynamical system is doing the same thing
over and over again. A dynamical system is always knowing what you are
going to do next.”

�2. Play with your scientific calculator. Pick a button (such as sinx or ex)
and see what happens if you press it repeatedly. Try combinations, such as
sinx cos x sinx cos x

24 CHAPTER 1. INTRODUCTION

�3. Weird springs. Suppose you construct a mass-and-spring system (as in §1.2.1),
but your spring behaves rather strangely. Instead of exerting a force propor-
tional to displacement (F = −kx), it exerts a force proportional to the cube
of its displacement (F = −kx3). What is the new dynamical system?

�4. Weird springs continued. Use numerical differential equation software to show
how the system from the previous problem behaves. Plot graphs.

�5. Checking/savings. Suppose a person has three accounts: checking, savings
and retirement. Each month, the checking account is credited with a pay
check. Each month the person pays rent, utilities, and other expenses from
the checking account and makes a deposit into savings and into retirement
(assume all these amounts are the same from month to month). The checking
account has a monthly fee and earns no interest. The savings and retirement
accounts earn interest. Furthermore, the person has a car loan (paid from
checking).

Create a dynamical system to model this situation.

�6. Discuss the effects of changing the various parameters (population growth,
depreciation, savings rate) on steady-state per capita capitalization in the
economic growth model of §1.2.5 on page 12.

�7. Cobb-Douglas output functions. In the economic growth model (§1.2.5) we
postulated that output Y depends on capital K and labor N . We set Y =
A
√

KN , where A is a constant.

A more general form is Y = AKaN1−a where a is a constant between 0 and
1.

Under this new output function, does output still double if we double labor
and capital?

What is the new dynamical system in this case? You should derive a new
version of equation (1.22).

�8. In the microbe model (§1.2.7 on page 16) we assumed that the birth rate b
did not change with the population x, but the death rate was proportional
to x. Devise a new model in which the birth rate decreases as population
increases (say, because of less favorable environmental conditions).

Does your model feature a stable fixed point?

�9. Ecosystem. Create a dynamical system to model the following ecosystem.
There are four types of species: (1) scavengers, (2) herbivores, (3) carnivores,
and (4) top-level carnivores. The herbivores eat plants (which you may as-
sume are always in abundant supply), the carnivores eat only the herbivores,
and the top-level carnivores eat both the herbivore and the carnivores. The
scavengers eat dead carnivores (both kinds).

�10. Use numerical differential equation software to study how the system you
created in the previous problem behaves. Plot graphs. Do you see cyclic
behavior? Tweak your parameters and see what you can learn.

�11. Use Newton’s method to solve the following equations:

(a) sinx = cos x.

(b) ex = tan x.

(c) x3 − 5 = 0.

(d) x5 − x + 4 = 0.

�12. Use Euler’s method to estimate y(1) for each of the following differential
equations:

1.3. WHAT WE WANT; WHAT WE CAN GET 25

(a) y′ − y = 2, y(0) = 1
2 .

(b) y′ + et = y, y(0) = 1.

(c) y′ + y2 = 3, y(0) = −2.

�13. Reduction of Order. The famous Fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, · · · .

Each term is the sum of the previous two terms, i.e.,

x(k + 2) = x(k + 1) + x(k)

where x(k) is the kth Fibonacci number. The above relation is not in the
form we require for a (discrete time) dynamical system. Indeed, knowing just
the single number x(k) does not tell us what the next “state” x(k + 1) will
be. To convert this recurrence into a dynamical system, let the state vector

be
[

x(k)
y(k)

]
, where y(k) = x(k + 1). With this new notation, we have

x(k + 1) = y(k)
y(k + 1) = x(k) + y(k)

and observe that we now have a proper dynamical system. [What should the
starting vector be?]

Use the above idea (adding extra state variables) to convert each of the fol-
lowing into proper dynamical systems.

(a) x(k + 2) = x(k)x(k + 1).

(b) x(k + 2) = y(k)x(k + 1) and y(k + 2) = x(k) + y(k) + y(k + 1).

(c) x′′ = 3x′ − 2x + 2.

1.3 What we want; what we can get

We have introduced the ideas of discrete and continuous time dynamical systems
and we hope it is clear that the notion of a dynamical system can be useful in
modeling many different kinds of phenomena. Once we have created a model, we
would like to use it to make predictions. Given a dynamical system either of the
discrete form x(k +1) = f(x(k)) or of the continuous sort x′ = f(x), and an initial
value x0, we would very much like to know the value of x(k) [or, x(t)] for all values
of k [or t]. In some rare instances, this is possible. For example, if f is a linear
function we develop methods in Chapter 2 for computing all future states x.

Unfortunately, it is all too common that the dynamical system in which we
are interested does not yield an analytic solution. What then? One option is
numerical methods. However, we can also determine the qualitative nature of the
solution. For example, in the predator-prey model, we saw that our system goes
into a periodic behavior. In the microbes example (§1.2.7 on page 16), we didn’t
need the analytic solution to find a stable fixed point to which the system is led.
In later chapters we explore the notion of fixed points and of periodic behavior of
these systems. And we encounter behaviors besides periodicity: A system might
blow up (its state vector goes to infinity with time) or it might become chaotic,
and we’ll see what that means!

26 CHAPTER 1. INTRODUCTION

Chapter 2

Linear Systems

In Chapter 1 we introduced discrete [x(k+1) = f(x(k))] and continuous [x′ = f(x)]
time dynamical systems. The function f : Rn → Rn might be quite simple or
terribly complicated.

In this chapter we study dynamical systems in which the function f is par-
ticularly nice: we assume f is linear. When f is a function of one variable (i.e., We call functions of the form

f(x) = ax + b linear because
their graphs are lines. This
is the usual language in the
engineering world.
Mathematicians call these
functions affine.

f : R→ R), we mean that f(x) = ax + b, where a and b are constants. When f is
a function of several variables (i.e., f : Rn → Rn), we mean that f(x) = Ax + b,
where A is an n× n matrix and b is a fixed n-vector.

To gain intuition, we begin with the case where f is a function of just one
variable (f(x) = ax + b) and then proceed to the multivariable case.

2.1 One dimension

We begin by considering both discrete and continuous time dynamical systems in
which f(x) = ax + b:

x(k + 1) = ax(k) + b and x′ = ax + b.

2.1.1 Discrete time

First, let us consider discrete time systems. The system has the form

x(k + 1) = ax(k) + b; x(0) = x0.

We discuss this case first analytically (i.e., by equations) and then geometrically
(with graphs).

Analysis

Suppose first that b = 0, i.e., x(k + 1) = ax(k). It is very clear that for any k we
have simply that x(k) = akx0. (See problem 5 on page 5.)

If |a| < 1, then ak → 0 as k →∞ and so x(k)→ 0.
If |a| > 1, then ak explodes as k →∞. Thus unless x0 = 0, we have |x(k)| → ∞.
Finally, suppose |a| = 1. If a = 1 then we have just that x(0) = x(1) = x(2) =

x(3) = · · · , i.e., x(k) = x0 for all eternity. If a = −1, then x(0) = −x(1) = x(2) =
−x(3) = · · · , that is, x(k) alternates between x0 and −x0 forever.

27

28 CHAPTER 2. LINEAR SYSTEMS

Now we consider the full case of x(k +1) = ax(k)+ b. We begin by working out
the first few values:

x(0) = x0,

x(1) = ax(0) + b = ax0 + b,

x(2) = ax(1) + b = a(ax0 + b) + b = a2x0 + ab + b,

x(3) = ax(2) + b = a(a2x0 + ab + b) + b = a3x0 + a2b + ab + b,

x(4) = ax(0) + b = a(a3x0 + a2b + ab + b) + b =
= a4x0 + a3b + a2b + ab + b.

Do you see the pattern? We have

x(k) = akx0 + (ak−1 + ak−2 + · · ·+ a + 1)b. (2.1)

We can simplify equation (2.1) by noticing that

ak−1 + ak−2 + · · ·+ a + 1

is a geometric series which equals

ak − 1
a− 1

provided a 6= 1. If a = 1, the series ak−1 + ak−2 + · · ·+ a + 1 simply equals k. We
summarize this as

x(k) =

{
akx0 +

(
ak−1
a−1

)
b when a 6= 1, and

x0 + kb when a = 1.

Let’s examine this answer closely for the cases |a| < 1, |a| > 1, and |a| = 1.
If |a| < 1, then ak → 0 as k →∞, and soWhen |a| < 1, x(k) tends to

a limit.

x(k)→ b

1− a

regardless of the value of x0. Notice that this special number x̃ = b/(1− a) has the
property that f(x̃) = x̃; here are the calculations:

f(x̃) = ax̃ + b

= a

[
b

1− a

]
+ b

=
ab + (1− a)b

1− a

=
b

1− a
= x̃.

That is, x̃ is a fixed point of the function f , meaning that f(x̃) = x̃. Further, we call
x̃ an attractive or stable fixed point of the dynamical system because the system is
attracted to this point.

Next, suppose that |a| > 1. In this case ak → ∞ as k gets large. To see howWhen |a| < 1, x(k) usually
tends to infinity. this affects x(k) we collect the ak terms:

x(k) = akx0 +
(

ak − 1
a− 1

)
b = ak

(
x0 −

b

1− a

)
+

b

1− a
.

Now, if x0 6= b/(1− a) (our x̃ from before!) then |x(k)| → ∞ as k →∞. However,
if x0 = x̃, then x(k) = x̃ for all time.

2.1. ONE DIMENSION 29

Discrete: x(k + 1) = ax(k) + b with x(0) = x0

Conditions on Behavior of
a b x0 x(k) as k →∞
|a| < 1 — — → b

1−a

|a| > 1 — 6= b
1−a blows up

— = b
1−a fixed at b

1−a

a = 1 b 6= 0 — blows up
b = 0 — fixed at x0

a = −1 — 6= b/2 oscillates: x0, b− x0, . . .
— = b/2 fixed at b/2

Table 2.1: The possible behaviors of one-dimensional discrete time linear systems.

Finally, we consider |a| = 1. First, if a = 1, then x(k) = x0 + kb. So if b 6= 0, When |a| = 1, many
behaviors are possible.then |x(k)| → ∞; otherwise (b = 0) x(k) is stuck at x0 regardless of the value of

x0. Second, if a = −1, then observe that

x(0) = x0

x(1) = −x0 + b

x(2) = −(−x0 + b) + b = x0

x(3) = −x0 + b

x(4) = x0

...

Thus we see that x(k) oscillates between two values, x0 and b−x0. But if x0 = b−x0,
i.e., x0 = b/2 = b/(1− (−1)) = x̃, then x(k) is stuck at the fixed point x̃.

Table 2.1 summarizes the behavior of the system

x(k + 1) = ax(k) + b; x(0) = x0

given various conditions on a, b, and x0.

Geometry

Let us revisit systems of the form x(k + 1) = ax(k) + b from a geometric point of We can understand the
behavior of linear systems by
plotting graphs; this is
known as graphical analysis.

view. Graphs will make clear why |a| < 1 causes the iterations to converge to x̃,
while |a| > 1 causes the iterates to explode.

Figures 2.1 through 2.6 illustrate most of the cases in Table 2.1. In each case
we have plotted the function y = f(x) = ax + b, varying the value of a. On
these graphs we have drawn the line y = x which enables us to draw pictures for
iterating f . Examine one of the figures (say Figure 2.1) as we explain. Choose a
starting point x(0) on the x-axis. Draw a line straight up to the line y = f(x).
The y-coordinate of this point is the next number to which you wish to apply
f , so you want to find the point y = f(x(0)) on the x-axis. To do this, draw a
line horizontally from

(
x(0), f(x(0))

)
to the line y = x; you have found the point(

f(x(0)), f(x(0))
)

= (x(1), x(1)). If you drop a line down to the x-axis, this point
is x(1).

Now the cycle repeats. Given x(1) on the x-axis, draw a line up to the graph
of y = f(x)—this is the point

(
x(1), f(x(1))

)
= (x(1), x(2)). Now draw a line

horizontally to the line y = x; this locates the point (x(2), x(2)). Drop a line from
this point down to the x-axis, and voilà!—you are ready to repeat.

Let’s look at the figures in detail. You should study each carefully and redraw
them for yourself to be sure you understand what is going on.

30 CHAPTER 2. LINEAR SYSTEMS

x

y y=
x

y=f(x
)

x(0)

x(1)

x(2)

x(3)

Figure 2.1: Iterating f(x) = ax + b with 0 < a < 1.

x

y y=
x

y=f(x)

x(0)x(2)x(3)x(1)

Figure 2.2: Iterating f(x) = ax + b with −1 < a < 0.

Figure 2.1 illustrates what happens when we iterate y = f(x) = ax + b withNotice that the lines y = x
and y = ax + b intersect at
the point (x̃, x̃).

0 < a < 1. We chose x(0) larger than x̃ = b/(1− a). With each iteration it is easy
to see that the values x(0), x(1), x(2), etc. get smaller and step inexorably toward
x̃. If we had chosen x(0) < x̃, we would see the successive iterates increasing,
marching steadily to x̃; you should draw in this part of the diagram.

Next, consider Figure 2.2. In this diagram we have plotted the graph of y =
f(x) = ax+b with −1 < a < 0. The line slopes downward, but not very steeply (at
an angle less than 45◦ to the horizontal). We start with x(0) a good bit to the right
of x̃. Observe that x(1) is to the left of x̃, but not nearly as far. Successive itera-
tions take us to alternate sides of x̃, but getting closer and closer—and ultimately
converging—to x̃.

Now look at Figure 2.3. In this case we have a > 1, so the line y = f(x) = ax+b
is sloped steeply upward. We start x(0) just slightly greater than x̃. Observe that
x(1) is now to the right of x(0), and then x(2) is farther right, etc. It should be

2.1. ONE DIMENSION 31

x

y y=
x

y=
f(
x)

x(1)

x(2)

x(3)

x(4)x(0)

Figure 2.3: Iterating f(x) = ax + b with a > 1.

x

y y=
x

y=
f(x)

x(0)x(3)

x(2)

x(1) x(4)

Figure 2.4: Iterating f(x) = ax + b with a < −1.

clear that the successive iterates are marching off to +∞. If we had taken x(0) just
to the left of x̃ (i.e., x(0) < x̃), we would see the iterates moving faster and faster
to the left and heading toward −∞. Draw this portion for yourself.

In Figure 2.4 we have a < −1; hence the line y = f(x) = ax+b is sloped steeply
downward. We begin with x(0) just to the right of x̃. Observe that x(1) < x̃ but
at a greater distance from x̃ than x(0). Next, x(2) is to the right of x̃, x(3) is to
the left, etc., with each at increasing distance from x̃ and diverging to ∞.

Figure 2.5 illustrates what happens when we iterate f(x) = 1x + b with b 6= 0.
(In the diagram we have chosen b > 0; you should sketch a graph with b < 0 to
compare.) We see that each iteration moves the point x(k) a step (of length b) to
the right and heads to +∞.

Finally, Figure 2.6 considers the case f(x) = −1x + b. The starting value x(0)
is taken to be to the left of x̃. Next, x(1) is to the right of x̃ and then x(2)

32 CHAPTER 2. LINEAR SYSTEMS

x

y y=
x

y=
f(x

)

x(0) x(1) x(2) x(3)

Figure 2.5: Iterating f(x) = ax + b with a = 1 and b 6= 0.

x

y y=
x

y=f(x)

x(even) x(odd)

Figure 2.6: Iterating f(x) = ax + b with a = −1.

is back at exactly the same location as x(0). In this manner, x(0), x(2), x(4),
etc. all have the same value (denoted by “x(even)” in the figure), and, likewise,
x(1) = x(3) = x(5) = · · · (denoted by “x(odd)”).

The various figures illustrate the possible behaviors of discrete time linear sys-
tems in one variable. As you examine each case, be sure to compare the geometric
and the analytic approaches.

2.1.2 Continuous time

Now we turn to continuous time linear systems in one variable, that is, systems of
the form

x′ = ax + b; x(0) = x0.

2.1. ONE DIMENSION 33

As in the discrete time case, let’s begin with the special case of b = 0, i.e., x′ = ax.
(See problem 7 on page 5.) We write this as:

x′

x
= a. (2.2)

Recall that x (as well as x′) is a function of t. We integrate both sides of equa-
tion (2.2): ∫

x′

x
dt =

∫
a dt

to get We write log x to stand for
base e logarithm. Some
write ln x for this.

log x = at + C (2.3)

where C is a constant of integration.
We undo the logarithm in equation (2.3) by exponentiating both sides to give

x = eat+C = eateC . (2.4)

Finally, we need to figure out what eC should be. We know that x(0) = x0.
Substituting t = 0 into equation (2.4), we have x(0) = e0eC , and therefore the
solution to the system x′ = ax with x(0) = x0 is

x = eatx0. (2.5)

This analytic solution enables us to find the long-term behavior of x′ = ax. The behavior of the
continuous system depends
on the sign of a.

When a < 0, the term eat → 0 as t→∞, and therefore x(t)→ 0 regardless of the
initial value x0. When a > 0, the term eat →∞ and so, unless x0 = 0, we see that
|x(t)| → ∞. Finally, if a = 0, we see that x(t) is stuck at x0 for all time.

Now we are ready to discuss the full case x′ = ax + b (with nonzero b allowed).
We will observe that the general nature of the solution is quite similar to the
b = 0 case. Our method is to reduce the problem we don’t know how to solve
(x′ = ax + b) to one we do know how to solve (x′ = ax) by a sneaky substitution.
(The substitution requires a 6= 0; we handle the case a = 0 separately below.) Let

u = x +
b

a
.

Thus u′ = x′ and x = u − b/a. Observe that u(0) = x0 + b/a. We replace the x’s
in x′ = ax + b to get

u′ = a

(
u− b

a

)
+ b = au.

Since u′ = au, we have u = eatu(0). Now, recasting this in terms of x we arrive at

x +
b

a
= eat

(
x0 +

b

a

)
,

which rearranges to

x = eat

(
x0 +

b

a

)
− b

a
. (2.6)

Let’s see what this solution predicts about the behavior of the system x′ = ax + b.
If a < 0, then eat → 0 as t → ∞. Thus x(t) → −b/a regardless of the value of When a is negative, the

system tends to a stable
fixed point.

x0. Indeed, we call x̃ = −b/a a stable fixed point of the system. It is called fixed
because if the system is in state x̃, then it will be there for all time. It is stable
because the system gravitates toward that value.

Now let’s consider a > 0. In this case eat → ∞ as t → ∞. Examining equa- When a is positive, the
system explodes.tion (2.6) we notice that if x0 6= x̃ = −b/a, then x(t) explodes as t→∞. However,

if x0 = −b/a, then the system is stuck at −b/a. The value x̃ = −b/a is an unstable

34 CHAPTER 2. LINEAR SYSTEMS

Continuous: x′(t) = ax(t) + b with x(0) = x0

Conditions on Behavior of
a b x0 x(t) as t→∞
a < 0 — — → − b

a

a > 0 — 6= − b
a blows up

— = − b
a fixed at − b

a

a = 0 b 6= 0 — blows up
b = 0 — fixed at x0

Table 2.2: The possible behaviors of one-dimensional continuous time linear sys-
tems.

x

y

y=f(x)

Figure 2.7: The dynamical system x′ = f(x) = ax + b with a < 0.

fixed point of the system. It is unstable because even if we start very near (but not
at) x̃, the system moves far away from x̃.

Finally, we consider a = 0; equation (2.6) does not apply because we assumed
a 6= 0 to solve the differential equation x′ = ax + b. But the system x′ = b is easy
to solve. Integrating both sides we see that x = bt + C, where C is a constant.
Since x(0) needs to equal x0, we note that C = x0. Thus we have x = bt + x0. If
b = 0, we note (as we discussed before) that the system is stuck at x0. Otherwise
(b 6= 0) we see that x(t) blows up regardless of the value of x0.

Table 2.2 summarizes these results for one-dimensional continuous time linear
systems.

Geometry

Next we consider the system x′ = ax+ b from a geometric viewpoint. We considerGraphical analysis of
continuous time systems. the three cases (a < 0, a > 0, and a = 0) in turn.

Figure 2.7 shows a graph of the function y = ax + b with a < 0. The line
y = f(x) crosses the x-axis at x̃ = −b/a. To the left of x̃ observe that f(x) > 0,
and since x′ = f(x), that means that x is increasing in this region. Thus if x < x̃,
then, as time progresses, x heads toward x̃; this is indicated by the arrows on the
x-axis. Conversely, if x > x̃, then f(x) < 0, and since x′ = f(x), x is decreasing
in this region; hence, as time progresses, x heads toward x̃. Thus we see that
regardless of where we begin (i.e., for any x0) the system gravitates toward x̃.

Now examine Figure 2.8 to see the opposite situation. In this example we
consider the system x′ = ax+ b with a > 0. When x > x̃, we observe that f(x) > 0
and so x is increasing toward +∞. However, if x < x̃, then f(x) < 0 and therefore

2.1. ONE DIMENSION 35

x

y

y=f(x)

Figure 2.8: The dynamical system x′ = f(x) = ax + b with a > 0.

x

y

y=f(x)

Figure 2.9: The dynamical system x′ = f(x) = ax + b with a = 0 and b > 0.

x is decreasing toward −∞. The arrows on the x-axis illustrate this. In the special
case that x is exactly x̃ we have f(x) = f(x̃) = f(−b/a) = 0, and so x is unchanging.

Finally, consider Figure 2.9. In this case f(x) = b (so a = 0), and we have
drawn the case for b > 0. At every value of x we observe that x will be increasing
(at rate b). Thus x→ +∞ as time progresses. When b < 0 (please draw or at least
imagine what the graph would look like), we see x → −∞. And, if b is exactly 0,
then the system never goes anywhere, since dx/dt = 0.

2.1.3 Summary

We have covered all possible behaviors of one-dimensional linear systems:

x(k + 1) = ax(k) + b discrete time, and
x′(t) = ax(t) + b continuous time.

In the discrete case, when |a| < 1, the system gravitates toward the value x̃ =
b/(1− a). When |a| > 1, the system is repelled from this same value, x̃. The case
|a| = 1 is marginal, and the behavior depends on b.

In the continuous case, when a < 0, the system goes to x̃ = −b/a. When a > 0,
the system diverges away from x̃. The case a = 0 is marginal, and the behavior
depends on b.

Problems for §2.1

�1. Find an exact formula for x(k), where x(k + 1) = ax(k) + b, x(0) = x0 = c,
and a, b, and c have the following values:

36 CHAPTER 2. LINEAR SYSTEMS

(a) a = 1, b = 1, c = 1.

(b) a = 1, b = 0, c = 2.

(c) a = 3
2 , b = −1, c = 0.

(d) a = −1, b = 1, c = 4.

(e) a = − 1
2 , b = 1, c = 3

2 .

�2. For each of the discrete time systems in the previous problem, determine
whether or not |x(k)| → ∞. Determine if the system has a fixed point and
whether or not the system is approaching that fixed point.

�3. Find the exact value of x(t) where x′ = ax + b, x(0) = x0 = c, and a, b, and
c have the following values:

(a) a = 1, b = 0, c = 1.

(b) a = 0, b = 1, c = 0.

(c) a = 0, b = 0, c = 1.

(d) a = −1, b = 1, c = 2.

(e) a = 2, b = 3, c = 0.

�4. For each of the continuous time systems in the previous problem, determine
whether or not |x(t)| → ∞. Determine if the system has a fixed point and
whether or not the system is approaching that fixed point.

�5. Verify that equation (2.6) on page 33 is the solution to the system x′ = ax+b
with x(0) = x0 by direct substitution.

�6. Suppose f(x) = ax+ b and g(x) = cx+d. Let h(x) = f [g(x)] (i.e., h = f ◦ g).
Suppose we iterate h, i.e., we compute hk(x). Find conditions on a, b, c, and d
under which |hk(x)| either stays bounded or else, goes to infinity. Determine
the fixed point(s) of h in terms of a, b, c, and d.

�7. A population of fish reproduces and dies at rates proportional to the total
population. If x(t) is the number of fish at time t, then we have x′ = cx,
where c is a constant (which we will assume is positive).

Now suppose the fish are harvested at an absolute rate, say r, hence x′ = cx−
r. Find an analytic solution to this dynamical system and give a qualitative
discussion of the long-term state of the population.

2.2 Two (and more) dimensions

In this section we consider discrete and continuous time linear systems in several
variables. The systems, of course, have the form x(k + 1) = f(x(k)) (discrete) or
x′ = f(x) (continuous). The state vector x is no longer a single number but rather
is a vector with n components (i.e., x ∈ Rn). The function f (which has the form
f(x) = ax + b above) is of the form f(x) = Ax + b, where A is an n × n matrix
and b ∈ Rn is a (constant) vector.

As the old jokes go, I have some good news and some bad news.
First, the good news. The behavior of one-dimensional systems (§2.1) pro-

vides excellent motivation for the material we present here. In many respects,
multidimensional systems behave just like their one-dimensional counterparts. For
example, discrete time systems gravitate toward a unique fixed point when—well
I’d like to say |A| < 1, but that doesn’t make sense, since what do we mean by the
“absolute value of a matrix”? Instead, we just have to check that the absolute value

2.2. TWO (AND MORE) DIMENSIONS 37

of something else1 is less than 1. And, in continuous time we saw that x′ = ax has
the simple solution x = eatx0; the same is true in several variables. The system
x′ = Ax has solution x = eAtx0; naturally, we’re going to have to make sense out
of “e to a matrix”.

But now, the bad news. The entrance of matrices into the story requires us to
dust off our linear algebra. You’ll especially need to review the ideas of diagonal-
ization and eigenvalues/vectors. For your convenience, the major results we need
from linear algebra are recounted with minimal discussion in Appendix A. It makes
sense at this point to scan Appendix A and to review your linear algebra text.

One of the key steps in our treatment of linear systems is diagonalization (see Diagonalization makes our
work easier.§A.1.4). One difficulty with this approach is that not all matrices diagonalize!

In §2.2.1 and §2.2.2 we assume that the matrix A diagonalizes.
In §2.2.3 we discuss how the theory carries over to nondiagonalizable matrices.

2.2.1 Discrete time

In this section we consider linear discrete time dynamical systems, i.e., systems of
the form

x(k + 1) = Ax(k) + b; x(0) = x0.

Analysis

As in the one-dimensional case [x(k + 1) = ax(k) + b], we begin by dropping the
+b term and concentrating on the system

x(k + 1) = Ax(k), (2.7)

where x ∈ Rn and A is an n× n matrix.
Now it is simple to calculate that

x(1) = Ax(0) = Ax0

x(2) = Ax(1) = A2x0

x(3) = Ax(2) = A3x0

...

Thus we see that x(k) = Akx0.
This is all well and good, and the equation x(k) = Akx0 gives us an exact

formula for x(k) but it does not yet tell us the general behavior of the system.
Recall that in one dimension we considered the cases |a| < 1 and |a| > 1 to judge
the long-term behavior. We wish to do the same analysis here.

What condition on A is analogous to |a| < 1? One guess is that all the entries Generalizing the condition
|a| < 1.

of A should have absolute value less than 1. For example, if A =
[

0.1 0.2
0.3 0.4

]
and x0 =

[
1
1

]
, then computer calculations (try it!) show that the entries in

x(1000) = A1000x0 are on the order of 10−269; it’s a safe bet that x(k) → 0.

However, if A =
[

0.2 0.4
0.6 0.8

]
and x0 =

[
1
1

]
we are distressed to learn that the

entries in x(1000) = A1000x0 are on the order of 1031, and it’s a safe bet that the
entries are going to infinity. Thus our reasonable guess that the entries of A need
to have absolute value less than 1 is wrong. We need a better guess: look at the
eigenvalues. . .

1OK. If you like, I’ll spill the beans here. The condition is that all the eigenvalues of A have
absolute value less than 1.

38 CHAPTER 2. LINEAR SYSTEMS

We assume that A diagonalizes2 (be sure to read your linear algebra text
book—see also §A.1.4). We assume that A has n linearly independent eigenvectors
v1, . . . ,vn with associated eigenvalues λ1, . . . , λn. Let Λ be the diagonal matrix
with diagonal entries λ1, . . . , λn, and let S be the n × n matrix whose ith column
is vi. Thus we may write A = SΛS−1. Notice that

Ak = (SΛS−1)(SΛS−1)(SΛS−1) · · · (SΛS−1).

Since matrix multiplication is associative, we rewrite this expression as

Ak = SΛ(S−1S)Λ(S−1S)Λ(S−1S) · · · (S−1S)ΛS−1.

Notice that the (S−1S) terms evaluate to I and therefore disappear, leaving

Ak = SΛkS−1.

Now, Λ is a diagonal matrix whose diagonal entries are A’s eigenvalues: λ1, . . . , λn.
Raising a diagonal matrix to a power is easy:

Λk =

λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn

k

=

λk

1 0 0 . . . 0
0 λk

2 0 . . . 0
0 0 λk

3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λk
n

 .

Thus to understand the behavior of Ak we need to understand the behavior of theWhat happens when we
raise a matrix to a large
power? The answer depends
on its eigenvalues.

λk
j ’s. If λj is a real number, then λk

j → 0 if |λj | < 1, and λk
j explodes if |λj | > 1.

However, the eigenvalues of A might be complex numbers, and then we need to
know how λk

j behaves for complex λj .
To do this, we find it easiest to write λj in its polar form: λj = rje

iθj (see §A.2,
especially equation (A.5) on page 254). Thus

∣∣λk
j

∣∣ = ∣∣rk
j eikθj

∣∣→ {
0 if r < 1, and
∞ if r > 1.

What are the implications for the system x(k+1) = Ax(k)? If all the eigenvalues
of A have absolute value less than 1, then Ak tends to the zero matrix as k →∞.
Thus x(k) = Akx0 → 0.

On the other hand, if some eigenvalue of A has absolute value greater than 1,
entries in Ak are diverging to ∞. Let’s examine how this affects the values x(k).

We are assuming that the eigenvectors v1, . . . ,vn are linearly independent. Any
family of n linearly independent vectors in Rn forms a basis, hence every vector
(x0 in particular) can be written uniquely as a linear combination of the vi’s. Thus
we may write

x(0) = x0 = c1v1 + c2v2 + · · ·+ cnvn,

where the ci’s are scalars (numbers). Multiplying both sides by A, we get

x(1) = Ax(0) = c1Av1 + c2Av2 + · · ·+ cnAvn.

Since each vi is an eigenvector of A, we have Avi = λivi. We can therefore rewrite
the preceding equation as:

x(1) = c1λ1v1 + c2λ2v2 + · · ·+ cnλnvn.

2Not all matrices diagonalize. We assume A does to make our life easier at this point. The
theory we are about to develop also works for matrices which do not diagonalize, but the analysis
is more difficult. An approach is presented in §2.2.3.

2.2. TWO (AND MORE) DIMENSIONS 39

That was fun; let’s do it again! If we multiply both sides of the previous equation
by A, we get

x(2) = Ax(1) = c1λ1Av1 + c2λ2Av2 + · · ·+ cnλnAvn

= c1λ
2
1v1 + c2λ

2
2v2 + · · ·+ cnλ2

nvn.

When we iterate this process we get

x(k) = c1λ
k
1v1 + c2λ

k
2v2 + · · ·+ cnλk

nvn. (2.8)

Now, if |λi| > 1, then |λk
i | → ∞ as k → ∞. Hence, unless ci = 0, we have

|x(k)| → ∞.
In summary, if some of the eigenvalues of A have absolute value greater than

1, then for typical x0 we have |x(k)| → ∞. For some very special x0 (those with
ci = 0 if |λi| > 1), x(k) doesn’t explode.

One case remains.3 What happens if all eigenvalues λi have absolute value less
than or equal to 1, and some have absolute value exactly 1? In this case, we again
write x0 as a linear combination of the eigenvectors:

x(0) = x0 = c1v1 + c2v2 + · · ·+ cnvn

from which it follows (equation (2.8)) that

x(k) = c1λ
k
1v1 + c2λ

k
2v2 + · · ·+ cnλk

nvn.

The terms involving λi’s with absolute value less than 1 disappear, but the other
components neither vanish nor explode. A complex number with absolute value 1
has the form z = eiθ and therefore zk = eikθ, which also has absolute value 1. Thus
x(k) typically neither vanishes nor explodes but dances about at a modest distance
from 0.

We have considered the special system x(k+1) = Ax(k), where A is assumed to
be diagonalizable. If the eigenvalues of A all have absolute value less than 1, then
x(k) → 0 as k → ∞. If some eigenvalue has absolute value bigger than 1, then
typically |x(k)| → ∞. Finally, if some eigenvalues have absolute value equal to 1,
and the rest have absolute value less than 1, then typically x(k) neither explodes
nor vanishes.

The situation for the more general case x(k + 1) = Ax(k) + b is quite similar. When b 6= 0.

First, recall the one-dimensional case: the system either gravitated to, or was
repelled from, the fixed point x̃ = b/(1 − a). We will see the same behavior here.
The question is, What serves the role of b/(1− a)? Take a guess! (I’ll tell you in a
few minutes, but take a guess anyway.)

As in the one-dimensional case, let us compute the iterates x(0), x(1), x(2), etc.
to gain a feel for the general case:

x(0) = x0,

x(1) = Ax(0) + b = Ax0 + b,

x(2) = Ax(1) + b = A2x0 + Ab + b,

x(3) = Ax(2) + b = A3x0 + A2b + Ab + b,

x(4) = Ax(3) + b = A4x0 + A3b + A2b + Ab + b.

3The Mishna states: If a fledgling bird is found within fifty cubits of a dovecote, it belongs to
the owner of the dovecote. If it is found outside the limit of fifty cubits, it belongs to the person
who finds it.

Rabbi Jeremiah asked: If one foot of the fledgling is within fifty cubits, and one foot is outside
it, what is the law?

It was for this question that Rabbi Jeremiah was thrown out of the House of Study.
Baba Batra 23b

40 CHAPTER 2. LINEAR SYSTEMS

Discrete: x(k + 1) = Ax(k) + b with x(0) = x0

Conditions on Behavior of
eigenvalues of A x(k)
All have |λ| < 1 converges to x̃ = (I −A)−1b
Some have |λ| > 1 typically, |x(k)| → ∞
All have |λ| ≤ 1; stays near, but does not
and some have |λ| = 1 approach x̃, or |x(k)| → ∞

Table 2.3: The possible behaviors of multidimensional discrete time linear systems.

Is the pattern clear? We have

x(k) = Akx0 +
(
Ak−1 + Ak−2 + · · ·+ A + I

)
b.

To simplify this, observe that(
Ak−1 + Ak−2 + · · ·+ A + I

)(
I −A

)
= I −Ak,

and so, provided I −A is invertible, we have

x(k) = Akx0 + (I −Ak)(I −A)−1b. (2.9)

The formula, of course, is valid provided I −A is invertible, which is equivalent to
saying that 1 is not an eigenvalue of A.

Now, what happens as k → ∞? If the absolute values of A’s eigenvalues areThe case: all |λ| < 1.

all less than 1 (hence I −A is invertible), then Ak tends to the zero matrix, hence
x(k) → x̃ = (I − A)−1b. [Aha! The value x̃ = (I − A)−1b is precisely analogous
to the one-dimensional x̃ = b/(1− a) = (1− a)−1b.]

Alternatively, if some eigenvalues have absolute value bigger than 1, then AkThe case: some |λ| > 1.

blows up, and for most x0 we have |x(k)| → ∞. (There are exceptional x0’s, of
course. For example, if 1 is not an eigenvalue of A and if x0 = x̃ = (I − A)−1b,
then x(k) = x̃ for all k. See problems 4 and 5 on page 64.)

Finally, if some eigenvalues have absolute value equal to 1 and the other eigen-
values have absolute value less than 1, we see a range of behaviors (see problems
13–15 on page 65). The system might stay near x̃, or it might blow up.

Table 2.3 summarizes the behavior of discrete time, multivariate linear systems.

Geometry

We noted that there are three basic cases for discrete time linear systems: (a) all
eigenvalues have absolute value less than 1, (b) some eigenvalues have absolute
value exceeding 1, and (c) all eigenvalues have absolute value at most 1 and some
have absolute value equal to 1.

The eigenvalues, since they are complex numbers, can be represented as points
in the plane (the number a + bi is placed at the point (a, b); see §A.2). Figure 2.10
illustrates the three cases geometrically.

A special case has an interesting geometric interpretation. Let us say that A has
a unique eigenvalue of maximum absolute value; since eigenvalues come in conjugate
pairs, such an eigenvalue is necessarily real. Let us also assume that this eigenvalue
is positive4 and, furthermore, is greater than 1. Let λ1 be this eigenvalue. In
symbols, our assumptions are

1 < λ1 > |λj | for all j 6= 1.

4If all entries in a matrix are positive, then it can be proven that the eigenvalue of maximum
absolute value is unique, real, and positive.

2.2. TWO (AND MORE) DIMENSIONS 41

y

x1

(a) y

x1

(b) y

x1

(c)

Figure 2.10: The behavior of discrete linear systems. Three cases are shown: (a) all
|λ| < 1, (b) some |λ| > 1, and (c) all |λ| ≤ 1 and some |λ| = 1.

Let v1,v2, . . . ,vn be the n linearly independent eigenvectors associated with λ1, λ2, . . . , λn.
Then we can write

x0 = x(0) = c1v1 + c2v2 + · · ·+ cnvn,

from which it follows that

x(k) = c1λ
k
1v1 + c2λ

k
2v2 + · · ·+ cnλk

nvn,

from which we factor out λk
1 to get

x(k) = λk
1

(
c1v1 + c2

λk
2

λk
1

v2 + · · ·+ cn
λk

n

λk
1

vn

)
.

Since |λ1| > |λj | for all j > 1, the ratios λk
j /λk

1 all go to 0. Thus if c1 6= 0, and for
k large we have

x(k) ≈ c1λ
k
1v1.

Geometrically, this means that the state vector is heading to infinity, in essentially
a straight line, in the direction of the eigenvector v1.

2.2.2 Continuous time

We now consider multidimensional continuous time linear systems:

x′(t) = Ax(t) + b.

Analysis

We begin our study of multidimensional continuous time linear systems with our
usual simplification, namely, that b = 0. The system becomes

x′ = Ax.

Now, instead of having a single differential equation in one unknown quantity, we
have n differential equations in n variables! For example,[

x1

x2

]′
=
[

2 1
1 2

] [
x1

x2

]
,

which can be written out as

dx1

dt
= 2x1 + x2,

dx2

dt
= x1 + 2x2.

42 CHAPTER 2. LINEAR SYSTEMS

These equations are difficult to solve because each is dependent on the other. It
makes us long for the simplicity of the equation x′ = ax, whose solution is just
x = eatx0. Wouldn’t it be wonderful if more complicated systems had such an easy
solution?

Good news! The system x′ = Ax has nearly as simple a solution! Here it is:Understanding “e raised to a
matrix”. x = eAtx0. The question is, What do we mean by “e raised to a matrix??”

Here is what we need to do:

• First, we have to understand what eAt means.

• Second, we need to see that eAtx0 is indeed a solution to the system of
equations.

• Finally, we need to understand how to convert the simple solution eAtx0 into
standard functions of single variables.

Let us begin, then, with understanding what “e to a matrix” means by first
considering what ex means. We can define ex by its power series:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · .

Now, “all” we have to do is drop a matrix in for the x. Let A be a square matrix.
It is clear what, say, x3

3! should become: simply 1
3!A

3. But what about the “1” at
the beginning of the series? The best choice is simply I, an identity matrix of the
same size as A. Thus we define eA (alternate notation: expA) by

eA = expA = I + A +
1
2!

A2 +
1
3!

A3 +
1
4!

A4 + · · · .

Let’s do some simple examples: First, let A =
[

0 0
0 0

]
. Then

exp
[

0 0
0 0

]
=

[
1 0
0 1

]
+
[

0 0
0 0

]
+

1
2!

[
0 0
0 0

]2
+

1
3!

[
0 0
0 0

]3
+ · · ·

=
[

1 0
0 1

]
.

Thus exp
[

0 0
0 0

]
=
[

1 0
0 1

]
. In general, e to a zero matrix gives the identity

matrix.
For another example let’s compute eI .

eI = I + I +
1
2!

I2 +
1
3!

I3 +
1
4!

I4 + · · · .

Thus the off-diagonal entries in eI are all 0, while the diagonal entries are all
1 + 1 + 1/2! + 1/3! + 1/4! + · · · = e. Thus eI = eI.

These two examples illustrate that “e to a matrix” is not made by simply raisinge to a matrix is not the same
as exponentiating each
entry! e to the entries of the matrix: exp

[
a b
c d

]
6=
[

ea eb

ec ed

]
.

Let’s do one more example. Let A =
[

2 0
0 −3

]
and let us compute eAt, where

t is a scalar. Then

eAt = exp(At) = I + (At) +
1
2!

(At)2 +
1
3!

(At)3 + · · · .

2.2. TWO (AND MORE) DIMENSIONS 43

Let’s work out each of these terms:

At = t

[
2 0
0 −3

]
=
[

2t 0
0 −3t

]
,

(At)2 = t2A2 = t2
[

4 0
0 9

]
=
[

4t2 0
0 9t2

]
,

(At)3 = t3A3 = t3
[

8 0
0 −27

]
=
[

8t3 0
0 −27t3

]
,

...

(At)j = tjAj = tj
[

2j 0
0 (−3)j

]
=
[

(2t)j 0
0 (−3t)j

]
.

Thus eAt equals

eAt = exp
[

2t 0
0 −3t

]
=

[
1 0
0 1

]
+
[

2t 0
0 −3t

]
+

1
2!

[
4t2 0

0 9t2

]
+

1
3!

[
8t3 0

0 −27t3

]
+ · · ·

=
[

1 + 2t + 1
2! (2t)2 + · · · 0
0 1 + (−3t) + 1

2! (−3t)2 + · · ·

]
=

[
e2t 0
0 e−3t

]
.

The only thing special about the matrix A =
[

2 0
0 −3

]
is that it’s a diagonal

matrix. Indeed, the preceding examples can be generalized. For any diagonal
matrix Λ:

exp(Λt) = exp

t

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 =

eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt

In every example so far A has been a diagonal matrix. We return to consider

how to compute eA for nondiagonal matrices after we justify the usefulness of
matrix exponentials in solving x′ = Ax. The operation eA is actually built into
computer packages such as Matlab (as the expm function) and Mathematica (as Computers can calculate

matrix exponentials.the MatrixExp function). Here is a bit of a Matlab session:

>>a=[2 0 ; 0 -3]

a =
2 0
0 -3

>>expm(a)

ans =
7.3891 0

0 0.0498

Use a calculator to check that e2 ≈ 7.3891 and e−3 ≈ 0.0498, as we would expect.
Mathematica gives us the exact (i.e., symbolic) result:

MatrixExp[{{2t,0},{0,-3t}}] // MatrixForm

44 CHAPTER 2. LINEAR SYSTEMS

2 t
E 0

-3 t
0 E

Our next step is to understand why eAtx0 is a solution to the dynamical systemDoes eAtx0 solve our
problem? x′ = Ax with x(0) = x0.

First, we do a quick sanity check: eAt is an n× n matrix (which depends on t)
and x0 is a fixed n-vector. Thus eAtx0 is an n-vector which varies over time. Also,
if we plug in 0 for t we have x(0) = eA·0x0 = Ix0 = x0 (recall that e raised to a
zero matrix is the identity); therefore, the formula x(t) = eAtx0 works for t = 0.

Now comes the more complicated part. We need to see that x = eAtx0 satisfies
the equation x′ = Ax. The left side of this differential equation is x′, so we take
derivatives of the entries in x and work to show that

d

dt

(
eAt
)
x0 = AeAtx0.

We compute as follows:

x′ =
d

dt

(
eAtx0

)
=

d

dt

[(
I + (At) +

1
2!

(At)2 +
1
3!

(At)3 +
1
4!

(At)4 + · · ·
)

x0

]
=

d

dt

(
Ix0 + (At)x0 +

1
2!

(At)2x0 +
1
3!

(At)3x0 +
1
4!

(At)4x0 + · · ·
)

.

To continue this calculation, we compute5 the derivative d
dt of individual terms

which look like 1
3! (At)3x0. Observe that this term can be rewritten as t3 1

3! (A
3x0).

Now, 1
3!A

3x0 is just a vector, and t3 is just a scalar multiplying that vector. We
continue our computation:

x′ =
d

dt

(
Ix0 + (At)x0 +

1
2!

(At)2x0 +
1
3!

(At)3x0 +
1
4!

(At)4x0 + · · ·
)

=
d

dt

[
Ix0 + t (Ax0) + t2

(
1
2!

A2x0

)
+ t3

(
1
3!

A3x0

)
+ t4

(
1
4!

A4x0

)
+ · · ·

]
= 0 + (Ax0) + 2t

(
1
2!

A2x0

)
+ 3t2

(
1
3!

A3x0

)
+ 4t3

(
1
4!

A4x0

)
+ · · ·

= A (x0) + At

(
1
1!

A1x0

)
+ At2

(
1
2!

A2x0

)
+ At3

(
1
3!

A3x0

)
+ · · · .

(In the last step, we took a term such as 3t2
(

1
3!A

3x0

)
, canceled the 3 in front with

the 3! in the denominator, leaving 2! downstairs, and pulled a factor of A out to
get At2

(
1
2!A

2x0

)
.) Observe that all the terms have a factor of A, which we now

collect, continuing the computation:

x′ = A

[
Ix0 + t

(
1
1!

A1x0

)
+ t2

(
1
2!

A2x0

)
+ t3

(
1
3!

A3x0

)
+ · · ·

]
= A

[
I + t (A) + t2

(
1
2!

A2

)
+ t3

(
1
3!

A3

)
+ · · ·

]
x0

= A

[
I + (At) +

1
2!

(At)2 +
1
3!

(At)3 + · · ·
]
x0

= A
(
eAtx0

)
= Ax.

5The term-by-term differentiation of a power series is not always valid. The validity in this
case can be proved but requires ideas from real analysis which are beyond the scope of this text.

2.2. TWO (AND MORE) DIMENSIONS 45

Whew! That was a long trip, but we have seen that if we let x = eAtx0, then we
have first, that x(0) = x0 and (with much more effort) that x′ = Ax. This shows
that x = eAtx0 is the desired solution.

Great! Now we know that a problem such as[
x1

x2

]′
=
[

2 1
1 2

] [
x1

x2

]
;

[
x1(0)
x2(0)

]
=
[

1
0

]
has, as its solution, Recall that the notation

exp A means the same thing
as eA.

[
x1(t)
x2(t)

]
= exp

([
2 1
1 2

]
t

)[
1
0

]
.

Somehow, this is not very satisfying. True, we can use Matlab, or the like, to
compute specific values of x1(t) or x2(t) for any t. For example, to get the values
at t = 2 we would simply type

>>a = [2 1 ; 1 2]

a =
2 1
1 2

>>expm(2*a) * [1;0]

ans =
205.4089
198.0199

The numbers look rather big, and it would be safe to bet that |x(t)| → ∞ as t→∞,
but the eAtx0 form of the solution doesn’t tell us (yet) what is happening.

Our next major step is to understand how eAt behaves. We have already seen The behavior of eAt as
t →∞ depends on the
eigenvalues of A.

how eAt behaves when A is a diagonal matrix. What should we do when A is not
diagonal? Well, diagonalize it, of course!

Assuming that A diagonalizes, we can write

A = SΛS−1,

and therefore
At = (SΛS−1)t = S(tΛ)S−1.

We substitute this expression for At into the definition of eAt and we compute

eAt = exp(At)
= exp

(
S(tΛ)S−1

)
= I +

(
S(tΛ)S−1

)
+

1
2!
(
S(tΛ)S−1

)2
+

1
3!
(
S(tΛ)S−1

)3
+ · · · .

Because the terms in this expression are of the form

1
k!
(
S(tΛ)S−1

)k
we can write it out as

1
k!
(
S(tΛ)S−1S(tΛ)S−1 · · ·S(tΛ)S−1

)
,

and we watch the S−1 terms annihilate the S terms, leaving

1
k!
(
S(tΛ)kS−1

)
.

46 CHAPTER 2. LINEAR SYSTEMS

We continue our computation of eAt:

eAt = I +
(
S(tΛ)S−1

)
+

1
2!
(
S(tΛ)S−1

)2
+

1
3!
(
S(tΛ)S−1

)3
+ · · ·

= SIS−1 +
(
S(tΛ)S−1

)
+

1
2!
(
S(tΛ)2S−1

)
+

1
3!
(
S(tΛ)3S−1

)
+ · · ·

= S

[
I + (tΛ) +

1
2!

(tΛ)2 +
1
3!

(tΛ)3 + · · ·
]

S−1

= S exp(tΛ)S−1.

In summary,
eAt = SeΛtS−1, (2.10)

where Λ is a diagonal matrix of A’s eigenvalues, and the columns of S are A’s
eigenvectors.

Let’s do an example. Suppose A =
[

2 1
1 2

]
. Then A’s characteristic polyno-

An example of eA where A
is not a diagonal matrix.

mial is

det(xI −A) = det
[

x− 2 1
1 x− 2

]
= (x− 2)(x− 2)− 1
= x2 − 4x + 3
= (x− 3)(x− 1).

Thus A’s eigenvalues are 3 and 1. Observe that
[

1
1

]
is an eigenvector of A

associated with 3: [
2 1
1 2

] [
1
1

]
=
[

3
3

]
= 3

[
1
1

]
,

and
[

1
−1

]
is an eigenvector of A associated with 1:[

2 1
1 2

] [
1
−1

]
= 1

[
1
−1

]
.

Thus we let S =
[

1 1
1 −1

]
(and therefore S−1 =

[
1
2

1
2

1
2 − 1

2

]
) and Λ =

[
3 0
0 1

]
.

As a quick check we compute (do it!)

SΛS−1 =
[

1 1
1 −1

] [
3 0
0 1

] [
1
2

1
2

1
2 − 1

2

]
=
[

2 1
1 2

]
= A.

Now we compute eAt:An example of eAt.

exp(At) = S exp(Λt)S−1

=
[

1 1
1 −1

]
exp

(
t

[
3 0
0 1

])[
1
2

1
2

1
2 − 1

2

]
=

[
1 1
1 −1

] [
e3t 0
0 et

] [
1
2

1
2

1
2 − 1

2

]
=

[
1 1
1 −1

] [
e3t/2 e3t/2
et/2 −et/2

]
=

[
1
2 (e3t + et) 1

2 (e3t − et)
1
2 (e3t − et) 1

2 (e3t + et)

]
.

Finally, we know that x(t) = eAtx0; in this example, x0 =
[

1
0

]
:

x(t) =
[

x1(t)
x2(t)

]
=
[

1
2 (e3t + et) 1

2 (e3t − et)
1
2 (e3t − et) 1

2 (e3t + et)

] [
1
0

]
=
[

1
2 (e3t + et)
1
2 (e3t − et)

]
.

2.2. TWO (AND MORE) DIMENSIONS 47

Thus we arrive at the formulas

x1(t) =
e3t + et

2
and x2(t) =

e3t − et

2
.

A quick substitution of t = 0 verifies that x1(0) = 1 and x2(0) = 0. Furthermore,

x′1(t) =
d

dt

(
e3t + et

2

)
=

3e3t + et

2

= 2
(

e3t + et

2

)
+
(

e3t − et

2

)
= 2x1(t) + x2(t),

and

x′2(t) =
d

dt

(
e3t − et

2

)
=

3e3t − et

2

=
(

e3t + et

2

)
+ 2

(
e3t − et

2

)
= x1(t) + 2x2(t).

Thus we have verified that
[

x1

x2

]′
=
[

2 1
1 2

] [
x1

x2

]
, as required.

We do another quick check: Earlier, we used Matlab to find x(2) ≈
[

205.4089
198.0199

]
.

Use your calculator to verify

x1(2) =
e3·2 + e2

2
≈ 205.4089, and

x2(2) =
e3·2 − e2

2
≈ 198.0199.

It is now clear that since e3t → ∞ and even e3t − et → ∞ as t → ∞, that
|x(t)| → ∞, as we suspected from the numerical evidence.

This was a lot of work (and there are some more bumps and twists ahead— Recapping the case x′ = Ax.

sigh!), but let’s focus on the highlights of what we have witnessed in this example:

1. We began with the system x′ = Ax, where A =
[

2 1
1 2

]
.

2. The eigenvalues of A are 3 and 1.

3. The answer (i.e., the functions x1(t) and x2(t)) consists of linear combinations
of e3t and e1t.

These observations hold true for any system of the form x′ = Ax. Although
we can succinctly express the solution as x(t) = eAtx0, the individual components
of the answer (the x1(t), . . . , xn(t)) are linear combinations of eλ1t, eλ2t, . . . , eλnt,
where λ1, λ2, . . . , λn are the eigenvalues of A.

For example, if our matrix had been A =
[

2 3
6 −8

]
, then the solution to the

system x′ = Ax would be some linear combination of eλ1t and eλ2t, where λ1, λ2

are the eigenvalues of A. What are these eigenvalues? We could work them out in
the usual way,6 or we might be satisfied with just knowing their numerical values.
Matlab easily gives us the eigenvalues:

6. . . and we would find that A’s eigenvalues are −3 +
√

43 and −3−
√

43.

48 CHAPTER 2. LINEAR SYSTEMS

a =
2 3
6 -8

>>eig(a)

ans =
3.5574
-9.5574

So now we know that x1(t) and x2(t) involve terms of the form e3.5574t and e−9.5574t.
What happens as t→∞? We note that while e−9.5574t → 0, we also have e3.5574t →
∞. Thus for typical x0, we have |x(t)| → ∞.

We are on the verge of a general principle: If the eigenvalues are all negative,
then x(t) → 0 as t → ∞. However, if some of A’s eigenvalues are positive, then
typically |x(t)| → ∞.

You may be wondering (or worrying) about how to handle the case when A hasWhat if there are complex
eigenvalues? complex eigenvalues. It is still true that A = SΛS−1, that exp(At) = S exp(Λt)S−1,

and that exp(Λt) is a diagonal matrix whose diagonal entries are eλ1t, eλ2t, . . . , eλnt.
The worry is, how do we handle terms like eλt when λ is complex? This exact
matter is discussed in §A.2. (Yes, please spend some time there now.) Suppose
λ = a+ bi. Then eλt = eat+bti = eatebti. The eat part is just a real number whereas
the ebti equals (by Euler’s formula, equation (A.4) on page 253) cos bt + i sin bt.
Summarizing, we have

eλt = e(a+bi)t = eate(bt)i = eat(cos bt + i sin bt).

Of particular note is that |e(a+bi)t| = |eat|. Thus if a, the real part of λ, denoted by
<λ, is positive, then |eλt| → ∞ as t → ∞. If a < 0 (<λ is negative) then eλt → 0<λ stands for the real part

of the complex number λ. as t → ∞. Finally, if a = 0 (λ is purely imaginary), then |eλt| = 1 for all t and
(unless b = 0) eλt spins around the origin for all time.

Thus our general principle becomes: If the real parts of all of A’s eigenvalues
are negative, then x(t) → 0 as t → ∞; if some eigenvalue has positive real part,
then typically |x(t)| → ∞; and if <λ ≤ 0 for all λ, but <λ = 0 for some λ, then
x(t) neither settles down to any specific value nor does it blow up.

What is the nature of individual functions (the xj(t)’s) in x? Since the startingWith complex numbers
everywhere, how do we know
the final answer we get will
be real?

vector x0 and the changes x′ = Ax are all real, we expect all the xj(t) functions
to be real-valued. Well, indeed they are! If λ = a + bi is an eigenvalue of A, then,
necessarily, so is λ = a− bi. Now,

eλt = e(a+bi)t = eat(cos bt + i sin bt), and

eλt = e(a−bi)t = eat(cos bt− i sin bt).

In other words, eλt and eλt can be expressed as linear combinations of eat cos bt and
eat sin bt.

Suppose λ = a + bi is complex (b 6= 0) and is an eigenvalue of A. Our theory
tells us that the xj(t)’s contain terms of the form eλt and eλt. However, we can
replace those terms by terms involving eat cos bt and eat sin bt. When we do this,
all the terms involving i will disappear. Hard to believe? Let us see this in action
by revisiting the oscillator example of Chapter 1.

In §1.2.1 on page 6 we considered an ideal system consisting of a block slidingMass-and-spring, again.

on a frictionless surface attached to a wall by an ideal spring. (In §1.2.2 on page 7
we observed that a resistance-free RLC circuit behaves in the same manner as the
frictionless mass and spring.) If we take the mass m of the block and the spring

2.2. TWO (AND MORE) DIMENSIONS 49

constant k both equal to 1, we derive equation (1.8) on page 7 which we repeat
here: [

x
v

]′
=
[

0 1
−1 0

] [
x
v

]
.

This system is of the form y′ = Ay, where y =
[

x
v

]
and A =

[
0 1
−1 0

]
. We

take y0 = y(0) =
[

1
0

]
.

We know that the solution to this system is y(t) = eAty0, so we need to compute
eAt.

First, we find A’s eigenvalues. The characteristic equation is

det(λI −A) = λ2 + 1,

so the eigenvalues are i and −i. Notice that
[

1
i

]
is an eigenvector associated

with λ = i and that
[

1
−i

]
is an eigenvector associated with λ = −i. Put S =[

1 1
i −i

]
(and so S−1 =

[
1
2 − i

2
1
2

i
2

]
) and Λ =

[
i 0
0 −i

]
. Therefore,

eAt = exp
(

t

[
0 1
−1 0

])
= S exp(tΛ)S−1

=
[

1 1
i −i

] [
eit 0
0 e−it

] [
1
2 − i

2
1
2

i
2

]
=

[
1 1
i −i

] [
1
2eit − i

2eit

1
2e−it i

2e−it

]
=

[
1
2 (eit + e−it) 1

2 (−ieit + ie−it)
1
2 (ieit − ie−it) 1

2 (eit + e−it)

]
.

Using the complex form (see §A.2) for the sine and cosine functions,

cos t =
eit + e−it

2
and sin t =

eit − e−it

2i
,

and recognizing that

−ieit + ie−it

2
=

eit − e−it

2i
= sin t,

we finish our computation of eAt:

eAt =
[

1
2 (eit + e−it) 1

2 (−ieit + ie−it)
1
2 (ieit − ie−it) 1

2 (eit + e−it)

]
=

[
cos t sin t
− sin t cos t

]
.

Finally, we know that y(t) = eAty0, so

y =
[

x
v

]
=
[

cos t sin t
− sin t cos t

] [
1
0

]
=
[

cos t
− sin t

]
.

Hence x(t) = cos t, as we saw in §1.2.1.

50 CHAPTER 2. LINEAR SYSTEMS

Now it is time to add some friction. If the block is moving at a modest speedAdding friction and
resistance. through air, the air pushes back on the block with a force proportional to the speed

of the block. Symbolically, the force on the block due to air resistance is −µv;
the minus sign indicates that the direction of the force is opposite the direction of
motion. The number µ is a positive constant. Thus the total force on the block
(from the spring and air resistance) is −kx−µv. If we take (as before) m = k = 1,
then the system is [

x
v

]′
=
[

0 1
−1 −µ

] [
x
v

]
. (2.11)

Now we find the eigenvalues of A =
[

0 1
−1 −µ

]
. The characteristic equation

is

det(λI −A) = det
[

λ −1
1 λ + µ

]
= λ(λ + µ) + 1
= λ2 + µλ + 1.

Hence A’s eigenvalues are
−µ±

√
µ2 − 4

2
.

This formula suggests three cases to consider: (1) µ > 2, (2) 0 < µ < 2, and
(3) µ = 2.

In case (1), with µ > 2, both eigenvalues are real. Clearly, (−µ −
√

µ2 − 4)/2The case µ > 2:
overdamping. is negative. What about the other eigenvalue? Notice that√

µ2 − 4 <
√

µ2 = µ,

hence −µ +
√

µ2 − 4 < 0. Thus, both eigenvalues are negative. It follows then,
that as time progresses, both x and v go to 0. Moreover, the resistance is so heavy
that no oscillation can take place. We know this because the formulas for x(t) and
v(t) are both linear combinations of eλ1t and eλ2t, where both λ’s are negative real

numbers. Figure 2.11 is a plot of the behavior of the system with y0 =
[

1
0

]
and

µ = 4.
In case (2), when µ < 2, we see that the two eigenvalues, which are (−µ ±The case µ < 2:

underdamping.
√

µ2 − 4)/2, are complex numbers (since µ2 − 4 < 0). The real parts of these
eigenvalues are both −µ/2, which is negative. Thus we again expect to see x and
v tending to 0 as t → ∞. However, in this case we expect to see oscillation, since
the functions x(t) and v(t) will involve sines and cosines. In particular, they will
be linear combinations of

e−(µ/2)t sin
(
t
√

4− µ2
)

and e−(µ/2)t cos
(
t
√

4− µ2
)

.

Figure 2.12 shows the behavior of x(t) and v(t) when µ = 1
4 .

Finally we consider case (3), in which µ = 2. In this case we have a repeatedThe case µ = 2: critical
damping.

eigenvalue, λ = −1. Unfortunately, in this case the matrix A =
[

0 1
−1 −µ

]
=[

0 1
−1 −2

]
is not diagonalizable! In §2.2.3 we discuss the behavior of systems in

which the matrix is nondiagonalizable. We will learn that x(t) and v(t) are linear
combinations of e−t and te−t. Figure 2.13 shows the behavior of x(t) and v(t) when
µ = 2. Notice that the system does not oscillate; there are no sines or cosines in
the formulas. Interestingly, the system settles down faster when µ = 2 than when
µ = 4.

2.2. TWO (AND MORE) DIMENSIONS 51

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

Figure 2.11: Mass-and-spring oscillator with µ = 4. Solid curve is position x, and
dotted curve is velocity v.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

Figure 2.12: Mass-and-spring oscillator with µ = 1
4 . Solid curve is position x, and

dotted curve is velocity v.

52 CHAPTER 2. LINEAR SYSTEMS

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

Figure 2.13: Mass-and-spring oscillator with µ = 2. Solid curve is position x, and
dotted curve is velocity v.

(If we consider the RLC circuit from Figure 1.2 on page 8 in which L = C = 1,RLC circuits behave just like
the mass-and-spring system. but R is not 0, we have (see equation (1.11) on page 8)[

V
I

]′
=
[

0 −1
1 −R

] [
V
I

]
.

This equation is nearly identical with equation (2.11) on page 50 for the mass-and-

spring system with air resistance. Indeed, the eigenvalues of the matrix
[

0 −1
1 −R

]
are the same as those of the matrix

[
0 1
−1 −µ

]
if we put µ = R. The mass-and-

spring system and the RLC circuit behave in the same manner.)

Let us summarize the important points of what we have learned about the caseReviewing x′ = Ax.

x′ = Ax with x(0) = x0.

• The solution can be written as x(t) = eAtx0.

• If A diagonalizes, A = SΛS−1, then eAt = SeΛtS−1.

• It follows, therefore, that the individual components of x (i.e., x1(t) through
xn(t)) are linear combinations of eλ1t, . . . , eλnt.

• If a ± bi are complex eigenvalues of A, then e(a±bi)t can be expressed using
the functions eat sin bt and eat cos bt.

• Finally:

– If all of A’s eigenvalues have negative real part, then x(t)→ 0 as t→∞.

– If some of A’s eigenvalues have positive real part, then, typically, |x(t)| →
∞ as t→∞.

– If all of A’s eigenvalues have negative or zero real part, and some have
zero real part, then, typically, x(t) neither tends toward 0 nor explodes.

2.2. TWO (AND MORE) DIMENSIONS 53

We are ready for the full case: The full system:
x′ = Ax + b.

x′ = Ax + b with x(0) = x0. (2.12)

We are still assuming that the matrix A diagonalizes, so A = SΛS−1. If we replace
A with SΛS−1 in x′ = Ax + b, we get

x′ =
(
SΛS−1

)
x + b.

We now multiply on the left by S−1

S−1
[

x′ = SΛS−1x + b
]

⇒ S−1x′ = ΛS−1x + S−1b.

Now, S−1x′ = (S−1x)′ (see problem 8 on page 64), so we make the substitution
u = S−1x (and therefore u′ = S−1x′) and arrive at

u′ = Λu + c with u(0) = u0, (2.13)

where c = S−1b and u0 = S−1x0. The matrix equation (2.13) can now be written
out as

u′1 = λ1u1 + c1,

u′2 = λ2u2 + c2,

...
u′n = λnun + cn.

Notice that each of these differential equations involves only one of the uj ’s at a
time! Thus we can use the methods of §2.1.2 (in particular, see equation (2.6) on
page 33) and we have that

uj(t) =

{
eλjt

(
uj(0) + cj

λj

)
− cj

λj
when λj 6= 0, and

cjt + uj(0) when λj = 0,

which gives us explicit formulas for u1(t), . . . , un(t). To work out the formulas for
the xj ’s we recall that u = S−1x, and so x = Su.

Let’s do an example. Suppose the system is A full example of a system
of the form x′ = Ax + b. x1

x2

x3

′ =

 2 1 1
1 2 1
3 3 2

 x1

x2

x3

+

 −3
0
2

with x0 =

 1
1
1

.

We begin by computing the eigenvalues of A =

 2 1 1
1 2 1
3 3 2

. (You may work

them out by hand or with computer software.) They are 5, 1, and 0. Corresponding
to these we have eigenvectors 1

1
2

 ,

 1
−1

0

 , and

 1
1
−3

 ,

54 CHAPTER 2. LINEAR SYSTEMS

respectively. Thus S and S−1 are

S =

 1 1 1
1 −1 1
2 0 −3

 and S−1 =
1
10

 3 3 2
5 −5 0
2 2 −2

 .

Let u = S−1x and

c = S−1b =
1
10

 3 3 2
5 −5 0
2 2 −2

 −3
0
2

 =

 −1/2
−3/2
−1

 .

Thus the system becomes u′ =

 5 0 0
0 1 0
0 0 0

u +

 −1/2
−3/2
−1

, with u0 = S−1x0 =

1
10

 3 3 2
5 −5 0
2 2 −2

 1
1
1

 =

 8/10
0

2/10

. In long notation, the problem is

u′1(t) = 5u1(t)− 1/2, u1(0) = 8/10,
u′2(t) = u2(t)− 3/2, u2(0) = 0,
u′3(t) = −1, u3(0) = 2/10.

What makes this system tractable is that each equation involves only one uj(t). We
can solve them separately. Recall that the solution to the one-dimensional equation
x′ = ax + b is x(t) = eat

(
x0 + b

a

)
− b

a (see equation (2.6) on page 33). Applying
that solution to this case, we get

u1(t) = e5t

(
8
10
− 1

10

)
+

1
10

=
7e5t + 1

10
,

u2(t) = et

(
0− 3

2

)
+

3
2

=
−3et + 3

2
,

u3(t) = −t + 2/10.

Finally, we really want to know x, which equals Su, hence

x =

 x1

x2

x3

 =

 1 1 1
1 −1 1
2 0 −3

 (7e5t + 1)/10
(−3et + 3)/2
−t + 2/10

=

1
10

 18− 15et + 7e5t − 10t
−12 + 15et + 7e5t − 10t
−4 + 14e5t + 30t

 ,

or in long notation,

x1(t) =
(
18− 15et + 7e5t − 10t

)
/10,

x2(t) =
(
−12 + 15et + 7e5t − 10t

)
/10,

x3(t) =
(
−4 + 14e5t + 30t

)
/10.

What happens as t→∞? It is clear that the e5t term dominates all others in the
preceding formulas. Letting t→∞, we see that

x(t) ≈ 7e5t

10

 1
1
2

 ,

that is, x(t) is exploding in the direction of the eigenvector associated with the
largest eigenvalue (λ = 5).

2.2. TWO (AND MORE) DIMENSIONS 55

Continuous: x′(t) = Ax(t) + b with x(0) = x0

Conditions on Behavior of
eigenvalues of A x(t)
All have <λ < 0 converges to x̃ = −A−1b
Some have <λ > 0 typically, |x(t)| → ∞
All have <λ ≤ 0; stays near but does not
and some have <λ = 0 approach x̃, or |x(t)| → ∞

Table 2.4: The possible behaviors of multidimensional continuous time linear sys-
tems.

y

x

(a) y

x

(b) y

x

(c)

Figure 2.14: The behavior of continuous linear systems. Three cases are shown:
(a) all <λ < 0, (b) some <λ > 0, and (c) all <λ ≤ 0 and some <λ = 0.

We can now describe the behavior of multivariable, linear continuous time dy- A full description of the
system x′ = Ax + b.namical systems x′ = Ax+b (assuming that A diagonalizes). By changing variables

to u = S−1x, we decouple the system, i.e., we have u′ = Λu + c, where Λ is a di-
agonal matrix. Thus we have converted our original problem with n equations in
n intertwined variables into a new system consisting of n equations in n separated
variables. We solve the easy system for u and convert back, knowing that x = Su.

If there are complex eigenvalues, then S will be a complex matrix and u may
have complex entries. However, when we convert back to x we are able to convert
the e(a±bi)t terms into eat sin bt and eat cos bt terms. (See problem 12 on page 65.)

Although it is nice to be able to compute explicitly the solutions to these linear
systems, we are mostly interested in their long-term behavior. We see that the
critical issue is the sign of the real part of the eigenvalues. Table 2.4 summarizes
what we have learned.

Geometry

We have seen that the behavior of the continuous time system x′ = Ax + b is All eigenvalues in the left
half-plane for stability; an
eigenvalue in the right
half-plane implies instability.

driven by the real part of the eigenvalues of A. The three cases discussed above are
illustrated in Figure 2.14. These cases can be described geometrically as follows.
In case (a), all the eigenvalues are points lying strictly to the left of the y-axis. In
case (b), some points (eigenvalues) lie strictly to the right of the y-axis. And in
case (c), we have some points on, and the remaining points left of, the y-axis.

Now we focus on the two-dimensional case (i.e., x ∈ R2 and A is a 2×2 matrix),
as we can plot interesting diagrams in the plane. Let f(x) = Ax + b, where A is
a 2 × 2 matrix and b ∈ R2. For several points x in the plane, we plot an arrow

56 CHAPTER 2. LINEAR SYSTEMS

-10 -5 0 5 10

-10

-5

0

5

10

Figure 2.15: A dynamical system x′ = Ax where the eigenvalues of A are 5/2 and
1.

anchored at x pointing in the direction of f(x). Such a diagram depicts a vector
field: every point in the plane x is assigned7 a vector f(x).

As you examine the figures, follow the arrows in your mind to see how the
system evolves. We have plotted some trajectories of the system in the pictures as
well.

Let’s begin with Figure 2.15, which illustrates the systemTwo real, positive
eigenvalues. [

x1

x2

]′
=
[

5
2

1
8

0 1

] [
x1

x2

]
.

The eigenvalues of A are 5
2 and 1, so since both are positive, we expect to see the

system explode. Indeed, the eigenvector corresponding to 5
2 is

[
1
0

]
, and as t→∞

we see that the system is heading off toward infinity parallel to the x-axis.
A similar system is illustrated in Figure 2.16. In this case the system isComplex eigenvalues with

positive real parts. Notice
the swirling.

[
x1

x2

]′
=
[

0 1
−5 2

] [
x1

x2

]
.

The eigenvalues of A are 1 ± 2i, which both have positive real part. Thus we
observe that |x(t)| → ∞ as t → ∞. However, in this case x(t) is not exploding
in a straight-line direction; rather, the trajectory circles around and around in an
ever widening spiral, corresponding to the sine and cosine terms generated by the
imaginary part of the eigenvalues.

Figure 2.17 is another example of a dynamical system in divergence. In thisOne positive, one negative.

case, the eigenvalues of A are ±1. Since there is a positive eigenvalue, most x0 will
cause the system to explode. In this system, however, if we choose x0 on the y-axis,
we would have x(t)→ 0 as t→∞.

Figure 2.18 illustrates a system in which the eigenvalues are both negative. InBoth eigenvalues negative.

this example, A =
[

1
6

1
4

− 5
6 − 3

4

]
, whose eigenvalues are − 1

4 and − 1
3 . Notice that

all trajectories lead to the origin, 0.
7For clarity in the figures, the arrows we draw all have the same length. We show just the

direction of the vector f(x).

2.2. TWO (AND MORE) DIMENSIONS 57

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.16: A dynamical system x′ = Ax where the eigenvalues of A are 1± 2i.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.17: A dynamical system x′ = Ax where the eigenvalues of A are ±1.

58 CHAPTER 2. LINEAR SYSTEMS

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.18: A dynamical system x′ = Ax where the eigenvalues of A are −1/4
and −1/3.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.19: A dynamical system x′ = Ax where the eigenvalues of A are − 1
2 ± i.

Figure 2.19 illustrates a system in which the eigenvalues both have negative realComplex eigenvalues with
negative real parts.

part. In this example, A =
[

0 1
− 5

4 −1

]
, whose eigenvalues are − 1

2 ± i. In this

system, all trajectories spiral in to the origin, 0. The swirling is caused by the sine
and cosine terms.

We now consider cases in which we have one zero and one negative eigenvalue.Two examples with zero and
negative eigenvalues.

Figure 2.20 illustrates the system x′ = Ax where A =
[
−1 1

2
2 −1

]
. The eigenval-

ues of A are −2 and 0. This system has an entire line of fixed points (see the dots
in the figure). All states not on this line of fixed points gravitate toward some fixed

2.2. TWO (AND MORE) DIMENSIONS 59

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.20: A dynamical system x′ = Ax where the eigenvalues of A are 0 and
−2.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.21: A dynamical system x′ = Ax + b where the eigenvalues of A are 0
and −2.

point. These fixed points are marginally stable.
In Figure 2.21 we have a system of the form x′ = Ax + b where again the

eigenvalues of A are −2 and 0. Notice that x(t) goes to infinity as t→∞. In this
system there are no fixed points and the trajectories all go off to infinity.

Finally, consider Figure 2.22. In this system the eigenvalues of A are pure Purely imaginary
eigenvalues.imaginary numbers (real part is 0). The trajectories of this system are all closed

curves (ellipses, in fact) about the fixed point 0. The origin is a marginally stable
fixed point.

60 CHAPTER 2. LINEAR SYSTEMS

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.22: A dynamical system x′ = Ax where the eigenvalues of A are ±i.

2.2.3 The nondiagonalizable case*

We have been studying linear systems of the formNondiagonalizable systems
have the same general
behavior as diagonalizable
systems.

x′ = Ax + b (continuous time)
x(k + 1) = Ax(k) + b (discrete time)

where A is a diagonalizable matrix. We have seen two types of behavior: gravitation
to a fixed point x̃ or explosion to infinity for most x0 depending on either the real
part or the absolute value of the eigenvalues of A.

Since the behavior of a linear system depends on its eigenvalues, it seems natu-
ral to worry that nondiagonalizable systems might behave rather differently. Here’s
the good news: Although the exact formulas for nondiagonalizable linear dynam-
ical systems are a little different from the exact formulas for the diagonalizable
systems, the rules governing their gross behavior are the same. In discrete time, if
all eigenvalues have absolute value less than 1, then the system gravitates toward a
fixed point; if some eigenvalue has absolute value greater than 1, then the system
typically explodes. In continuous systems, if the real parts of the eigenvalues are
all negative, then the system tends to a fixed point; if some eigenvalue has positive
real part, we can expect the system to blow up.

So the question is, Can we skip this section? The answer is, Yes, for now. It is
safe to assume that nondiagonalizable systems behave just like their diagonalizable
cousins. The purpose of this section is to sketch the theoretical underpinnings of
this claim.

Are you still with us? Good, but before going on, please read Appendix A,
especially §A.1.5 about the Jordan canonical form of a matrix.

We limit our discussion to systems in which b = 0, that is, systems of the form
x′ = Ax (continuous) or x(k + 1) = Ax(k) (discrete). The general solutions to
these systems are

System Solution
x′ = Ax x(t) = eAtx0

x(k + 1) = Ax(k) x(k) = Akx0

2.2. TWO (AND MORE) DIMENSIONS 61

The difficulty is knowing how eAt and Ak behave. Earlier, we deduced the behavior The behavior of eAt and Ak

for nondiagonalizable A.by diagonalization; we no longer have that tool available. Instead, we have the next
best thing: the Jordan canonical form. If A is any square matrix, then we can write
A = SJS−1, where J is in Jordan form (see §A.1.5). Let’s see how we can use this
to study eAt and Ak.

If we substitute SJS−1 for A in the formula for eAt, we get

eAt = I + tA +
t2

2!
A2 +

t3

3!
A3 + · · ·

= I + tSJS−1 +
t2

2!
(SJS−1)2 +

t3

3!
(SJS−1)3 + · · ·

= SS−1 + S(tJ)S−1 + S(
t2

2!
J2)S−1 + S(

t3

3!
J3)S−1 + · · ·

= S

(
I + tJ +

t2

2!
J2 +

t3

3!
J3 + · · ·

)
S−1

= SeJtS−1.

So far, this has been very similar to the case where A is diagonalizable. Now eΛt,
where Λ is a diagonal matrix, is relatively easy to compute. To see what happens
in the case eJt where J is a Jordan matrix, we consider an example. Suppose J is
a 4× 4 Jordan block, i.e.,

J =

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 .

To compute eJt we first want to compute the powers of J . We get

J0 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (identity matrix),

J1 =

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 (J itself),

J2 =

λ2 2λ 1 0
0 λ2 2λ 1
0 0 λ2 2λ
0 0 0 λ2

 ,

J3 =

λ3 3λ2 3λ 1
0 λ3 3λ2 3λ
0 0 λ3 3λ2

0 0 0 λ3

 ,

J4 =

λ4 4λ3 6λ2 4λ
0 λ4 4λ3 6λ2

0 0 λ4 4λ3

0 0 0 λ4

 ,

J5 =

λ5 5λ4 10λ3 10λ2

0 λ5 5λ4 10λ3

0 0 λ5 5λ4

0 0 0 λ5

 .

Do the first rows of these matrices look familiar? Yes? Good! What we see is
the first few terms in the expansion of (λ + 1)k using the binomial theorem. For

62 CHAPTER 2. LINEAR SYSTEMS

example,
(λ + 1)5 = λ5 + 5λ4 + 10λ3 + 10λ2︸ ︷︷ ︸+5λ + 1.

Using binomial coefficient notation,8 we have the first row of Jk:[
λk

(
k
1

)
λk−1

(
k
2

)
λk−2

(
k
3

)
λk−3

]
and form the successive rows by pushing in a zero on the left. Now we can workExponentiating a Jordan

block. on computing eJt.
The entries below the main diagonal of eJt are obviously all zero.
The main diagonal entries of eJt are the next simplest. Since the main diagonal

entries of Jk are simply λk, the main diagonal entries of eJt are just

1 + λt +
1
2!

λ2t2 +
1
2!

λ2t2 + · · · = eλt.

Let us consider the diagonal just above the main diagonal. The entries in Jk

are kλk−1, so the corresponding entries in eJt are

0 + t +
1
2!

t22λ +
1
3!

t33λ2 +
1
4!

t44λ3 + · · ·+ 1
k!

tkkλk−1 + · · · ,

from which we can cancel the k in the numerator with the k of the k! in the
denominator, and we get

t

(
1 + tλ +

1
2!

t2λ2 +
1
3!

t3λ3 + · · ·
)

= teλt.

So far we know that eJt has the form
eλt teλt ? ??
0 eλt teλt ?
0 0 eλt teλt

0 0 0 eλt

 .

Let’s move up to the next diagonal (the ‘?’ entries above). The entries in Jk

are
(
k
2

)
λk−2, so the corresponding entries in eJt are

0 + 0 +
1
2!

t2 +
1
3!

t33λ +
1
4!

t46λ2 +
1
5!

t510λ3 + · · ·+ 1
k!

tk
k(k − 1)

2
λk−2 + · · · .

As before, we cancel k(k− 1) upstairs with the first two terms of the k! downstairs
(and factor out a t2/2) to get

t2

2

(
1 + tλ +

1
2!

t2λ2 +
1
3!

t3λ3 + · · ·
)

=
t2

2
eλt.

Finally, we consider the upper right corner (the ‘??’ from before). The upper
right entry of Jk is

(
k
3

)
λk−3, so the upper right entry of eJt is

0 + 0 + 0 +
1
3!

t3 +
1
4!

t44λ +
1
5!

t510λ2 + · · ·+ 1
k!

tk
k(k − 1)(k − 2)

3!
λk−3 + · · · .

Factoring out t3

3! and canceling the k(k − 1)(k − 2) from the k!, we get

t3

3!

(
1 + tλ +

1
2!

t2λ2 +
1
3!

t3λ3 + · · ·
)

=
t3

3!
eλt.

8The expression
`k

r

´
stands for the coefficient of xr in the expansion of (x + 1)k. It is also the

number of ways to select an r-element subset from a fixed k-element set. Numerically,
`k

r

´
equals

k!
r!(k−r)!

. This can also be written as
`k

r

´
= 1

r!
k(k − 1)(k − 2) · · · (k − r + 1). This form suggests

we think of
`k

r

´
as a polynomial in k of degree r.

2.2. TWO (AND MORE) DIMENSIONS 63

We have computed all the entries in eJt, and finally we have

eJt =

eλt teλt t2

2! e
λt t3

3! e
λt

0 eλt teλt t2

2! e
λt

0 0 eλt teλt

0 0 0 eλt

 .

These computations are for a 4 × 4 Jordan block. Had J been a Jordan block
of a different size, the same pattern would have emerged. The first row of eJt is[

eλt teλt t2

2!
eλt t3

3!
eλt · · ·

]
,

and the successive rows are formed by pushing in zeros from the left.
What if J is not a simple Jordan block but is in Jordan canonical form? That

is, suppose

J =

J1 0 0 · · · 0
0 J2 0 · · · 0
0 0 J3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Jm

 ,

where each J` is a Jordan block (and the 0’s denote rectangular blocks of zeros).
It is a simple matter to verify that

eJt = J =

eJ1t 0 0 · · · 0
0 eJ2t 0 · · · 0
0 0 eJ3t · · · 0
...

...
...

. . .
...

0 0 0 · · · eJmt

 .

Recapping, we know that any square matrix A can be written as A = SJS−1,
where J is in Jordan canonical form. We therefore have eAt = SeJtS−1. The
entries in eJt look like eλt multiplied by polynomials in t.

We can now justify what we said earlier. If all A’s eigenvalues have negative
real part, then as t → ∞, all entries in eAt = SeJtS−1 tend to 0 and therefore
x(t) → 0. However, if some eigenvalues have positive real part, then some entries
in eAt will explode, and then, typically, |x(t)| → ∞.

The preceding discussion handles the continuous systems of the form x′ = Ax
for any square matrix A. Now we consider discrete time systems x(k +1) = Ax(k).

We know that x(k) = Akx0. The question is, How does Ak behave? Writing
A = SJS−1, we have

Ak =
(
SJS−1

)k
=

(
SJS−1

) (
SJS−1

)
· · ·
(
SJS−1

)
= SJkS−1.

Thus the behavior of Ak is controlled by the behavior of Jk. Fortunately, we have
just considered how Jk behaves! The entries in Jk are of the following form: a
polynomial in k times λk, where λ is an eigenvalue. Thus if |λ| < 1, these terms
vanish. If |λ| > 1, the terms explode. Finally, if |λ| = 1, then the term λk neither
explodes nor vanishes, but the terms of the form kλk, 1

2k2λk, etc. all explode.
Hence, if all A’s eigenvalues have absolute value less than 1, then Ak tends to

the zero matrix. However, if some eigenvalue of A has absolute value greater than
1, then entries in Ak will explode.

64 CHAPTER 2. LINEAR SYSTEMS

In summary, the general behavior of linear systems does not depend on the
diagonalizability of the matrix A.

Problems for §2.2

�1. Find the eigenvalues and eigenvectors of the following matrices:

(a)
[

1 2
0 3

]
.

(b)
[

0 1
1 0

]
.

(c)
[
−1 1

1 −1

]
.

(d)
[

1 1
1 0

]
.

�2. For each of the matrices in the previous problem, find a general formula for
Ak and eAt.

�3. Let A be a 2× 2 matrix. Suppose that the determinant of A is positive andThe trace of a matrix is the
sum of its diagonal elements. its trace is negative. Show that the system x′ = Ax has 0 as a stable fixed

point.

�4. Consider the discrete time dynamical system x(k + 1) = Ax(k) + b with
b 6= 0. Find a change of variables which converts this problem into one of
the form z(k +1) = Az(k). If you need to make some special assumptions for
your change of variables to work, please be sure to state them clearly.

Conclude that if A has an eigenvalue with absolute value greater than 1, then
|x(k)| → ∞ for typical x0.

�5. Give an example of a system of the form x(k + 1) = Ax(k) + b in which one
of A’s eigenvalues has absolute value bigger than 1, and a starting vector x0

for which |x(k)| does not tend to infinity.

Try to find such a x0 which is not a fixed point of the system.

�6. The points in figure 2.10 are symmetric about the x-axis. Why?

�7. The power method. Let A be a matrix for which there is a unique eigenvalue
of maximum absolute value. In other words, there is an eigenvalue λmax with
the property that |λmax| > |λ| for all other eigenvalues λ (and λmax is of
multiplicity 1).

Now, consider the following algorithm.

(a) Let v be a randomly chosen vector. (For example, choose each of the
components in v to be a number in the range [0, 1] chosen uniformly at
random.)

(b) Do the following steps several times:

(a) Let v← v/|v| (this makes v a unit vector).
(b) Let v← Av.

(c) Observe that Av is (very nearly) a scalar multiple of v; output that
scalar.

Explain why the output of the algorithm is λmax.

[Notes: (1) You may assume that A diagonalizes, although this is not essential
for the method to work. (2) The vector v at the end of the algorithm is
(nearly) an eigenvector associated withλmax. (3) The “divide by |v|” step is
not necessary in theory. It serves only to prevent the computer arithmetic
from under- or overflow.]

2.2. TWO (AND MORE) DIMENSIONS 65

�8. Let A =

 1 2 3
4 5 6
7 8 9

 and let v =

 x
y
z

, where x, y, and z are functions of

t. First compute A(v′) and then work out (Av)′. (Note that differentiation
is with respect to t in both cases. Write the derivative of x as x′.) Note that
your two answers are the same. Explain why (Av)′ = A(v′) for a general
n× n matrix of constants A and an n-vector of functions v.

�9. Let A =
[

3 1
1 3

]
, b =

[
1
2

]
, and x0 =

[
−1

2

]
. Consider the discrete time

dynamical system x(k + 1) = Ax(k) + b. Find an exact formula for x(k).

�10. Let A =
[

2 1
1 2

]
, b =

[
1
2

]
, and x0 =

[
−1

2

]
. Consider the discrete time

dynamical system x(k + 1) = Ax(k) + b. Find an exact formula for x(k).

[Note: This problem is virtually identical to the one before it but more chal-
lenging (why?). You will need to review the methods from the text to find
the exact formulas.]

�11. Let A =
[

2 1
1 2

]
, b =

[
1
2

]
, and x0 =

[
−1

2

]
. Consider the continuous

time dynamical system x′ = Ax + b. Find an exact formula for x(t).

�12. Let A =
[

2 1
−1 2

]
, b =

[
1
2

]
, and x0 =

[
−1

2

]
. Consider the continuous

time dynamical system x′ = Ax + b. Find an exact formula for x(t). Please
be sure your answer does not involve imaginary numbers.

�13. Let A =
[
−1 1

1 −1

]
and b =

[
−1

2

]
. What is the long-term behavior of

the dynamical system x′ = Ax?

What is the long-term behavior of the system x′ = Ax + b?

�14. Let A =

 −1 0 0
0 0 1
0 −1 0

 and b =

 2
1
2

. What is the long-term behavior

of the dynamical system x′ = Ax?

What is the long-term behavior of the system x′ = Ax + b? Try various
starting values.

�15. Let A =

 0 1 0
0 0 1
0 −1 0

 and b =

 2
1
2

. What is the long-term behavior of

the dynamical system x′ = Ax?

What is the long-term behavior of the system x′ = Ax + b? Try various
starting values.

�16. Let A =
[

0 1
−1 0

]
and b =

[
2
1

]
. What is the long-term behavior of the

dynamical system x(k + 1) = Ax(k)?

What is the long-term behavior of the dynamical system x(k+1) = Ax(k)+b?

�17. Let A =
[

1 0
0 −1

]
and b =

[
2
1

]
. What is the long-term behavior of the

dynamical system x(k + 1) = Ax(k)?

What is the long-term behavior of the dynamical system x(k+1) = Ax(k)+b?

66 CHAPTER 2. LINEAR SYSTEMS

�18. Let A =

 1 0 0
0 0.8 0.2
0 0 −0.2

 and b =

 2
1
2

. What is the long-term behavior

of the dynamical system x(k + 1) = Ax(k)?

What is the long-term behavior of the dynamical system x(k+1) = Ax(k)+b?

�19. Let A =

 1 0 0
0 0.8 0.2
0 0 −0.2

 and b =

 0
1
2

. What is the long-term behavior

of the dynamical system x(k + 1) = Ax(k)?

What is the long-term behavior of the dynamical system x(k+1) = Ax(k)+b?

�20. Let A =
[

0.2 0.3
−0.4 0.5

]
and b =

[
0.3
−0.1

]
. Consider the discrete time system

x(k+1) = Ax(k)+b. Plot the points x(0), x(1), x(2),. . . for various starting
values x(0) = x0. You might like to color code your dots depending on the
starting value.

The various dot paths should spiral in toward a common point in the plane.
Why? What is the significance of that point?

2.3 Examplification: Markov chains

Thus far in our discussion we have considered systems which are deterministic; onceIntroducing the idea of a
random dynamical system. we know the state of the system, the future of the system is fixed. It’s not hard to

imagine, however, a system where the next state is determined by a random mech-
anism. For example, consider the position of a token in a game such as Monopoly.
In a simplified model of this game, the state of the token is its position on the board
(one of 40 possible squares).9 At each discrete time period (the player’s turn) the
piece moves to another square between 2 and 12 steps ahead depending on the roll
of the dice.

Although such a random system may seem antithetical to the notion of a dynam-
ical system, we shall see that it can be viewed as an example of a linear dynamical
(deterministic!) system.

The study of Markov chains is a course unto itself; the brief introduction we
give hardly does the topic justice. Our motivation is to show how Markov chains
can be viewed as dynamical systems and to utilize the ideas we have learned from
linear systems to understand them.

2.3.1 Introduction

A Markov chain consists of two parts:

1. A set of possible states—called the state space—the system might be in. We
only deal with Markov chains with finitely many possible states.

2. A transition rule which tells us the probability of moving from one state to
another. Specifically, for any pair of states i and j, we have a nonnegative
number p(i → j), called the transition probability, which tells us that if we
are in state i, then the probability we are in state j at the next time period
is p(i → j). If we hold i constant and sum p(i → j) for all possible states j,
the result must be 1.

9To make this more accurate we would have to take into account the “Go to Jail” square, the
fact that rolling doubles three times in a row ends up in Jail, the rules for leaving Jail, etc.

2.3. EXAMPLIFICATION: MARKOV CHAINS 67

1 2 3 4 5
0.5

0.6

0.4

0.2

0.7

0.5

1

0.2

0.8

0.1

Figure 2.23: A directed graph representation of a Markov chain.

Consider our Monopoly example. There are 40 possible states corresponding to
the 40 squares on the Monopoly board. We can refer to these states using the num-
bers 1 through 40, with 1 corresponding to the “Go” square and 40 corresponding
to Boardwalk. Thus the state space for Monopoly is the set {1, 2, . . . , 40}. Next we
need a transition rule. If we are in state i we can move to any of the states i + 2
though i + 12 (with addition mod 40, i.e., state “41” is really state 1). No other
move is possible. The probability that we will roll a 2 is 1/36, a 3 is 2/36, a 4 is
3/36, . . . , a 12 is 1/36. Thus we have

p(i→ i + 2) = 1/36, p(i→ i + 3) = 2/36,
p(i→ i + 4) = 3/36, p(i→ i + 5) = 4/36,
p(i→ i + 6) = 5/36, p(i→ i + 7) = 6/36,
p(i→ i + 8) = 5/36, p(i→ i + 9) = 4/36,
p(i→ i + 10) = 3/36, p(i→ i + 11) = 2/36,
p(i→ i + 12) = 2/36, p(i→ j) = 0 otherwise.

We can draw a directed graph to give a picture of a Markov chain. A directed A pictorial representation of
a Markov chain.graph consists of a collection of dots called vertices. These vertices are joined by

arrows called arcs. An arc from vertex i to vertex j means it is possible to move
from vertex i to vertex j in one step. We label the arc from i to j with the number
p(i → j) to show what the probability of this transition is. [If p(i → j) = 0, we
simply don’t draw an arc.] See Figure 2.23. In this figure the arc from 1 to 2 is
labeled 0.8; this means that when we are at state 1, there is an 80% chance we
will be at state 2 in the next time period, i.e., p(1 → 2) = 0.8. There is also an
arc from vertex 1 to itself labeled 0.2. This means there is a 20% chance that
if we are currently at state 1, we will still be there in the next time period, i.e.,
p(1→ 1) = 0.2. Notice there is no arc from vertex 2 to vertex 1; this is because it
is impossible to move from state 2 to state 1 in a single step, i.e., p(2 → 1) = 0.
Indeed, from state 2, the only possible next state is state 4, since p(2→ 4) = 1.

We can condense all the information from the directed graph in Figure 2.23 into
Representing a Markov
chain in a matrix.

a matrix P whose ij entry is p(i→ j), namely,

P =

0.2 0.8 0 0 0
0 0 0 1 0
0 0.4 0 0 0.6
0.5 0 0.5 0 0
0 0.1 0 0.2 0.7

 .

2.3.2 Markov chains as linear systems

Let us continue our discussion of the Markov chain depicted in Figure 2.23. Suppose
at time k = 0 we are in state 1. In which state will we be at time k = 1? The
answer, of course, is, we don’t know. There is a 20% chance we will still be in
state 1 and an 80% chance we will be in state 2. The probability we are in any
other state is 0.

68 CHAPTER 2. LINEAR SYSTEMS

0.2

0.8

1

0.2

0.8

1

1

2 4

2

1

Figure 2.24: Taking two steps from state 1 of the Markov chain in Figure 2.23.

Where will we be at time k = 2? Again, we don’t know, but we can work outMultistep transition
probabilities. the probabilities. On the first step, we can either stay at state 1 (20%) or move

to state 2 (80%). In the first case, we again stay at state 1 or move to state 2.
In the second case, we must move to state 4. We summarize these options in
Figure 2.24. The three possible routes the Markov chain might follow, and their
respective probabilities are:

p(1→ 1→ 1) = p(1→ 1)p(1→ 1) = 0.22 = 0.04,

p(1→ 1→ 2) = p(1→ 1)p(1→ 2) = 0.2× 0.8 = 0.16,

p(1→ 2→ 4) = p(1→ 2)p(2→ 4) = 0.8× 1 = 0.8.

Let us write p(i 2−→j) to denote the probability that if the Markov chain is currently
in state i then two steps later it will be in state j. Thus

p(1 2−→1) = 0.04,

p(1 2−→2) = 0.16,

p(1 2−→4) = 0.8, and

p(1 2−→j) = 0 otherwise.

We can collect this information into a matrix whose (i, j)-entry is p(i 2−→j) with
the following result:

0.04 0.16 0 0.8 0
0.5 0 0.5 0 0
0 0.06 0 0.52 0.42
0.1 0.6 0 0 0.3
0.1 0.07 0.1 0.24 0.49

 .

The entries in the ith row of this matrix are the two-step probabilities starting from
state i.

You might be wondering if there is a simple relation between the precedingThe two step transition
probabilities are the entries
in the matrix P 2.

matrix (whose (i, j)-entry is p(i 2−→j)) and the matrix P (whose (i, j)-entry is p(i→
j)). Indeed there is. The former matrix is simply P 2. [Run, do not walk, to your
nearest computer to test this out!] This is not a coincidence. Let’s see why this
works by taking a detailed look at how we compute p(i 2−→j).

The probability p(i 2−→j) is actually a sum of probabilities depending on what
the intermediate state between i and j might be. We can express this as

p(i 2−→j) = p(i→ 1→ j) + p(i→ 2→ j) + · · ·+ p(i→ n→ j),

where n is the number of states in the Markov chain. The general term in this
sum is p(i → k → j): the probability that we move from state i to state k in the

2.3. EXAMPLIFICATION: MARKOV CHAINS 69

first step and then move from state k to state j in the second. This we compute as
p(i→ k → j) = p(i→ k)p(k → j). Thus we can rewrite the expression above as

p(i 2−→j) = p(i→ 1)p(1→ j) + p(i→ 2)p(2→ j) + · · ·+
+p(i→ n)p(n→ j),

or using summation notation,

p(i 2−→j) =
n∑

k=1

p(i→ k)p(k → j) =
n∑

k=1

PikPkj .

This is exactly the formula for matrix multiplication! Thus P 2 is the matrix whose
(i, j)-entry is p(i 2−→j). Would you like to guess the matrix whose (i, j)-entry is
p(i 3−→j)? You’ve got it! It is, of course, P 3; let’s be sure we understand why. We
can think of the three-step transition i

3−→j as consisting of first a single step from
i to some state k, followed by a double step from k to state j. We can therefore
write

p(i 3−→j) = p(i→ 1)p(1 2−→j) + p(i→ 2)p(2 2−→j) + · · ·+

+p(i→ n)p(n 2−→j).

Rewriting this in matrix notation, we have

p(i 3−→j) =
n∑

k=0

Pik(P 2)kj ,

which is precisely the formula for the matrix multiplication P × P 2.
In this way we see that the (i, j)-entry of the matrix Pm is the m-step transition The m-step transition

matrix is P m.probability p(i m−→j).

If the Markov chain starts in state 1, where will it be after m steps? We can’t
know exactly where the system will be, but we do know the probability with which it
assumes any given state; these numbers are the first row of Pm. If the Markov chain
begins in state 2, then the numbers in the second row of Pm give the probabilities
of where the system might be after m steps, and so on. The ith row of Pm gives
the probability distribution of the state of the Markov chain after m steps, given
that we began in state i.

There is a simple matrix multiplication trick we can use to extract the first (or
any other) row of Pm. We multiply Pm on the left by the row vector [1, 0, 0, . . . , 0].
The result is a row vector consisting of the first row of Pm.

For example, in the Markov chain from Figure 2.23 we have

[1, 0, 0, 0, 0]P 5 = [0.0483, 0.1853, 0.0160, 0.5344, 0.2160].

We learn from this computation that after five steps the Markov chain might be in
any state, but it’s most likely to be in state 4 (with probability about 53%).

A row vector of nonnegative numbers which sum to 1 is called a probability Probability vectors are row
vectors of nonnegative
numbers which sum to 1.

vector. We can think of the initial state of the Markov chain as the probability
vector [1, 0, 0, 0, 0], which says that with probability 1 (i.e., certainly) we are in
state 1, and with probability 0 we are in any other state. Let us write p(m) to
denote the probability vector after m steps of the system. The jth component of
p(m) is the probability we are in state j after m steps. Thus we can write

p(m) = p(0)Pm,

where p(0) = [1, 0, . . . , 0] (assuming we started in state 1).

70 CHAPTER 2. LINEAR SYSTEMS

Now it is conceivable that we don’t know precisely in which state the system
begins. For example, the system may have be running for a while before we start,
and we know only the probability of where the system begins. Or suppose we flip
a fair coin and start the system either in state 1 or state 5 (each with probability
1
2). We can write this as p(0) = [0.5, 0, 0, 0, 0.5]. Where will the system be after m
steps? You should work out for yourself that the answer is again p(0)Pm.

We can summarize all this by the single equation,

p(m + 1) = p(m)P,

where p(·) is a probability n-row vector and P is an n×n nonnegative matrix whose
rows all sum to 1. (Every row of P is a probability vector; such matrices are called
stochastic matrices.) In this way we can think of the row vector p(m) as being the
state of the Markov chain at time m.

This is almost exactly the form of a linear discrete time dynamical system. The
only difference is in the notation: Our state vector is a row (instead of a column).10

2.3.3 The long term

It now makes sense to ask typical dynamical system questions about Markov chains,
especially, What is the fate of these systems in the long term? The example in
Figure 2.23 is small enough to try out by computer. We start by computing Pm

for a large value of m (say 1000) and we get

P 1000 =

0.1592 0.2038 0.1274 0.2548 0.2548
0.1592 0.2038 0.1274 0.2548 0.2548
0.1592 0.2038 0.1274 0.2548 0.2548
0.1592 0.2038 0.1274 0.2548 0.2548
0.1592 0.2038 0.1274 0.2548 0.2548

 .

The remarkable feature about this matrix is that all five rows are the same. Starting
in any state, after 1000 iterations of the Markov chain, there is a 15.92% chance of
being in state 1, a 20.38% chance of being in state 2, etc. Indeed, we can compute
P 1001 or P 99999 and get the same result. In short, regardless of p(0) we have

p(m)→ [0.1592, 0.2038, 0.1274, 0.2548, 0.2548]

as m→∞.
Why does this happen? To understand, we look at the eigenvalues and eigen-

vectors of P . First, we note that 1 must be an eigenvalue of P . Since all the rows
in P sum to 1, then we must have P1 = 1, where 1 is a column vector of all 1’s.
We can use a computer to find all of P ’s eigenvalues, namely,

-0.3724 + 0.7414i
-0.3724 - 0.7414i
1.0000
0.0541
0.5907

This means that 1 is the unique eigenvalue of P with the largest absolute value
(since the absolute value of −0.3724± 0.7414i is 0.8296).

The successive iterates of the system, p(m), are now row vectors, not column
vectors as we had before. So it is not right to think about the eigenvalues/vectors of
P , but rather of PT . However, since the eigenvalues of a matrix and its transpose
are the same (see problem 1 on page 70), we note that the list above also gives

10We could fix this by writing p as a column and replacing P with P T .

2.3. EXAMPLIFICATION: MARKOV CHAINS 71

the eigenvalues of PT . Hence there is an eigenvector of PT corresponding to the
eigenvalue 1. It is not simply a row vector of all 1’s, since

[1, 1, 1, 1, 1] ·

0.2 0.8 0 0 0
0 0 0 1 0
0 0.4 0 0 0.6
0.5 0 0.5 0 0
0 0.1 0 0.2 0.7

 = [0.7, 1.3, 0.5, 1.2, 1.3000] .

Instead, we find (using the computer to find the eigenvectors of PT) that the row
vector [25, 32, 20, 40, 40] satisfies

[25, 32, 20, 40, 40] ·

0.2 0.8 0 0 0
0 0 0 1 0
0 0.4 0 0 0.6
0.5 0 0.5 0 0
0 0.1 0 0.2 0.7

 = [25, 32, 20, 40, 40] .

If we rescale this row vector by multiplying by 1/(25 + 32 + 20 + 40 + 40) = 1/157,
we get

p∗ = [0.1592, 0.2038, 0.1274, 0.2548, 0.2548] ,

which is precisely the row we saw repeated five times in P 1000.

The Markov chain we have been studying is a bit contrived. After many itera-
tions, the probability vector p(m) settles down to a fixed values. There are other
behaviors which Markov chains can exhibit. Some of the possibilities are explored
in the problems.

Problems for §2.3

�1. Let A be a square matrix. Recall that the determinant of A and its transpose,
AT , are the same. Use this fact to explain why the eigenvalues of A and AT

are the same.

Although the eigenvalues of A and AT must be the same, their eigenvec-
tors need not be the same. Give an example of a matrix A for which the
eigenvectors of A and AT are different.

�2. For each of the following Markov chain transition matrices, draw the corre-
sponding directed graph representation (as in Figure 2.23 on page 67).

1.

0.6 0 0.2 0 0.2 0
0.7 0.1 0 0.2 0 0
0 0.4 0 0.6 0 0
0 0 0 0 0.1 0.9
0 0 0 0 0 1
0 0 0.6 0.4 0 0

.

2.

0 0 0 0.5 0.5
0.7 0 0.3 0 0
0 0.5 0 0 0.5
0 0 1 0 0
0.9 0 0.1 0 0

.

3.

0.7 0 0.2 0 0 0 0.1 0
0 0 0 0 1 0 0 0
0.8 0 0 0.2 0 0 0 0
0 0 0 0 0 0.8 0 0.2
0 0.4 0 0 0.6 0 0 0
0 0 0 0.3 0 0.3 0 0.4
0 0.5 0.4 0 0 0 0 0.1
0 0 0 0 0 0.7 0 0.3

.

72 CHAPTER 2. LINEAR SYSTEMS

�3. Calculate P 512 and P 513 for each of the matrices in problem 2.

�4. Write a computer program to simulate each of the above Markov chains,
starting in state 1, through 1000 steps. Count the number of times each state
is entered. Divide by 1000 to approximate the average fraction of time the
chain spends in each state. Repeat this several times. Better yet, repeat for
10,000 steps.

�5. For each matrix P in problem 2, find the eigenvector(s) of PT corresponding
to the eigenvalue λ = 1.

Please multiply each vector you find by a scalar so that the eigenvector’s
entries sum to 1.

Compare your results with what you found in problems 3 and 4. Comment.

�6. Based on what you have learned from problems 2 through 5, give a qualitative
description of the behavior of each of the above Markov chains.

�7. Let P be the transition matrix for a Markov chain. Show that 1 is an eigen-
value for P .

�8. (Previous problem continued.) Suppose that for all other eigenvalues λ of P
we have |λ| < 1. Explain why the state vector p(m) settles down to a fixed
vector p∗, i.e., why p(m)→ p∗ as m→∞.

(Make any reasonable assumptions you wish to simplify this problem. For
example, you may assume P diagonalizes.)

Chapter 3

Nonlinear Systems 1: Fixed
Points

The general forms for dynamical systems are

x′ = f(x) continuous time, and
x(k + 1) = f(x(k)) discrete time.

We have closely examined the case when f is linear. In that case, we can answer
nearly any question we might consider. We can work out exact formulas for the
behavior of x(t) (or x(k)) and deduce from them the long-term behavior of the
system. There are two main behaviors: (1) the system gravitates toward a fixed
point, or (2) the system blows up. There are some marginal behaviors as well.

Now we begin our study of more general systems in which f can be virtually
any function. However, we do make the following assumption:

Throughout this chapter, we assume f is differentiable with continuous
derivative.

Will this broad generality make our work more complicated? Yes and no: Nonlinear systems are more
complicated; we seek
qualitative descriptions in
place of exact formulas.

Yes: Nonlinear functions can present insurmountable problems. Typically, it is
impossible to find exact formulas for x. Further, the range of behaviors
available to nonlinear systems is much greater than that for linear systems
(but that’s why nonlinear systems are more interesting).

No: Because it can be terribly difficult to find exact solutions to nonlinear systems,
we have a valid excuse for not even trying! Instead, we settle for a more
modest goal: determine the long-term behavior of the system. This is often
feasible even when finding an exact solution is not.

In this chapter we focus on the notion of a fixed point (sometimes called an
equilibrium point) of a dynamical system. We discuss how to find fixed points and
then to determine if they are stable or unstable. Often, understanding the fixed
points of a dynamical system can tell us much about the global behavior of the
system.

Our study of nonlinear systems continues in Chapter 4, where we examine other
behaviors nonlinear systems exhibit.

3.1 Fixed points

3.1.1 What is a fixed point?

The vector x is the state of the dynamical system, and the function f tells us how A state vector that doesn’t
change.

73

74 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

the system moves. In special circumstances, however, the system does not move.
The system can be stuck (we’ll say fixed) in a special state; we call these states fixed
points of the dynamical system.

For example, consider the nonlinear discrete time system

x(k + 1) = [x(k)]2 − 6.

Suppose the system is in the state x(k) = 3; where will it be in the next instant?
This is easy to compute:

x(k + 1) = x(k)2 − 6 = 32 − 6 = 3.

Aha! The system is again at state x = 3. Where will it be in the next time
period? Of course, still in state 3. The value x̃ = 3 is a fixed point of the system
x(k + 1) = x(k)2 − 6, since if we are ever in state 3 we remain there for all time.
(This system has another fixed point; try to find it.)

Let’s consider a continuous time example:

x′ = x3 − 8.

What happens if x(t) = 2? We compute that dx/dt equals x3 − 8 = 23 − 8 = 0.
Thus x(t) is neither increasing nor decreasing; in other words, it’s stuck at 2. Thus
x̃ = 2 is a fixed point of this system. (This system has no other fixed points; try to
figure out why.)

Thus a fixed point of a dynamical system is a state vector x̃ with the property
that if the system is ever in the state x̃, it will remain in that state for all time.

3.1.2 Finding fixed points

In the preceding examples, the fixed points were handed to us on a silver platter.
You may be wondering, Given a dynamical system, how do I find its fixed points?
In principle this is easy; in practice, however, it can present some challenges.

If the system is discrete, x(k+1) = f(x(k)), we want a value x̃ so that x̃ = f(x̃).Solve f(x) = x to find fixed
points of discrete time
systems.

In other words, we need to solve the equation x = f(x).
For example, suppose the system is[

x1(k + 1)
x2(k + 1)

]
=
[

x1(k)2 + x2(k)
x1(k) + x2(k)− 2

]
.

We may write this as x(k + 1) = f(x(k)), where f

[
u
v

]
=
[

u2 + v
u + v − 2

]
. To find

a point x̃ with the property that x̃ = f(x̃), we solve

u = u2 + v,

v = u + v − 2.

Notice that v drops out of the second equation and we find that u = 2. Substituting
u = 2 into the first equation, we have 2 = 22 + v, so v = −2. Thus we have

f

[
2
−2

]
=
[

22 + (−2)
2 + (−2)− 2

]
=
[

2
−2

]
,

and therefore
[

2
−2

]
is a fixed point (indeed the only one) of the system.

Next let us consider continuous time systems (x′ = f(x)). We want a stateSolve f(x) = 0 to find fixed
points of continuous time
systems.

vector x̃ with the property that if the system is in state x̃, it stays put. In other
words, it doesn’t change with time. Since x does not change as time marches on,

3.1. FIXED POINTS 75

Finding fixed points
Time System To find x̃
Continuous x′ = f(x) solve f(x) = 0
Discrete x(k + 1) = f(x(k)) solve f(x) = x

Table 3.1: How to find fixed points x̃ of continuous and discrete time dynamical
systems.

its derivative, x′, must be 0 at this state. Thus to find a fixed point of x′ = f(x),
we solve the equation f(x) = 0 for x. For example, suppose the system is[

x′1
x′2

]
=
[

x2
1 + x2

2 − 25
x1 + x2 + 1

]
.

Thus f

[
u
v

]
=
[

u2 + v2 − 25
u + v + 1

]
. To find the fixed points of this system, we solve

f(x) = 0, i.e., we solve the system of equations

u2 + v2 − 25 = 0,

u + v + 1 = 0.

We can solve for u in the second equation (u = −1−v) and substitute this expression
into the first equation:

(−1− v)2 + v2 − 25 = 0 ⇒ 2v2 + 2v − 24 = 0.

This quadratic equation has two roots: v = 3 and v = −4, which yield (since
u = −1 − v) u = −4 and u = 3 respectively. Thus the fixed points of this system

are
[
−4

3

]
and

[
3
−4

]
.

Finding fixed points of dynamical systems does not require us to find exact Finding fixed points reduces
to solving equations.formulas for x(k) [or x(t)]. All we have to do is solve some equations. Of course,

solving systems of equations can be difficult, but it is at least comforting to know
that this is the only issue involved. The equations we solve depend on f and
whether the system is in discrete or continuous time. The methods at hand to find
fixed points are recounted in Table 3.1.

3.1.3 Stability

Not all fixed points are the same. We call some stable and others unstable. We
begin by illustrating these concepts with an example.

Let f(x) = x2 and consider the discrete time dynamical system

x(k + 1) = f(x(k)) = [x(k)]2.

In other words, we are interested in seeing what happens when we iterate the square
function.

The system has two fixed points: 0 and 1 (these are the solutions to f(x) = x,
i.e., x2 = x). If you enter either 0 or 1 into your calculator and start pressing the
x2 button, you will notice something very boring: nothing happens. Both 0 and

1 are fixed points, and the x2 function just leaves them alone.
Now, let’s put other numbers into our calculator and see what happens. First,

let us start with a number which is close to (but not equal) 0, say 0.1. If we iterate
x2, we see

0.1 7→ 0.01 7→ 0.0001 7→ 0.0000001 7→ · · · .

76 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

Clearly x(k)→ 0 as k →∞. It’s not hard to see why this works. If we begin with
any number x0, our iterations go

x0 7→ x2
0 7→ x4

0 7→ x8
0 7→ · · · 7→ x2k

0 7→ · · · .

Thus if x0 is near 0, then, clearly, x(k) → 0 as k → ∞. (How near zero must we
be? All we need is |x0| < 1.) We say that x0 is a stable or an attractive fixed point
of the system x(k + 1) = f(x(k)) because if we start the system near x0, then the
system gravitates toward x0.

Now let’s examine the other fixed point, 1. What happens if we put a number
near (but not equal to) 1 in our calculator and start iterating the x2 function. If
x0 = 1.1, we see

1.1 7→ 1.21 7→ 1.4641 7→ 2.1436 7→ 4.5950 7→ 21.1138 7→ 445.7916 7→ · · · .

Clearly, x(k)→∞. If we take x0 = 0.9, we see

0.9 7→ 0.81 7→ 0.6561 7→ 0.4305 7→ 0.1853 7→ 0.0343 7→ 0.0012 7→ · · · .

Clearly x(k) → 0. In any case, starting points near (but not equal to) 1 tend to
iterate away from 1. We call 1 an unstable fixed point of the system.

Let us now describe three types of fixed points a system may possess.
First, a fixed point x̃ is called stable provided the following is true: For allStable fixed point.

starting values x0 near x̃, the system not only stays near x̃ but also x(t) → x̃ as
t→∞ [or x(k)→ x̃ as k →∞ in discrete time].1

Second, a fixed point x̃ is called marginally stable or neutral provided the fol-Marginally stable (or
neutral) fixed point. lowing: For all starting values x0 near x̃, the system stays near x̃ but does not

converge to x̃.
Third, a fixed point x̃ is called unstable if it is neither stable nor marginallyUnstable fixed point.

stable. In other words, there are starting values x0 very near x̃ so that the system
moves far away from x̃.

Figure 3.1 illustrates each of these possibilities. The fixed point on the left of
the figure is stable; all trajectories which begin near x̃ remain near, and converge
to, x̃. The fixed point in the center of the figure is marginally stable (neutral).
Trajectories which begin near x̃ stay nearby but never converge to x̃. Finally, the
fixed point on the right of the figure is unstable. There are trajectories which start
near x̃ and move far away from x̃.

Let’s look at a few explicit examples to reinforce these ideas. We consider four
examples, all of the form x′ = Ax where A is a simple 2× 2 matrix. In every case,
the fixed point of x′ = Ax is the origin, x̃ = 0.

1. A =
[
−2 0
0 −1

]
. We observe thatA system with a stable fixed

point. [
x1(t)
x2(t)

]
=
[

e−2t 0
0 e−t

]
x0,

and since e−2t and e−t both tend to 0 as t → ∞, we see that 0 is a stable
fixed point. If we start this system at any vector x0 near 0, the system will
converge to 0. [Indeed, we do not need to start near x0 to converge to 0; no
matter where we start the system, it converges to x0. We call such a fixed
point globally stable.

1 What does near mean? This footnote explains the definition of stability more precisely.
The first part of the definition says “for all starting values x0 near x̃, the system stays near x̃.”

The precise meaning is the following. For every positive number ε, one can find a positive number
δ with the following property: If x0 is within distance δ of x̃, then x(t) is within distance ε of x̃
for all t ≥ 0.

The definition also requires “for all starting values x0 near x̃ we have x(t) → x̃ as t → ∞.”
This means there is a positive number δ so that for any x0 within distance δ of x̃ the following is
true: For every ε > 0 there is a T > 0 so that if t ≥ T , then x(t) is within distance ε of x̃.

3.1. FIXED POINTS 77

Figure 3.1: Fixed points with three different types of stability. The fixed point on
the left is stable. The fixed point in the center is marginally stable. The fixed point
on the right is unstable.

2. A =
[

2 0
0 1

]
. We observe that A system with an unstable

fixed point.[
x1(t)
x2(t)

]
=
[

e2t 0
0 et

]
x0,

and since e2t and et both tend to infinity as t → ∞, we see that 0 is an
unstable fixed point. No matter how close to 0 we begin, the system moves
away from 0.

3. A =
[

2 0
0 −1

]
. We observe that Another system with an

unstable fixed point.[
x1(t)
x2(t)

]
=
[

e2t 0
0 e−t

]
x0.

We claim that 0 is, again, an unstable fixed point of the system; let’s see why.

First, consider two starting positions: x0 =
[

a
0

]
, and x0 =

[
0
a

]
where a

is some number (not 0). For the first position, observe that as t→∞ we have
|x(t)| → ∞. For the second, we have x(t)→ 0 as t→∞. Thus some points
gravitate toward 0 while others get blown away. This fixed point is unstable
because there are trajectories which begin very close to 0 and which go far
away. Even though for some starting points near 0 the system converges to
0, we still call this fixed point unstable.

4. A =
[

0 1
−1 0

]
. We check that A system with a marginally

stable fixed point.

eAt =
[

cos t sin t
− sin t cos t

]
.

Is the fixed point 0 stable or unstable? The answer is, neither. To see that
it is not stable, consider any point x0 near (but not equal to) 0. As t → ∞
the system never approaches 0. Further, 0 is not unstable. To be unstable,
points near 0 must be sent “far” away from 0. Clearly, if we start at certain
distance from 0 the system does not get any farther away.

Thus 0 for this system is marginally stable.

78 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

Summary

Stable fixed points give excellent information about the fate of a dynamical system.
We know how to find fixed points: In discrete time we solve x = f(x), and in
continuous time we solve f(x) = 0. The question remains, Once we have found
our fixed points, how can we tell whether they are stable or unstable? The next
sections will give us some tools for making this determination. The most important
tool (see §3.2) is linearization: We approximate our system near its fixed points
by linear functions. This method doesn’t always work, in which case (see §3.3) we
resort to our emergency backup method: Lyapunov functions.

Problems for §3.1

�1. Find all fixed points of the following discrete time systems x(k+1) = f(x(k)).

(a) f(x) = x2 − 2.

(b) f(x) = sin x.

(c) f(x) = 1/x.

(d) f(x) = 3
√

x2.

(e) f

[
x
y

]
=
[

x2 + y2

x + y − 1

]
.

�2. Do numerical experiments near each of the fixed points you found in the
previous problem to determine their stability.

�3. Find all fixed points of the following continuous time systems x′ = f(x).

(a) f(x) = x2 − x− 1.

(b) f(x) = sin x.

(c) f(x) = ex − 1.

(d) f(x) = log(x2).

(e) f(x) = x/(1− x).

(f) f

[
x
y

]
=
[

x− y2

x + y − 2

]
.

�4. Show that [sA/(d + ρ)]2 is a fixed point of the dynamical system from the
economic growth model (see §1.2.5, especially equation (1.22) on page 14).

�5. Explain why it is impossible for a linear system (either discrete or continuous)
to have exactly two fixed points.

�6. Use graphical analysis to show that iterating cos x from any starting value x0

always leads to the same answer: the unique fixed point of x(k+1) = cos x(k).

�7. Consider the function f(θ) = 3θ where θ is an angle. Thus θ may take values
only in the range [0, 2π). For example, f(5π/4) = 7π/4 (since 15π/4 = 7π/4
for angles).

Find all the fixed points of the system θ(k + 1) = f(θ(k)).

Generalize this problem by letting f(θ) = tθ, where t is a positive integer.

�8. Exact solutions for one-dimensional continuous time systems. There is aSeparation of variables.

technique (called separation of variables) which often can yield exact formulas
for one-dimensional continuous time systems. This is how it works.

You are given the system dx/dt = f(x).

• Step 1: Rewrite this as f(x) dx = dt.

3.2. LINEARIZATION 79

• Step 2: Integrate both sides:
∫

f(x) dx =
∫

dt which yields F (x) = t+C.

• Step 3: Substitute t = 0 and x = x0 to find C.

• Step 4: Solve for x in terms of t.

For example, suppose the system is x′ = x2 with x(0) = 1. The first step is
to write the system as dx/x2 = dt. The second step is to integrate both sides:∫

dx

x2
=
∫

dt =⇒ −1
x

= t + C.

Step 3: Substitute t = 0 and x = x0 = 1 to yield −1 = 0 + C, so C = −1.
Finally (step 4): Solve for x to yield x(t) = 1/(1− t).

Use this method to find exact formulas for x(t) for each of the following
systems.

(a) x′ = −3x, x(0) = 2.

(b) x′ = 2/x, x(0) = 1.

(c) x′ = x + 1, x(0) = 1.

(d) x′ = x + 1, x(0) = −1.

(e) x′ = x2 + 1, x(0) = 0.

(f) x′ =
√

x, x(0) = 1.

3.2 Linearization

The purpose of this section is to provide a method to tell whether a fixed point x̃
of a dynamical system [either discrete x(k + 1) = f(x(k)) or continuous x′ = f(x)]
is stable or unstable. If the function f is linear, i.e., of the form f(x) = Ax + b,
the answer is relatively easy: We check the eigenvalues of A (either their absolute
values or their real parts, depending on the nature of time). The idea we present
here is to approximate f near its fixed point x̃ by a linear function.

To help us to build our intuition, we begin with one-dimensional systems (f
is a function of just one variable). We then generalize to the higher dimensional
setting.

3.2.1 One dimension

Derivatives: why and how?

We use the derivative of f to approximate f . Two questions arise, Why the deriva- How to approximate a
nonlinear function with a
linear function.

tive? And what about the derivative?
We want to approximate f near a point x̃ (a fixed point of our system, but for

the moment, that’s irrelevant). In other words, if x is near x̃, we want

f(x) ≈ a(x− x̃) + f(x̃), (3.1)

where a is a constant.2 The right-hand side of equation (3.1) is the equation
of a straight line through the point (x̃, f(x̃)) (to see why, substitute x̃ for x in
equation (3.1)). Another way to write equation (3.1) is

f(x) = a(x− x̃) + f(x̃) + error(x− x̃), (3.2)

2We often write linear functions in the form y = mx + b, where m is the slope and b is the
y-intercept. The right-hand side of equation (3.1) is a variant of this. We wrote a(x− x̃) + f(x̃),
which can be rewritten ax + b, where b = −ax̃ + f(x̃) is a constant. The advantage to the form
a(x− x̃) + f(x̃) is that we can easily see that when x = x̃, the result is f(x̃).

80 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

-2 -1 1 2

-1

1

2

3

y
=

2
x
–
2

y
=
–
2
x
–
2

y=x2–1

Figure 3.2: The graph of f(x) = x2 − 1. The system x′ = f(x) has a stable fixed
point at −1 and an unstable fixed point at +1.

where error(x− x̃) measures how far off our answer is. What is the best number a
to use in equation (3.2)? Certainly we want error(x − x̃) → 0 as x → x̃, but this
will happen no matter what value for a we choose! We can ask for much more: We
want error(x − x̃) to be very much smaller than the difference between x and x̃,
i.e., we want

error(x− x̃)
x− x̃

→ 0 as x→ x̃.

Can we really get such a wonderful approximation? Yes—here’s how: We divide
both sides of equation (3.2) by x− x̃ to get

f(x)− f(x̃)
x− x̃

− a =
error(x− x̃)

x− x̃
. (3.3)

Notice that if we choose a = f ′(x̃), then automatically we will have

error(x− x̃)
x− x̃

→ 0 as x→ x̃.

Thus taking a = f ′(x̃) gives us the very best approximation of f near x̃ by a linear
function.

In conclusion, the best linear approximation to f(x) for x near x̃ is given by

f(x) ≈ f ′(x̃)(x− x̃) + f(x̃).

How does this approximation enable us to determine the stability of fixed points?
The answer depends on whether our system is continuous or discrete.

Continuous time

Let x′ = f(x) = x2− 1. The fixed points of this continuous time system are ±1. AA continuous time system
with two fixed points: the
solutions to f(x) = 0.

graph of f is shown in Figure 3.2. What is the nature of each of these fixed points?
Suppose the system begins at a value x0 just greater than 1. Since f(x0) > 0,
we see that x(t) is increasing; indeed, it will continue to increase forever, moving
farther and farther away from 1. On the other side, if x0 is slightly less than 1,

3.2. LINEARIZATION 81

then f(x0) < 0, and so x(t) is decreasing, moving farther away from 1 (but in the
opposite direction). Thus 1 is an unstable fixed point.

Next let us consider the fixed point −1. If x0 is slightly greater than −1, we
see that f(x0) < 0, and therefore x(t) is decreasing down toward −1. On the other
side, if x0 is slightly less than −1, then f(x0) > 0, and thus x(t) is increasing up
toward −1. Thus we see that −1 is a stable fixed point.

What about the derivative? Since f(x) = x2 − 1, we know that f ′(x) = 2x.
Near x̃ = 1 (the unstable fixed point) we have f(x) ≈ 2x−2 (see Figure 3.2). Thus
f is very well approximated by a line of slope +2, and near x̃ we know that f(x)
and 2x− 2 are nearly the same. Were f a linear function (2x− 2), then since 2 > 0
we know that x̃ = 1 is an unstable fixed point and the system would explode away
from 1.

Near x̃ = −1 (the stable fixed point) we have f(x) ≈ −2x − 2 (see the figure).
Now f is approximated by a line with slope −2. Since −2 < 0, the linear system
(as well as the true system it approximates) gravitates toward x̃ = −1.

More generally, let x̃ be a fixed point of the continuous time system x′ = f(x).
Since x̃ is a fixed point, we know that f(x̃) = 0.

Suppose first that f ′(x̃) > 0. Since f ′ is continuous, f ′(x) > 0 for all values Why f ′(x̃) > 0 implies x̃ is
unstable.of x near x̃. Thus, near x̃, we know that f is a strictly increasing function. Since

f(x̃) = 0, we know that for x near (but less than) x̃ we have f(x) < 0, while for
x slightly larger than x̃ we have f(x) > 0. This means that for x just below x̃ we
have x′ = f(x) < 0, so the system is decreasing away from x̃. Likewise, for x just
above x̃ we have x′ = f(x) > 0, so the system is increasing away from x̃. Thus x̃ is
an unstable fixed point.

Suppose now that f ′(x̃) < 0. Since f ′ is continuous, we know that f ′(x) < 0 for Why f ′(x̃) < 0 implies x̃ is
stable.all x near x̃. This means that near x̃, f is a strictly decreasing function. Thus, for x

just below x̃ we have x′ = f(x) > 0, and for x just above x̃ we have x′ = f(x) < 0.
This implies that for x near x̃ the system tends to x̃. In other words, x̃ is a stable
fixed point.

Discrete time

Let f(x) = 1
4

(
4 + x− x2

)
and, let’s consider the system x(k + 1) = f(x(k)); in A discrete time system with

two fixed points: the
solutions to f(x) = x.

other words, we want to know what happens as we iterate f .
First, we locate the fixed points of f by solving f(x) = x, i.e., we solve

4 + x− x2

4
= x ⇒ x2 + 3x− 4 = 0.

The roots of the latter equation are −4 and 1. Figure 3.3 shows a plot of the curve
y = f(x) and the line y = x. The intersection of the line and the curve gives the
roots of the equation x = f(x), i.e., at −4 and 1. Now we want to know how the
system behaves near these fixed points. Let’s zoom in on each.

Figure 3.4 shows a close-up of the graph y = f(x) near the fixed point −4. I
hope your reaction is, The curve y = f(x) looks like a straight line! Good! That’s
the reason we treat it like a straight line (at least locally).

Returning to the graph, we consider a value x0 just less than x̃ = −4. We see
that as we iterate f , we move farther and farther to the left, away from −4. We
also consider an initial value just greater than −4. As we iterate f , the values of
x(k) get larger and larger, again, moving away from −4. Clearly, −4 is an unstable
fixed point.

Another way to see this is to consider the derivative of f at −4. Now, f ′(x) =
(1−2x)/4, and at−4 we have f ′(−4) = 9

4 . Thus near x̃ = −4 we have f(x) ≈ 9
4x+5.

Since the slope of this line (9
4) is greater than 1, we know we are in an unstable

situation.
Now let’s consider the other fixed point, 1. Figure 3.5 shows a close-up of the

graph y = f(x) near the fixed point 1. The figure shows what happens as we iterate

82 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

-4 -2 2

-4

-2

2

Figure 3.3: A graph of the function y = f(x) = 1
4 (4 + x − x2) and the line y = x.

The points of intersection (x = −4 and x = 1) give the fixed points of the system
x(k + 1) = f(x(k)).

-5 -4.5 -4 -3.5 -3

-6

-5

-4

-3

-2

y=
f(

x)

y=
x

Figure 3.4: The graph of the function y = f(x) = 1
4 (4+x−x2) near the fixed point

−4.

3.2. LINEARIZATION 83

0.8 0.9 1 1.1 1.2

0.8

0.9

1

1.1

1.2

y=f(x)

y=
x

Figure 3.5: The graph of the function y = f(x) = 1
4 (4+x−x2) near the fixed point

1.

f starting at values near 0.8 and 1.2. In both cases, the iterates move closer and
closer to the fixed point, x̃ = 1. Clearly, this fixed point is stable.

Let’s examine this situation analytically. Since f ′(x) = (1 − 2x)/4, we have
f ′(1) = − 1

4 . So, near x̃ = 1 we have f(x) ≈ − 1
4x + 5

4 . Thus, very near to x̃, f
behaves just like a linear function with slope − 1

4 . Since | − 1
4 | < 1, we know that

x̃ = 1 is a stable fixed point.

We can use the mean value theorem (see §A.3.1 on page 254) to understand
why |f ′(x̃)| < 1 implies stability and why |f ′(x̃)| > 1 implies instability.

Let x̃ be a fixed point of a discrete time system x(k + 1) = f(x(k)). Thus
f(x̃) = x̃.

First we consider the case |f ′(x̃)| < 1. Since f ′ is continuous, we know that Why |f ′(x̃)| < 1 implies
stability.|f ′(x)| < 1 for all numbers x near x̃. More precisely, for any x in the interval

[x̃ − a, x̃ + a] we have |f(x)| ≤ b, where a and b are positive numbers and b < 1.
We work to show that for any x ∈ [x̃− a, x̃ + a] we have fk(x)→ x̃ as k →∞.

Let x ∈ [x̃− a, x̃ + a] (but x 6= x̃). We want to compare the distance between x
and x̃ with the distance between f(x) and x̃; let us estimate

|f(x)− x̃|
|x− x̃|

. (3.4)

We know that x̃ = f(x̃) (because x̃ is a fixed point). We can rewrite the fraction
in equation (3.4) by substituting f(x̃) for x̃

|f(x)− x̃|
|x− x̃|

=
∣∣∣∣f(x)− f(x̃)

x− x̃

∣∣∣∣ . (3.5)

We can now apply the mean value theorem to the fraction on the right side of
equation (3.5): There must be a number c between x and x̃ for which

f ′(c) =
f(x)− f(x̃)

x− x̃
. (3.6)

84 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

Since x ∈ [x̃ − a, x̃ + a] and c is between x and x̃, we know that c ∈ [x̃ − a, x̃ + a]
and therefore |f ′(c)| ≤ b < 1. Thus equation (3.6) becomes∣∣∣∣f(x)− f(x̃)

x− x̃

∣∣∣∣ ≤ b, (3.7)

which can also be written as

|f(x)− x̃| = |f(x)− f(x̃)| ≤ b|x− x̃|. (3.8)

Let us examine equation (3.8) closely. It says: The distance between f(x) and
x̃ is at most b times as great as the distance between x and x̃. In other words,
in moving from x to f(x) we have shrunk the distance to x̃ by a factor of b (or
better). Thus f(x) is closer to x̃ than x is. Further, consider f2(x) = f [f(x)].
Since f(x) ∈ [x̃− a, x̃ + a], we have (using equation (3.8) twice)

|f2(x)− x̃| ≤ b|f(x)− x̃| ≤ b2|x− x̃|.

Using equation (3.8) repeatedly, we have

|fk(x)− x̃| ≤ bk|x− x̃|.

Since 0 < b < 1, we know that bk → 0 and therefore the distance between fk(x)
and x̃ shrinks to 0 as k → ∞. Thus we have shown that fk(x) → x̃, proving that
x̃ is stable.

The case when |f ′(x̃)| > 1 is quite similar. Since f ′ is continuous, we knowWhy |f ′(x̃)| > 1 implies
instability. that for any x in the interval [x̃ − a, x̃ + a] we have |f ′(x)| ≥ b where a and b are

constants and b > 1. Working as we did before (see equations (3.4) through (3.8)),
we arrive at

|f(x)− x̃| ≥ b|x− x̃|,

from which it follows that

|fk(x)− x̃| ≥ bk|x− x̃|.

Since b > 1, we know that bk gets larger and larger as k grows. Thus for any
x (except x = x̃) within distance a of x̃, after several iterations we will have
fk(x) 6∈ [x̃− a, x̃ + a]; therefore, x̃ is unstable.

What we have learned

We considered two examples—one discrete and the other continuous—of nonlinearSummarizing the
linearization technique for
one-dimensional systems.

dynamical systems. We found the fixed points and then observed that we may
approximate the systems near their fixed points by straight lines. We then brought
what we learned from Chapter 2 to bear on analyzing these fixed points. Here are
our conclusions:

Continuous time. Let x̃ be a fixed point of the continuous time dynamical
system x′ = f(x). If f ′(x̃) < 0, then x̃ is a stable fixed point. If f ′(x̃) > 0, then x̃
is an unstable fixed point.

Discrete time. Let x̃ be a fixed point of the discrete time dynamical system
x(k + 1) = f(x(k)). If |f ′(x̃)| < 1, then x̃ is a stable fixed point. If |f ′(x̃)| > 1,
then x̃ is an unstable fixed point.

Wait a minute! The preceding cases do not cover all the possibilities. We might
have f ′(x̃) = 0 (in continuous time) or |f ′(x̃)| = 1 (in discrete time). What then?
The answer is, I don’t know—better yet, we can’t know from the information we
are given. The fixed point may or may not be stable. Exercises 6 and 7 (page 93)
lead you through some examples of these borderline cases; see also problem 8.

Table 3.2 summarizes what we have learned about the stability of fixed points
of one-dimensional dynamical systems.

3.2. LINEARIZATION 85

Classification of fixed points: one dimension
Time Derivative at x̃ Fixed point is

f ′(x̃) < 0 stable
Continuous f ′(x̃) > 0 unstable

f ′(x̃) = 0 test fails
|f ′(x̃)| < 1 stable

Discrete |f ′(x̃)| > 1 unstable
|f ′(x̃)| = 1 test fails

Table 3.2: Linearization test for one-dimensional nonlinear systems.

3.2.2 Two and more dimensions

Derivatives again

We are ready to examine higher dimensional nonlinear systems. Again, we wish
Approximating a nonlinear
function of several variables
by a linear function.to approximate our function f by a linear function in the neighborhood of a fixed

point x̃. Since f is a function from Rn to Rn, the approximation we seek is of the
form

f(x) ≈ A(x− x̃) + f(x̃),

where A is an n× n matrix which gives the best approximation.3 In particular, if
we write

f(x) = A(x− x̃) + f(x̃) + error(x− x̃),

then we want
|error(x− x̃)|
|x− x̃|

→ 0

as x→ x̃. The matrix A which does this job is the Jacobian matrix of f , which we The Jacobian matrix of f is
the matrix of its partial
derivatives.

denote by Df .
Let’s review the Jacobian matrix. Recall that f is a vector-valued function of

several values. Thus we can write

f(x) = f

x1

x2

...
xn

 =

f1(x)
f2(x)

...
fn(x)

 ,

where each fj is a scalar-valued function of n variables. For example, if

f(x) = f

[
x1

x2

]
=
[

ex1 cos x2

x1 − x2

]
then f1(x) = ex1 cos x2, and f2(x) = x1−x2. The Jacobian, Df , of f is the matrix
of partial derivatives of the fj ’s:

Df =

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn

 .

3As in the one-dimensional case, we seek a linear (affine) function of the form Ax + b. Note
that A(x− x̃) + f(x̃) can be rewritten as Ax + b, with b = −Ax̃ + f(x̃).

86 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

-2 -1 0 1 2
-2

-1

0

1

2

Figure 3.6: An overview of the behavior of the function f from equation (3.9).

For the preceding example,

∂f1
∂x1

= ex1 cos x2
∂f1
∂x2

= −ex1 sinx2

∂f2
∂x1

= 1 ∂f2
∂x2

= −1

hence

Df =
[

ex1 cos x2 −ex1 sinx2

1 −1

]
.

Continuous time

Let’s consider a specific example, the continuous time system

x′1 = x2
1 + x2

2 − 1,

x′2 = x1 − x2.

In our usual notation, x′ = f(x), where

f

[
x1

x2

]
=
[

x2
1 + x2

2 − 1
x1 − x2

]
. (3.9)

To find the fixed points of the system, we solve f(x) = 0, i.e., we solve

x2
1 + x2

2 − 1 = 0,

x1 − x2 = 0.

We find two fixed points:
[

1/
√

2
1/
√

2

]
and

[
−1/
√

2
−1/
√

2

]
.

Now we ask, Which (if either) is stable? . . . is unstable?
Let’s look at a picture of f to attempt to understand how it behaves. Figure 3.6

shows such an overview of the function f . At each point x of the plane (R2) we
draw an arrow in the direction of f(x).

3.2. LINEARIZATION 87

0.6 0.65 0.7 0.75 0.8
0.6

0.65

0.7

0.75

0.8

Figure 3.7: The behavior of f , from equation (3.9), near one of its fixed points.

In the vicinity of the first fixed point,
[

1/
√

2
1/
√

2

]
≈
[

0.7
0.7

]
(upper right), the

arrows appear to be moving away, and in the vicinity of the second fixed point,[
−1/
√

2
−1/
√

2

]
≈
[
−0.7
−0.7

]
(lower left), they appear to be swirling in. Let’s have a

closer look.

Figure 3.7 focuses on the region around
[

1/
√

2
1/
√

2

]
. Although some arrows are

pointing inward, it is clear that a typical starting value near this fixed point is swept
away from the fixed point. In this sense it is similar to the example of Figure 2.17
(page 57), in which there is a linear system with one positive and one negative
eigenvalue.

Next we consider Figure 3.8, which illustrates the vector field near the fixed point[
−1/
√

2
−1/
√

2

]
. Notice that the arrows are spiraling inward. This fixed point is stable.

The picture is similar to the vector field of a system with complex eigenvalues with
negative real parts; see Figure 2.19 (page 58).

The geometric pictures tell us the story of this system quite clearly. However,
they are time consuming to compute and do not help us for systems in many
variables. We can glean the same information more efficiently by approximating f
near its fixed points by a linear function.

To do this, we approximate f near each of its fixed points x̃ using the formula

f(x) ≈ Df(x̃)[x− x̃] + f(x̃) = Df(x̃)[x− x̃].

We need to compute the Jacobian of f :

∂f1/∂x1 = 2x1,

∂f1/∂x2 = 2x2,

∂f2/∂x1 = 1,

∂f2/∂x2 = −1,

88 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

-0.8 -0.75 -0.7 -0.65 -0.6
-0.8

-0.75

-0.7

-0.65

-0.6

Figure 3.8: The behavior of f , from equation (3.9), near another fixed point.

and therefore

Df =
[

2x1 2x2

1 −1

]
.

Near the first fixed point, x̃1 =
[

1/
√

2
1/
√

2

]
, we have Df(x̃1) =

[√
2
√

2
1 −1

]
.

The eigenvalues of this matrix are (approximately) 1.9016 and −1.4874. Aha! Near
x̃1 the system behaves just like a linear system with one positive and one negative
eigenvalue (just as we observed geometrically). This fixed point is unstable.

Let’s linearize near the second fixed point, x̃2 =
[
−1/
√

2
−1/
√

2

]
. Here the Jacobian

equals Df(x̃2) =
[
−
√

2 −
√

2
1 −1

]
. The eigenvalues of this matrix are (approxi-

mately) −1.2071± 1.1710i, complex eigenvalues with negative real parts. Thus we
confirm that x̃2 is a stable fixed point, and near x̃2 the system behaves like a linear
system with complex eigenvalues with negative real parts.

Summary for continuous time

Let’s review what we have learned: Let x̃ be a fixed point of a continuous timeIn a continuous time system,
the stability of a fixed point
x̃ can be judged by the signs
of the real parts of the
eigenvalues of the Jacobian
Df(x).

dynamical system x′ = f(x). If the eigenvalues of the Jacobian Df(x̃) all have
negative real part, then x̃ is a stable fixed point. If some eigenvalues of Df(x̃) have
positive real part, then x̃ is an unstable fixed point. Otherwise (all eigenvalues have
nonpositive real part and some have zero real part) we cannot judge the stability
of the fixed point.

Discrete time

Next we consider a discrete time nonlinear dynamical system x(k + 1) = f(x(k))
where

f(x) = f

[
x1

x2

]
=
[

(x1 + x2)/2
4 cos x1

]
. (3.10)

3.2. LINEARIZATION 89

-6 -4 -2 2

-5

-2.5

2.5

5

7.5

10

Figure 3.9: A plot of the function 4 cos x − x. The curve crosses the x-axis three
times, so the equation 4 cos x = x has three roots.

First, we need to find the fixed points of this system, i.e., to solve the equation
x = f(x). We need to solve

x1 = (x1 + x2)/2,

x2 = 4 cos x1.

Solving this pair of equations is not as bad as it might first seem. The first equation
rearranges to x1 = x2; then we just need to solve the equation 4 cos x2 = x2. There
is no simple solution we can give for this equation, so we proceed numerically. It is
helpful to plot a graph of 4 cos x−x and see where it crosses the x-axis. Figure 3.9
shows such a plot. Notice that the curve crosses the x-axis three times, at approxi-
mately 1.2, −2.1, and −3.6. Using numerical methods (such as Newton’s method),
we can pin down these values. More precisely, the fixed points of dynamical system
(3.10) are

x̃1 =
[

1.25235
1.25235

]
, x̃2 =

[
−2.1333
−2.1333

]
, and x̃3 =

[
−3.5953
−3.5953

]
.

Which of these fixed points are stable? To find out, we linearize.
The Jacobian matrix for f is

Df(x) =
[

1/2 1/2
−4 sinx1 0

]
.

We can now compute the eigenvalues (numerically) near each fixed point.

• At x̃1 =
[

1.25235
1.25235

]
we have Df(x̃1) =

[
0.5 0.5

−3.7989 0

]
, whose eigenval-

ues are 0.25 ± 1.35534i. The absolute value of these eigenvalues is 1.3782,
which is greater than 1. Hence x̃1 is unstable.

• At x̃2 =
[
−2.1333
−2.1333

]
we have Df(x̃2) =

[
0.5 0.5

3.3836 0

]
, whose eigenvalues

are 1.5745 and −1.0745. Both have absolute value greater than 1, hence x̃2

is unstable.

• Finally, we consider x̃3 =
[
−3.5953
−3.5953

]
. In this case we have Df(x̃2) =[

0.5 0.5
−1.7532 0

]
, whose eigenvalues are 0.25±0.902281i. The absolute value

of these eigenvalues is 0.936275, which is less than 1. Hence x̃3 is stable.

90 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3.10: Twenty iterations of the system in equation (3.10), starting near x̃1.

0 2 4 6 8 10 12 14 16 18 20
-4

-3

-2

-1

0

1

2

3

4

Figure 3.11: Twenty iterations of the system in equation (3.10), starting near x̃2.

Let’s see the results in action. We choose starting vectors x0 near each of the
three fixed points. Figures 3.10, 3.11, and 3.12 illustrate several iterations of the
system (3.10), starting at

[
1.25
1.25

]
,

[
−2.13
−2.13

]
, and

[
−4
−3.5

]
,

respectively.

In the graphs the solid line represents the successive values of x1, and the dotted
line the values of x2. Notice that in the first two figures the values are clearly moving
away from their fixed points. However in the third figure the iterations are moving
closer progressively to x̃3.

3.2. LINEARIZATION 91

0 5 10 15 20 25 30 35 40
-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

Figure 3.12: Forty iterations of the system in equation (3.10), starting near x̃3.

Classification of fixed points x̃ in several dimensions
Time Eigenvalues of Df(x̃) Fixed point is

all <λ < 0 stable
Continuous some <λ > 0 unstable

all <λ ≤ 0, some <λ = 0 test fails
all |λ| < 1 stable

Discrete some |λ| > 1 unstable
all |λ| ≤ 1, some |λ| = 1 test fails

Table 3.3: Linearization test for multidimensional nonlinear systems.

What we have learned

We can use linearization to understand the nature of fixed points of multidimen-
sional nonlinear systems. Near a fixed point x̃ we can approximate f(x) by the
linear function Df(x̃)[x− x̃] + f(x̃). We then inspect the eigenvalues of the Jaco-
bian matrix Df(x̃) and apply what we learned in Chapter 2 about linear systems.

Continuous time. Let x̃ be a fixed point of the system x′ = f(x), that is, The linearization tests for
continuous and discrete time
systems.

f(x̃) = 0. Compute the Jacobian evaluated at x̃, i.e., find Df(x̃). If the eigenvalues
of the Jacobian all have negative real part, then x̃ is a stable fixed point. If some
eigenvalue of the Jacobian has positive real part, then x̃ is an unstable fixed point.

Discrete time. Let x̃ be a fixed point of the system x(k + 1) = f(x(k)), that is,
f(x̃) = x. Compute the Jacobian evaluated at x̃, i.e., find Df(x̃). If the eigenvalues
of the Jacobian all have absolute value less than 1, then x̃ is a stable fixed point.
If some eigenvalue of the Jacobian has absolute value greater than 1, then x̃ is an
unstable fixed point.

These results are summarized in Table 3.3.

Problems for §3.2

�1. For each of the following discrete time systems x(k + 1) = f(x(k)), find all
fixed points and determine their stability.

(a) f(x) = cos x.

92 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

(b) f(x) = −x3 − 2.

(c) f(x) = x2 − x + 1
4 .

(d) f(x) = ex/2 − 1.

(e) f(x) = 3
2 sinx.

(f) f(x) = 3
2 cos x.

(g) f(x) = ecos x.

(h) f(x) = 1
2esin x.

(i) f(x) = ex.

�2. For each of the following continuous time systems x′ = f(x), find all fixed
points and determine their stability.

(a) f(x) = 1− ex.

(b) f(x) = ex − 1.

(c) f(x) = x2 + 3x− 2.

(d) f(x) = x3 − 3x2 + 2x.

(e) f(x) = x6 + 4.

(f) f(x) = 2x − 3x.

(g) f(x) = |x− 1| − 1.

(h) f(x) = x + 1/x− 4.

(i) f(x) = 1 + sinx.

�3. For each of the following discrete time systems x(k + 1) = f(x(k)), find all
fixed points and determine their stability.

(a) f

[
x
y

]
=
[

x + y2

x + 2y

]
.

(b) f

[
x
y

]
=
[

x + y − x2

2x + 3y

]
.

(c) f

[
x
y

]
=
[

x2 + y2 − 1
4

x/2 + y

]
.

(d) f

[
x
y

]
= 1

3

[
y2 − x− 3

x + y

]
.

(e) f

[
x
y

]
=
[

ey

x/5

]
. [Hint: There are two fixed points.]

�4. Show that the fixed point k̃ = [sA/(d + ρ)]2 is a stable fixed point of the
economic growth system of §1.2.5 (see equation (1.22) on page 14).

�5. For each of the following continuous time systems x′ = f(x), find all fixed
points and determine their stability.

(a) f

[
x
y

]
=
[

(y2 − x2 − x− 3)/2
(x + y + 1)/2

]
.

(b) f

[
x
y

]
=
[

x3 − y
x + y

]
.

(c) f

[
x
y

]
=
[

y2 − x
x2 − y

]
.

(d) f

[
x
y

]
=
[

sin y
x + y

]
.

3.3. LYAPUNOV FUNCTIONS 93

(e) f

[
x
y

]
=
[

3y − ex

2x− y

]
. [Hint: There are two fixed points.]

�6. In this problem we consider one-dimensional discrete time dynamical systems
x(k + 1) = f(x(k)) with a fixed point x̃ at which |f ′(x̃)| = 1. For each of the
following systems, discuss the stability of the fixed point x̃.

(a) f(x) = sin x, x̃ = 0.

(b) f(x) = x3 + x, x̃ = 0.

(c) f(x) = 1 + log x, x̃ = 1.

(d) f(x) = x2 + 1
4 , x̃ = 1

2 .

(e) f(x) = 3
4 − x2, x̃ = 1

2 .

(f) f(x) = 1/x, x̃ = 1.

(g) f(x) = 1/(2x− 2) + 1/(2x + 2), x̃ = 0.

�7. In this problem we consider one-dimensional continuous time dynamical sys-
tems x′ = f(x) with a fixed point x̃ at which f ′(x̃) = 0. For each of the
following systems, discuss the stability of the fixed point x̃ = 0.

(a) f(x) = x2.

(b) f(x) = −x2.

(c) f(x) = x3.

(d) f(x) = −x3.

�8.* Develop higher derivative tests—for both discrete and continuous time—for
stability when f ′(x̃) leads to inconclusive results. Your test should be able to
determine that 0 is an unstable fixed point of x′ = x3 but a stable fixed point
of x′ = −x3.

3.3 Lyapunov functions

3.3.1 Linearization can fail

Linearization is a great tool for determining the stability of fixed points of dynamical When linearization fails to
determine stability.systems. Unfortunately, there’s the nasty “Test fails” possibility. What can we do

then? Fortunately, we have an “emergency backup” test (which is more difficult to
apply and also isn’t guaranteed to work) on which we can call. Let’s begin with an
example.

Weird friction

In Chapter 1 (see §1.2.1 on page 6) we introduced the simple mass-and-spring
dynamical system; the system was not particularly realistic because we omitted the
effect of friction. We corrected that problem in Chapter 2 (see page 48), where we
considered the air resistance on the mass as exerting a force against the motion
of the block in an amount proportional to the block’s velocity. If the block were
moving through a more viscous medium, then a resistive force proportional to the
square of the velocity might be a more realistic model. Let’s do something even
more dramatic here. Imagine the block is moving through a bizarre medium which
exerts a force on the block proportional to the cube of its velocity.4 We can model

4There does not appear to be, in nature, a fluid which presents a resistive force precisely
proportional to the cube of the velocity. However, there are media, such as thixotropic or dilatant
fluids, which do present highly nonlinear resistance to motion. Examples include paints, printing
inks, and solutions of corn starch in water.

94 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 3.13: Phase diagram for the weird-friction example. The trajectory begins
at the far right and spirals inward. Is the system converging to the fixed point?

this situation by the following equations:

x′ = v,

v′ = −x− µv3,

where µ is some positive constant. In vector notation y′ = f(y), where y =
[

x
v

]
and f(y) = f

[
x
v

]
=
[

v
−x− µv3

]
. What is the fate of this system?

We readily check that the system has only one fixed point: ỹ =
[

0
0

]
. Is this

fixed point stable? The Jacobian matrix isThe linearization test does
not tell us the stability of
this fixed point. . .

Df =
[

0 1
−1 −3µv2

]
,

hence Df(ỹ) =
[

0 1
−1 0

]
. The eigenvalues of Df(ỹ) are ±i, which have real part

equal to 0. Hence the linearization test fails.
What can we do next? We can try numerical methods. Let us take µ = 0.25 and. . . and numerical evidence is

inconclusive.
begin in state y0 =

[
2
0

]
. Figure 3.13 shows the phase diagram for this situation.

Notice that the system’s trajectory is spiraling around the fixed point 0, but it is
not clear if it will eventually converge to 0 or will always remain at a comfortable
distance from 0 and never get nearer. In other words, the numerical evidence is
too weak to suggest 0’s stability or lack thereof.

Our linearization method and our numerical experiments have failed us. What
next? Let’s check our intuition. What should happen when a spring is vibrating in
a highly viscous medium? It should stop! Why? Because the friction is bleeding
off energy from the system.

3.3. LYAPUNOV FUNCTIONS 95

3.3.2 Energy

Our intuition says, if a system is losing energy then it must eventually grind to
a halt. Thus the fixed point 0 of the preceding “weird-friction” example should
be stable. Now, energy is a concept from the physical world, and mathematics
need not obey the laws of physics. Nonetheless, we can use the idea of energy as
motivation for a mathematical method.

What is energy? Energy is distance times force. If you lift an object which Energy as mechanical work.

weighs 1 newton through a distance of 1 meter, you have used 1 joule of energy.
Where is that energy now? The law of conservation of energy says it must be
somewhere. The answer is, it is in the potential energy of the object being held up
at a given height. If we release that object, its potential energy is converted into
kinetic (motion) energy. Let’s work this out.

You may recall from basic physics that if we lift a mass m to a height h in the Potential energy in height.

presence of a gravitational field of strength g (so the weight of the object is mg),
then the potential energy in the mass is E = mgh. (We exerted mg units of force
through a distance h.)

Now let’s allow the mass to fall. It starts with zero velocity and accelerates Kinetic energy.

at a rate of g, i.e., after t seconds, its speed is v(t) = gt. Because velocity is the
rate of change of position, i.e., v = dx/dt, the distance the object has fallen after t
seconds is ∫ t

0

v(τ) dτ =
∫ t

0

gτ dτ =
1
2
gt2.

Let t be the time it takes the object to return to the position from which we
lifted it, i.e., h = 1

2gt2. Substituting this value of h back into E = mgh, we have
E = mg

(
1
2gt2

)
= 1

2m(gt)2. Finally, gt is the velocity at the time the mass reaches
its starting position, and we have the well-known formula E = 1

2mv2; this is the
amount of kinetic energy in an object traveling with velocity v.

The weird-friction example includes a spring. When the mass is in its neutral
position, the spring contains no energy; however, as the spring is compressed or
expanded it stores energy. The spring exerts a varying amount of force depending Potential energy stored in a

spring.on how far we compress (or expand) it. Our assumption is that the force the spring
exerts equals kx, where x is the distance the spring is compressed (or expanded),
and k is a constant (Hooke’s law). If we compress a spring through distance x,
how much energy have we stored in that spring? The answer is not very simple,
because the force changes with the distance. We handle this problem by adding up
the amount of energy we need to advance by a tiny distance (ds) when the spring
has been compressed a distance s: the force is ks and the distance is ds. We sum
over the entire range from 0 to x, i.e., we integrate

E =
∫ x

0

ks ds =
1
2
kx2.

Thus the energy stored in a spring with constant k and compressed [expanded] a
distance x is 1

2kx2.

We can now write down how much energy is in the weird-friction system when

it’s in a given state y =
[

x
v

]
. The energy is the sum of the potential energy in

the spring and the kinetic energy in the motion of the mass: E = 1
2kx2 + 1

2mv2. As
before, we simplify by taking k = m = 1, and therefore we can write E = (x2+v2)/2.

Now let’s justify our intuitive feeling that the system must be losing energy.
To this end, we compute dE/dt: the rate at which energy is changing over time.
Now, E is a function of two variables, x and v, each of which depends on time.
The formula for the derivative of such a function is (see §A.3.2, equation (A.6) on
page 255)

dE

dt
=

∂E

∂x

dx

dt
+

∂E

∂v

dv

dt
.

96 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

We compute each part of the right-hand side:

∂E/∂x = x since E = (x2 + v2)/2,
∂E/∂v = v since E = (x2 + v2)/2,
dx/dt = v from our weird system, and
dv/dt = −x− µv3 from our weird system.

Plugging these into the formula dE
dt = ∂E

∂x
dx
dt + ∂E

∂v
dv
dt , we have

dE

dt
= xv + v(−x− µv3) = −µv4.

Notice that dE/dt is always negative and therefore the system is always losingThe system is losing energy.

energy. Of course, when v = 0, we have dE/dt = 0. When does v = 0? There
are two cases. First, if we are at the fixed point 0, then the system is at rest (in
equilibrium) and no energy is being lost. Also, at the instant the spring is maximally
compressed or expanded and the block is changing directions, the system is again
not losing energy. But this latter case happens for only an instant and then the
system starts losing energy again. Thus as time progresses we can never revisit the
same state twice because the energy level depends on the state, and it is continually
losing energy.

Let us recap what we have learned:

1. We can define a function E on the states y of our system.

2. At the fixed point ỹ we have E(ỹ) = 0; everywhere else E(y) > 0.

3. We have dE/dt < 0 at almost all states, and at any state (other than ỹ)
where dE/dt = 0 the system immediately moves to a state where dE/dt < 0
again.

The fact that we called E “energy” is actually irrelevant.

3.3.3 Lyapunov’s method

By considering the loss of energy in the weird-friction example, we are able toAbstract energy.

determine that the fixed point 0 is stable: Starting the system near 0 will inevitably
lead the system back to 0.

If a dynamical system models a mechanical system, then consideration of energy
is appropriate. Further, we can use energy-like ideas to show the stability of fixed
points in nonphysical systems. The idea is to make up a function which behaves
like the energy. We call such functions Lyapunov functions.

Suppose we have a continuous time dynamical system with state vector x which
has a fixed point x̃. Let V be a function defined on the states of the space, i.e., to
each state x we assign a number V (x) (the “energy” of that state). Now suppose
V satisfies the following conditions:

• V is a differentiable function with V (x) > 0 for all x 6= x̃, and V (x̃) = 0.

• dV/dt ≤ 0 at all states x. Further, at any state x 6= x̃ where dV/dt = 0, the
system immediately moves to a state where dV/dt < 0.

If we can find such a function V (and this can be difficult), then it must be the
case that x̃ is a stable fixed point of the dynamical system. We know that x̃ is
stable because as time progresses “energy” (i.e., V) continually decreases until it
bottoms out at the fixed point.

3.3. LYAPUNOV FUNCTIONS 97

Let’s do an example. Consider the system

x′ = −x3.

This is a one-dimensional system with f(x) = −x3. The only fixed point is x̃ = 0.
Linearizing, we have f ′(x) = −3x2 and f ′(0) = 0, so the linearization test fails.
Thus we don’t know if 0 is a stable fixed point.5

Now we need to make up a Lyapunov function for this system. There are a
few standard tricks for doing this (see page 99), but for now we’ll just grab one
(seemingly by magic) out of thin air. Let V (x) = x2. Let’s see if it satisfies the
conditions we set forth above.

First, V (x) is a continuous function defined on the state space. Clearly, V (x) > 0
at all x, except that V (x̃) = V (0) = 0. Next we need to compute dV/dt. [Note that
although we write V (x) we see that V is also a function of t since x is a function
of t.] By the chain rule,

dV

dt
= V ′(x)

dx

dt
= 2x

dx

dt
,

where dx/dt is, by the definition of our system, equal to −x3. Thus

dV

dt
= −2x4.

Clearly, dV/dt < 0 at all states x (except 0) and therefore satisfies the conditions
to be a Lyapunov function. Therefore 0 is a stable fixed point of this system.

Let’s consider another example which is a bit more complicated; it also will help
us expand the usefulness of this method. The system is

x′1 = −x2,

x′2 = x1 + x3
2 − 3x2.

Expressed in other notation, the system is x′ = f(x), where

f

[
x1

x2

]
=
[

−x2

x1 + x3
2 − 3x2

]
. (3.11)

The fixed points of the system are the solutions to f(x) = 0. Please check that
0 is the only fixed point of this system. We could use linearization6 to verify the
stability of this fixed point, but we opt instead to use a Lyapunov function to
illustrate the method.

Does this system describe a mechanical situation? I don’t know. So I can’t
say what the “energy” of a state is. Instead, we make up a Lyapunov function. A
standard guess is V (x) = x2

1 + x2
2. Let’s see that this is (almost) fine:

First, V (x) > 0 at all states x, except that V (x̃) = V (0) = 0.
Second, we need to compute dV/dt:

dV

dt
=

∂V

∂x1

dx1

dt
+

∂V

∂x2

dx2

dt

= 2x1
dx1

dt
+ 2x2

dx2

dt

= 2x1(−x2) + 2x2(x1 + x3
2 − 3x2)

= −2x1x2 + 2x2x1 + 2x4
2 − 6x2

2

= 2x4
2 − 6x2

2

= 2x2
2

(
x2

2 − 3
)
.

5If you sketch a graph of y = f(x), you should be able to infer that 0 is a stable fixed point.
No matter—we use this example to illustrate the method.

6Yes, that would be easier. You should do it as an exercise.

98 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

-2 -1 0 1 2

-2

-1

0

1

2

Figure 3.14: An overview of the behavior of the system from equation (3.11).

Now we’d like to proclaim proudly that dV/dt < 0, but this isn’t the case. If
|x2| >

√
3, then we have dV/dt > 0. We can still use V to explain the stability of

x̃ = 0, but we have to be a bit more careful.
Notice that near the fixed point 0 we do have dV/dt < 0, since the only points

where this goes amiss have |x2| ≥
√

3. For example, within a circle of radius 1
about 0 we are guaranteed to have dV/dt < 0. Thus, if our system begins near 0,
then clearly it must tend toward 0. Thus 0 is a stable fixed point.

A graphical view might help. Consider Figure 3.14. Observe that arrows within
the horizontal strip −

√
3 < x2 <

√
3 tend to point in toward the origin, while those

outside the strip are pointing off toward infinity. This is in consonance with what
we see with our “energy” function V . Inside the strip energy is decreasing; outside,
it is increasing.

Now let’s zoom in on the origin and understand how the function V relates
to the vector field of the function f . Figure 3.15 shows the vector field of the
function f near the fixed point 0. Notice the concentric circles drawn. Recall that
V (x) = x2

1 + x2
2, so the level curves of V (places where V is constant) are circles

about the origin. At the origin, V is zero, and as we move outward we are at greater
and greater values of V . Now, notice how the arrows of the vector field relate to the
circles. Observe that the arrows all cross the circles in an inward direction. This
is a direct consequence of the fact that dV/dt is negative near 0: V must decrease
along any trajectory of the system.

This example shows that we need not have dV/dt negative everywhere; it is
enough that dV/dt is negative within a fixed radius of the fixed point we are con-
sidering.

We now summarize the method of Lyapunov functions. Let x̃ be a fixed pointSummary of the Lyapunov
method. of the the system x′ = f(x). Guess a function V for which:

(1) V is positive except at x̃, and

(2) dV/dt < 0 at “all” points. The word all is in quotation marks because there
are some exceptions:

– We don’t have dV/dt < 0 at the fixed point x̃.

3.3. LYAPUNOV FUNCTIONS 99

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Figure 3.15: A closeup of the behavior of the system from equation (3.11). Level
curves of the Lyapunov function V are shown. Notice that all arrows cross these
curves in an inward direction.

– We need dV/dt < 0 only within a fixed positive distance of x̃.

– We can tolerate some points x where dV/dt = 0 provided the system
immediately moves to a state where dV/dt < 0 again.

Now for the nagging question: Where do I buy a Lyapunov function? There Some standard guesses for
Lyapunov functions.are some standard guesses I can recommend. First, if the dynamical system is a

model of a physical system, try computing the energy at each state of the system.
Be creative with the definition of energy. In an economic system, perhaps it might
mean total money. Second, if the state vector is x and the fixed point is 0, let
V (x) = x2

1 + x2
2 + · · ·+ x2

n; this is the square of the distance from x to 0. (Indeed,
this is what we used in the preceding example.) If the fixed point isn’t 0 but rather
x̃, you can still use the same idea: Let

V (x) = (x1 − x̃1)2 + (x2 − x̃2)2 + · · ·+ (xn − x̃n)2.

This squared distance idea sometimes won’t work, so you can try more complicated
ideas. For example, you can try

V (x) = a1(x1 − x̃1)2 + a2(x2 − x̃2)2 + · · ·+ an(xn − x̃n)2,

where a1, a2, . . . , an are positive numbers. Which positive numbers? Cheat! Work
backward from your goal dV/dt < 0 to see if you can find appropriate a’s. If that
doesn’t work, here’s one last desperate suggestion. Try

V (x) =
n∑

i=1

n∑
j=1

aij(xi − x̃i)(xj − x̃j),

where the aij ’s have the following property: The matrix A = [aij] is symmetric
(A = AT , i.e., aij = aji) and has positive eigenvalues. [In fancy language: V (x) =
(x − x̃)T A(x − x̃), where A is a symmetric positive definite matrix.] The positive
eigenvalues ensure that V (x) > 0 for all x 6= x̃.

100 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

3.3.4 Gradient systems

A special class of dynamical system is particularly well suited to the Lyapunov
method. These systems arise from the gradient of a function. Let us discuss the
gradient and how we can use it to build a dynamical system.

Let h : Rn → R, i.e., h is a function of n variables which returns a single numberThe gradient of a function.

answer. The gradient of h, denoted by ∇h, is the vector of h’s partial derivatives.
For example, if

h(x) = h

[
x1

x2

]
=
(
x2

1 + x2
2

)2
= x4

1 + 2x2
1x

2
2 + x4

2,

then the gradient of h is

∇h =
[

∂h/∂x1

∂h/∂x2

]
=
[

4x3
1 + 4x1x

2
2

4x2
1x2 + 4x2

2

]
.

Notice that ∇h is a function from Rn to Rn. We can use ∇h to form a dynamical
system:

x′ = −∇h(x). (3.12)

In other words, f = −∇h, and we have x′ = f(x). In our example, the system
would be [

x1

x2

]′
=
[
−4x3

1 − 4x1x
2
2

−4x2
1x2 − 4x2

2

]
.

This system has a unique fixed point at 0 (please check this yourself). The Jacobian
of f = −∇h is

Df(x) =
[
−12x2

1 − 4x2
2 −8x1x2

−8x1x2 −4x2
1 − 12x2

2

]
,

which at the fixed point x̃ = 0 is just
[

0 0
0 0

]
. The eigenvalues of this matrix are

both 0, so the linearization test is inconclusive.
We now switch to Lyapunov’s method. The usual question is, What should we

try for our Lyapunov function V ? The answer is embedded in the very way we
contrived the problem: We try h as the Lyapunov function, i.e., V (x) = h(x) =(
x2

1 + x2
2

)2. We now calculate dV/dt:

dV

dt
=

∂V

∂x1

dx1

dt
+

∂V

∂x2

dx2

dt
=
[

∂V/∂x1

∂V/∂x2

]
·
[

x′1
x′2

]
= [∇h(x)] · x′.

Now, x′ = f(x) = −∇h(x). We finish our computation of dV/dt and get

dV

dt
= ∇h(x) · [−∇h(x)] = −[∇h(x) · ∇h(x)] = −|∇h(x)|2.

This is wonderful! Notice that dV/dt is always negative except when ∇h(x) equals
0. And the great thing is that ∇h(x) = 0 exactly when x is a fixed point of the
system x′ = −∇h(x).

We also have to check that V (x) = h(x) > 0 for all x (except x̃ = 0). This is
simple for our example, since we chose h(x) =

(
x2

1 + x2
2

)2, which is clearly positive
except at 0.

To summarize, suppose we have a function h : Rn → R which is positive except
at a single value x̃. Let f(x) = −∇h(x); Then the system x′ = f(x) has a stable
fixed point at x̃.

3.3. LYAPUNOV FUNCTIONS 101

When we are given a dynamical system, we would like to know if it is a gradient How do we recognize
gradient systems?system. Consider the following two systems:[

x1

x2

]′
=
[
−x1 + x2

−x1 − x2

]
(3.13)

and [
x1

x2

]′
=
[

−2x1e
x2

−x2
1e

x2 − 2x2

]
. (3.14)

Both of these systems have a unique fixed point at x̃ = 0. One of these systems
is a gradient system and the other isn’t. In other words, in one case we can find a
function h so that the system can be rewritten as x′ = −∇h(x), and in the other
case we can’t. How can we tell which is which? How can we find the function h?

Suppose f(x) = −∇h(x). Now f is a vector-valued function; let its components
be f1(x), f2(x), . . . , fn(x), where fi(x) = −∂h(x)/∂xi. If h has continuous second If x′ = f(x) is a gradient

system, then
∂fi/∂xj = ∂fj/∂xi.

derivatives, then
∂fi

∂xj
= − ∂2h

∂xj∂xi
= − ∂2h

∂xi∂xj
=

∂fj

∂xi
.

Thus if we can find i and j so that ∂fi/∂xj 6= ∂fj/∂xi, then we will know that x′ =
f(x) is not a gradient system. For example, consider the system in equation (3.13).
In this system we have

f1(x) = −x1 + x2 and f2(x) = −x1 − x2,

and therefore
∂f1

∂x2
= 1 and

∂f2

∂x1
= −1.

We see that ∂f1/∂x2 6= ∂f2/∂x1, so the system in equation (3.13) is not a gradient
system.

On the other hand, consider the system in equation (3.14). Here we have

f1(x) = −2x1e
x2 and f2(x) = −x2

1e
x2 − 2x2.

To check if this is a gradient system, we first compute

∂f1

∂x2
= −2x1e

x2 =
∂f2

∂x1
,

so the system in equation (3.14) might be a gradient system. Now we can try to
recover the function h so that f = −∇h.

Suppose f = −∇h. Then we know that f1 = −∂h/∂x1. If we integrate f1 with Recovering h from f .

respect to x1 and hold x2 constant, we have

h(x) =
∫
−f1(x) dx1 =

∫
2x1e

x2 dx1 = x2
1e

x2 + C(x2),

where C(x2) is a constant (as far as x1 is concerned) which depends on x2. Let’s
try to figure out what C(x2) is. We know that

∂h

∂x2
= −f2 = x2

1e
x2 + 2x2,

and since we know that h(x) = x2
1e

x2 + C(x2), we also have

∂h

∂x2
= x2

1e
x2 + C ′(x2).

Equating these two expressions for ∂h/∂x2, we learn that

C ′(x2) = 2x2.

102 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

Finally, integrating both sides of C ′(x2) = 2x2 with respect to x2, we have that
C(x2) = x2

2 + k, where k is an absolute constant.
We have now learned that h(x) is of the form

h(x) = x2
1e

x2 + x2
2 + k.

At this point you should compute ∇h(x) and be sure you get −f(x). We now
know that f = −∇h regardless of what value we take for k. However, in order for
h to serve as a Lyapunov function, we need h(x̃) = 0 and h(x) > 0 for x 6= x̃.
Substituting x1 = x2 = 0 into our formula for h, we get

0 = h(0) = 02e0 + 02 + k = k,

so we want to take k = 0. Finally, notice that the terms x2
1e

x2 and x2
2 can never be

negative. Further, if x1 6= 0, then x2
1e

x2 > 0, and if x2 6= 0, then x2
2 > 0. Thus for

x 6= 0 we have h(x) > 0. We conclude that

h(x) = x2
1e

x2 + x2
2

is a Lyapunov function for the system of equation (3.14) and therefore 0 is a stable
fixed point.

To summarize, suppose we are given a system of the form x′ = f(x) with fixedRecapping how we find a
Lyapunov function using the
ideas of a gradient system.

point x̃. We seek a function h(x) for which:

(1) f(x) = −∇h(x),

(2) h(x̃) = 0, and

(3) h(x) > 0 for all x 6= x̃.

If such a function exists, then it is a Lyapunov function and we may conclude that
x̃ is stable. In order for condition (1) to hold, we must have ∂fi/∂xj = ∂fj/∂xi. If
this is the case, we can use integration to try to recover the function h. We adjust
arbitrary constants in our formula to make condition (2) true, then we check to see
if condition (3) holds.

Geometric view

The stability of fixed points of gradient systems can also be illustrated geometrically.
Let’s begin with a one-dimensional example. Let h : R→ R. The gradient, ∇h,

is simply h′, the derivative of h. Our gradient system is then

dx

dt
= −h′(x).

In Figure 3.16 we plot a function y = h(x) (solid curve) and its derivative (gradient)
y = h′(x) (dashed). Notice that where y = h(x) is sloping downward, h′(x) is
negative, and where h(x) is sloping upward, h′(x) is positive. The sign of h′(x)
tells us if h(x) is increasing or decreasing. Therefore, in the system dx/dt = −h′(x)
we notice that if h(x) is sloping downward, then x is increasing (because of the
minus sign), while if h(x) is sloping upward, then x is decreasing.

Here’s a nice way to think about this. Imagine that the state of the system x isThe state always rolls
downhill. represented by a point sitting on the curve y = h(x). As time progresses, the point

always moves in a downhill direction.
Notice that the system dx/dt = −h′(x) in Figure 3.16 has three fixed points,

at 1, 2.2, and 3. Because 1 and 3 are local minima of h(x), these fixed points are
stable; however, 2.2 is a local maximum of h(x) and is therefore an unstable fixed
point of the system.

3.3. LYAPUNOV FUNCTIONS 103

-1 1 2 3 4

-1

1

2

3

Figure 3.16: The graph of a function y = h(x) (solid curve) and the gradient of h,
i.e., ∇h = h′ (dashed curve). The dynamical system dx/dt = −h′(x) moves in the
directions of the arrows.

-2

-1

0

1

2 -2

-1

0

1

2

0

0.5

1

1.5

-2

-1

0

1

2

Figure 3.17: The graph y = h(x) where h(x) = 1− cos x1 cos x2.

Let us consider a two-dimensional system. For example, let

h(x) = h

[
x1

x2

]
= 1− cos x1 cos x2.

A graph of y = h(x) is plotted in three dimensions (since y is a function of x1 and
x2), and the graph is a surface; see Figure 3.17.

The gradient of h is

∇h(x) =
[

sinx1 cos x2

cos x1 sinx2

]
.

104 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

-2 -1 0 1 2

-2

-1

0

1

2

Figure 3.18: The directions of the vectors −∇h(x) where h(x) = 1− cos x1 cos x2.

Let us analyze the system x′ = −∇h(x), i.e.,[
x1

x2

]′
=
[
− sinx1 cos x2

− cos x1 sinx2

]
. (3.15)

This system has infinitely many fixed points, all of the form
[

jπ/2
kπ/2

]
, where j and

k are integers. We focus on the fixed point 0.
In one dimension, the sign of the gradient of h (i.e., the derivative of h) indicates

whether h is increasing or decreasing. In the same way, the direction of the vectorGradients point uphill.

∇h(x) gives the direction of steepest ascent of the function h. Therefore, the vector
−∇h(x) is pointing in the direction of steepest descent. This means that the system
x′ = −∇h(x) will lead to a value of x which minimizes h.

To see this geometrically, consider Figure 3.18. At each point of the plane x
we have plotted the direction of the vector −∇h(x); it is quite clear that for any
starting point near the origin 0 the system of equation (3.15) gravitates to the
origin. Indeed, gravitates is the right word here. Imagine the state x as a point
sitting on the surface y = h(x) (see Figure 3.17). Because x′ = −∇h(x), the point
always moves in a downhill direction. Since 0 sits at the bottom of a well (a local
minimum of h), we conclude that 0 must be a stable fixed point.

Let’s summarize the behavior of a gradient system x′ = −∇h(x). As the state
vector x changes, the value of h(x) decreases. [This is why h can be used as
a Lyapunov function.] The fixed points x̃ of the system are the points where
∇h(x) = 0. These points include the local minima of h, and these are precisely the
stable fixed points of the system.

Problems for §3.3

�1. For each of the following continuous time dynamical systems we have given
a fixed point. Show that the fixed point is stable by means of a Lyapunov
function.

(a)
[

x
y

]′
=
[
−x5 − y

x

]
at
[

0
0

]
.

3.3. LYAPUNOV FUNCTIONS 105

Figure 3.19: A two-mass two-spring system.

(b)
[

x
y

]′
=
[

y2 − x− 1
−xy − y

]
at
[
−1

0

]
.

(c) x′ = −x2 sin−1 x at 0.

�2. Consider a physical system consisting of two masses arranged as follows. The
first mass, m1, is attached to the ceiling by a spring. The second mass, m2,
is attached to the bottom of the first mass by a second spring. The springs
have Hooke’s constants k1 and k2. Let g denote acceleration due to gravity.
See Figure 3.19.

First, model this two-mass, two-spring system as a dynamical system oper-
ating in the absence of friction. Second, assume that there is a frictional
force, proportional to—but opposite—the velocity. Third, assume that the
frictional force is “weird”—proportional to the cube of the velocity.

In each case, find the fixed point of the system and determine its stability.

�3. Develop a Lyapunov technique which will work for discrete time systems.
That is, to each state x of the system assign an “energy” V (x). What con-
dition(s) should V (x) satisfy to justify the stability of a fixed point x̃ of a
discrete time system.

Use your theory to verify the stability of the fixed points of the following
systems.

(a) x(k + 1) = tan−1[x(k)] at x = 0.

(b)
[

x(k + 1)
y(k + 1)

]
=
[
−y(k)/2

x(k)

]
at
[

0
0

]
.

�4. For each of the following determine if the dynamical system is a gradient
system. If so, find its fixed point(s) and assess its (their) stability.

(a) x′ = f(x) where f(x) =
[
−5x1 + 7x2

7x1 − 10x2

]
.

(b) x′ = f(x) where f(x) =

[
−x1 + x2 − x1x

2
2e

x2
1

x1 − x2 − x2e
x2
1

]
.

(c) x′ = f(x) where f(x) =
[
−x2

1 + 2x1x2 − x2
2

x2
1 − 2x1x2 + x2

2

]
.

106 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 3.20: Graphs of the functions e−x and
√

x.

(d) x′ = f(x) where f(x) =
[

x2
1 + x2

2

x2
1 − x2

2

]
.

(e) x′ = f(x) where f(x) =
[

3x1 + x2
2

−x1 + 2x2

]
.

�5. Show that if the linear system x′ = Ax is a gradient system, then A must be
a symmetric matrix, i.e., A = AT .

�6. Are all one-dimensional continuous time systems gradient systems?

3.4 Examplification: Iterative methods for solving
equations

We can harness the power of attractive fixed points to solve equations. SupposeUsing iteration to solve
equations. we want to solve the equation x = cos x. We can do this simply by iterating the

function cos x starting from any guess, say x0 = 0.7. After fewer than 20 iterations,
we arrive at x̃ = 0.7391.

This is a contrived example; we know from our earlier work that cos x has an
attractive fixed point x̃, and if we iterate cosine starting near x̃ we gravitate to the
solution to cos x = x. Let’s see if we can exploit this idea to solve other equations.

Consider the equation e−x =
√

x. Solving this equation is equivalent to solving
the equation f(x) = 0 where f(x) = e−x −

√
x. Iterating f won’t work; if the

iterations fn(x) converge, they will converge to a solution to f(x) = x—not what
we want. We need to iterate something else. The idea is to create a function g(x)Let g(x) = f(x) + x. Then

f(x) = 0 exactly when
g(x) = x.

with the property that g(x) = x exactly when f(x) = 0. Finding a fixed point of
g is then the same as solving our equation. How can we pass from f(x) = 0 to
g(x) = x? We simply add x to both sides! Let g(x) = x+f(x). It is now clear that

f(x) = 0 if and only if g(x) = x.

In our example, f(x) = e−x−
√

x, so g(x) = x+e−x−
√

x. Let’s iterate g and see
what happens. Where should we begin? Let us plot graphs (see Figure 3.20) of both
e−x and

√
x and notice that the curves cross around x = 0.5. Iterating g starting

at x = 0.5, we attain the following values: 0.5 7→ 0.3994 7→ 0.4381 7→ 0.4215 7→
0.4283 7→ 0.4254 7→ 0.4267 7→ 0.4262 7→ 0.4264 7→ 0.4263 7→ 0.4263 7→ · · · . Thus

3.4. EXAMPLIFICATION: ITERATIVE METHODS FOR SOLVING EQUATIONS107

-3 -2 -1 1 2 3 4

-3

-2

-1

1

2

Figure 3.21: Graphs of the functions sinx and x3 − 1.

within 10 iterations, we have arrived at the value x̃ ≈ 0.4263, which is a fixed point
of g and therefore a solution to e−x =

√
x (both sides are approximately 0.6529 at

x = 0.4263).
Why did this work? We succeeded in solving g(x) = x because x̃ = 0.4263 is an If g’s fixed point is stable,

we can iterate g to solve
f(x) = 0.

attractive fixed point of g. To check this, note that

g′(x) = 1− e−x − 1
2
√

x
,

so g′(0.4263) ≈ −0.4187, which has absolute value less than 1.
Thus we have a possible method for solving equations: We write the equation

in the form f(x) = 0, let g(x) = x + f(x), iterate g starting at a reasonable
guess, and hope that we converge to a fixed point of g. It would be nice to have
a theorem which would guarantee that the fixed points of g are always attractive.
Unfortunately, this is not the case.

Let’s try another example. Consider the equation

sinx = x3 − 1.

Following our proposed method, we let

f(x) = sin x− (x3 − 1)

and let
g(x) = x + sinx− (x3 − 1).

In Figure 3.21 we plot the graphs of sinx and x3−1 and observe that they cross at
roughly x = 1.2. Indeed, the actual crossing is at x̃ ≈ 1.24905. To give our method a
really good start, let us iterate g(x) starting at x = 1.25. When we do, we obtain the
following values: 1.25 7→ 1.24586 7→ 1.25975 7→ 1.21258 7→ 1.36618 7→ 0.795394 7→
2.00633 7→ −4.16318 7→ 69.8464 7→ −340675. 7→ 3.95385×1016. Clearly, the method
is blowing up. This unfortunate turn of events is due to the unstable nature of
x̃ ≈ 1.24905. Since g(x) = x + sinx − (x3 − 1), we have g′(x) = 1 + cos x − 3x2,
and we compute g′(1.24905) ≈ −3.3642, which has absolute value greater than 1.

The bad news is, the fixed point of g(x) = x + f(x) might not be stable. The
good news is, we can alter the definition of g(x) so that (1) its fixed points still
correspond to the roots of f(x) = 0, but (2) the fixed points are guaranteed to be
stable.

Here is how we amend g. We chose g(x) = x + f(x) because g(x) = x exactly A new g. Let
g(x) = x + af(x), where a is
a constant.

108 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

when f(x) = 0. However, g is not the only function with this property. Notice that
if a is a nonzero constant, then f(x) = 0 exactly when af(x) = 0. We can now add
x to both sides of af(x) = 0 and define our new g to be g(x) = x + af(x). All we
need to do now is to be clever in our choice of a to be sure that at x̃ (the root of
f(x) = 0) we have |g′(x̃)| < 1. Since g(x) = x + af(x), we have g′(x) = 1 + af ′(x).
Thus we want

−1 < g′(x̃) = 1 + af ′(x̃) < 1.

We should now choose a so that g′(x̃) is safely between −1 and 1; let’s choose a so
that g′(x̃) = 0. The choice of a is now easy to derive: We want 1 + af ′(x̃) = 0, so
we solve this for a and we find we want a = −1/f ′(x̃). With this choice of a, weBest choice for a is

−1/f ′(x̃). now have

g(x) = x− f(x)
f ′(x̃)

and so g′(x) = 1 − f ′(x)/f ′(x̃); therefore, g′(x̃) = 0. Thus if we iterate g starting
near x̃ we are guaranteed to converge to x̃.

This is encouraging, but there’s a serious problem: If we don’t know x̃, how
can we compute f ′(x̃)? If our guess x is reasonably close to x̃, then (provided f ′

is continuous) it is reasonable to approximate f ′(x̃) by f ′(x). As we improve theApproximate f(x̃) by f(x).

estimates for x̃, our approximation of f ′(x̃) becomes more accurate. Thus we finally
settle on the following definition for g:

g(x) = x− f(x)
f ′(x)

.

Aha! This is exactly Newton’s method! (See §1.2.9 on page 19.) However, our
“constant” a which we want equal to −1/f ′(x̃) is no longer a constant: It varies
with x. So our analysis—which depended on a being a constant—needs to be
rechecked.

We notice first that g(x) = x exactly when f(x)/f ′(x) = 0, so finding a fixed
point x̃ of g is the same as finding the solution x̃ of f(x) = 0 unless we also have
f ′(x̃) = 0. Next, we need to check that |g′(x̃)| < 1 to be sure that x̃ is an attractive
fixed point of g. We use the derivative of quotients rule to compute

g′(x) = 1− f ′(x)f ′(x)− f(x)f ′′(x)
[f ′(x)]2

=
f(x)f ′′(x)
[f ′(x)]2

=⇒ g′(x̃) =
f(x̃)f ′′(x̃)
[f ′(x̃)]2

= 0,

provided f ′(x̃) 6= 0, and f ′′ is defined.

Higher dimensions

Newton’s method is also applicable in higher dimensions. Suppose f is a function
from Rn → Rn, and we want to solve f(x) = 0.

The idea is to iterate a function g whose fixed point x̃ is a root of the equation
f(x) = 0. Let’s try the same trick we did before: adding x to both sides of f(x) = 0.
We get

g(x) = x + f(x).

Notice that f(x) = 0 if and only if g(x) = x. Suppose x̃ is a fixed point of g.
We hope that the eigenvalues of Dg(x) all have absolute value less than 1. Now,
Dg = I + Df , and it is hard to know what the eigenvalues of I + Df evaluated at
x̃ might be.

3.4. EXAMPLIFICATION: ITERATIVE METHODS FOR SOLVING EQUATIONS109

We can define g in a more complicated way that gives us more flexibility. We
note that f(x) = 0 if and only if Af(x) = 0, where A is any n×n invertible matrix.
Now we have

g(x) = x + Af(x),

and therefore
Dg = I + ADf.

We want the eigenvalues of Dg(x̃) to be near 0; the easiest way to assure this is to
contrive g so that Dg(x̃) is an all-0 matrix. Let’s see if we can select A to make
this happen:

0 = Dg(x̃) = (I + ADf(x̃)) =⇒ A = −[Df(x̃)]−1.

Thus we want to set g(x) = x+ [Df(x̃)]−1f(x); the problem is (just as before), we
don’t know x̃. So we approximate Df(x̃) by Df(x), and we finally arrive at

g(x) = x− [Df(x)]−1f(x),

which is exactly Newton’s method in higher dimensions.

Problems for §3.4

�1. Use Newton’s method to solve the following equations:

(a) x2 − x− 1 = 0.

(b) cos x = sinx.

(c) x3 − x2 − 1 = 0.

(d) 1− x2 = sinx.

(e) ex = x.

�2. Use the higher dimensional version of Newton’s method to solve the following
systems of equations:

(a) x2 + y2 = 9, x2 − y3 = 1.

(b) x2 − y2 = 3, sinx sin y = 1
2 .

(c) x + xy + y = 0, x2 + y2 = 1.

(d) x + xy + xyz = 1, x2 − y2 + z3 = 3, xy + yz = 1.

�3. Suppose computing f ′(x) is difficult; this might be the case when f ′ is not
known analytically but is approximated using f . When we use Newton’s
method we compute

x(k + 1) = x(k)− f [x(k)]/f ′[x(k)].

Thus we compute f ′ every iteration. Suppose, instead, we compute f ′ only
every other iteration. Will this modified Newton’s method still converge to a
root of f(x) = 0?

�4. Our method for transforming the equation f(x) = 0 into g(x) = x was to add
x to both sides. Let’s try another method. Suppose we multiply both sides by
x. This can’t work because f(x) = 0 ⇐⇒ xf(x) = 0 (unless x = 0). So we
need to transform 0 to 1. One idea is to add 1 to both sides and then multiply
by x. This yields g(x) = x(1 + f(x)) = x + f(x), and this is just what we
had before. Another way to convert 0 to 1 is by exponentiation. Notice that
f(x) = 0 ⇐⇒ ef(x) = 1.

Let’s use this idea to come up with a variant of Newton’s method. Let g(x) =
xeaf(x), where a is a nonzero number.

110 CHAPTER 3. NONLINEAR SYSTEMS 1: FIXED POINTS

(a) With this newest definition of g, show that g(x) = x if and only if
f(x) = 0.

(b) Compute g′(x).

(c) What value should we choose for a to ensure that g′(x̃) = 0 at a fixed
point x̃ of g?

(d) In the previous part, the value you found for a depends on x̃. Since x̃ is
unknown, this is a problem. Instead, use x to approximate x̃. What is
your new formula for g?

(e) Unfortunately, your new a is no longer a constant, but you can still show
that g′(x̃) = 0; please do so.

(f) Use this new iterative method to solve some equations.

(g) How does this new method compare with Newton’s method? (Which
converges more quickly to the answer? Which requires more computa-
tion?)

(h) Suppose the only root of f(x) = 0 is a negative number x, and suppose
you use this alternative method, but your initial guess is positive. What
will happen?

Chapter 4

Nonlinear Systems 2:
Periodicity and Chaos

Dynamical systems do not live by fixed points alone.
Thus far we have seen three possible behaviors for dynamical systems: attraction

to a fixed point, divergence to infinity, and (in continuous time) “cyclic” behavior
(see the predator-prey example of §1.2.8 and the linear system with pure imaginary
eigenvalues of Figure 2.22 on page 59).

In this chapter we see that periodic behavior can also occur in discrete time and
that another type of behavior—chaos—is a possibility as well.

What is “periodic behavior”? A dynamical system exhibits periodic behavior
when it returns to a previously visited state. We can write this as x(t1) = x(t1 +T)
for some T > 0. Notice that whatever trajectory the system took from time t1
to time t1 + T , the system is destined to repeat that same path again and again
because the state at time t1 + T is exactly the same as the state at time t1. Thus
we realize that x(t1) = x(t1 + T) = x(t1 + 2T) = x(t1 + 3T) = · · · . The system
retakes the same steps over and over again, visiting the same states infinitely often.
A fixed point is an extreme example of periodic behavior.

What is “chaos”? We discuss this concept later (see §4.1.4 and §4.2.5), but for
now we want to point out that a system can behave in a nonperiodic and nonex-
plosive manner which, although completely determined, is utterly unpredictable!

As in the previous chapter we assume (unless we state otherwise) the following:

Throughout this chapter, we assume f is differentiable with continuous
derivative.

4.1 Continuous time

4.1.1 One dimension: no periodicity

We begin by discussing the long-term fate of the simplest systems: continuous time One-dimensional continuous
time systems either explode
or tend to fixed points.

dynamical systems in one variable, x′ = f(x).
Pick an x, any x. There are three possibilities: f(x) is zero, positive, or negative.

If f(x) is zero, we know that x is a fixed point. If f(x) is positive, then x(t) must
be increasing, and if f(x) is negative, x(t) is decreasing.

Our first observation is that periodic behavior is not possible (except for fixed Periodic behavior is not
possible for one-dimensional
continuous time systems.

points). Consider a state x1 which we allegedly visit at times s and t, with s < t.
This is possible if x1 is a fixed point, but otherwise we have f(x1) either positive
or negative. If f(x1) is positive, then, in the short run, the system moves to a state
x2 greater than x1. Since f is continuous, we may assume that f is positive over
the entire interval [x1, x2]. So we’re at x2 and still increasing. Now, how can we

111

112 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

x

y

#1 #2

#3

#4 #5 #6

Figure 4.1: Graph of a function f for a one-dimensional dynamical system. Various
fixed points are marked.

ever return to x1? To get there, we must decrease through the interval [x1, x2], but
the equation x′ = f(x) says that x must increase throughout the same interval.
Thus it’s impossible to ever revisit the state x1. By a similar analysis, we can never
revisit a state with f(x1) < 0.

Thus the only type of recurrent behavior one-dimensional continuous systems
can exhibit is that of fixed points. Figure 4.1 shows the graph of a function f for a
one-dimensional continuous time dynamical system x′ = f(x). Several fixed pointsThe possible kinds of fixed

points a one-dimensional
continuous time system may
have.

are marked, with each somewhat different from the others.

• Fixed point #1. This is a stable fixed point; to its left the system is increasing
and to its right, decreasing.

• Fixed point #2. This is a “semistable” fixed point. To its left the system is
decreasing, and so starting values less than x̃ move away from x̃. To the right
the system is also decreasing, and so the fixed point behaves like an attractor
on this side.

• Fixed point #3. This is an unstable fixed point. To its left, the system is
decreasing and to its right, increasing.

• Fixed point #4. This is another semistable fixed point, but its action is
opposite that of #2. This fixed point is an attractor on its left and a repellor
on its right.

• Fixed points #5. This is an entire interval where f(x) = 0. These fixed points
are marginally stable. Perturbing the system slightly away from one of these
fixed points neither causes the system to return to the fixed points nor to fly
away.

• Fixed point #6. This is another stable fixed point, but one where f ′(x) = 0.
Thus the linearization test of the previous chapter would fail at this fixed
point.

In conclusion, the behaviors of one-dimensional continuous dynamical systems
are rather limited. Ultimately, such a system must either gravitate toward a fixed
point or explode to infinity.

4.1.2 Two dimensions: the Poincaré-Bendixson theorem

One-dimensional continuous systems either converge to a fixed point or diverge toIn two dimensions,
continuous time systems
may also be periodic.

infinity. These behaviors are exhibited by two-dimensional continuous systems as
well. However, two-dimensional systems also exhibit another behavior: periodicity.

Let x′ = f(x) be a two-dimensional continuous time dynamical system. Each
state of this system, x, is a point in the plane (the phase space) of the system. If

4.1. CONTINUOUS TIME 113

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 4.2: An orbit approaching a periodic orbit. The trajectory starts near the
middle of the figure and spirals outward, becoming more and more like a circle.

the system starts at state x0, we know that x(t) traces out a curve in the phase
space; this curve is the trajectory (or orbit) of the system. If x0 is a fixed point of
the system, then the trajectory starting at x0 is not very exciting: The system is
“stuck” at x0 and remains there for all time. Otherwise (x0 is not a fixed point)
the trajectory is a proper curve. In principle (and often in actuality) this curve
can return to x0. Suppose the first return is at time T . Now, at time T it is as if
we have started all over. Thus at time t + T we are exactly in the same state as
at time t. In other words, for any time t we have x(t + T) = x(t). Such a curve
is called periodic, and the smallest positive number T for which x(t + T) = x(t) is
called the period of the curve. For example, for the system[

x′1
x′2

]
=
[

0 1
−1 0

] [
x1

x2

]
we find that (for any x0 other than 0) the trajectories are periodic with period 2π.
[Please take a moment to work this out. You may wish to review equation (1.8) on
page 7 and reread the material on page 48.]

If a dynamical system starts near, but not at, an stable fixed point x̃, we expect
the system to gravitate to x̃. Note that we expect x(t) to approach x̃; it need not
be the case that x(t) = x̃ for any t.

Similarly, it is possible that a trajectory will never exhibit periodic behavior but
will approach a periodic orbit; see Figure 4.2. A trajectory of this system begins

at x0 =
[

0
0.27

]
and spirals outward approaching, but never quite reaching, the

unit circle. Thus, as time progresses, the trajectory becomes more and more like
the periodic orbit.

To be more specific, let x1(t) and x2(t) be two different trajectories of a system
x′ = f(x). We say that trajectory x1 approaches trajectory x2 provided |x1(t) −
x2(t + c)| → 0 (where c is a constant) as t→∞.

Two trajectories of a dynamical system, however, cannot cross; see Figure 4.3. Trajectories cannot cross.

Consider the point of intersection if two trajectories actually did intersect. The
trajectory of the system starting at that point of intersection is completely deter-
mined and therefore must proceed along a unique path. The situation in Figure 4.3
is therefore impossible.

Now imagine all the possible trajectories of a two-dimensional dynamical system
drawn in a plane. You should see a situation akin to the one depicted in Figure 4.4.
Since the curves cannot cross one another (or themselves), their behavior is greatly

114 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

x
1
(t)

x
2
(t)

?

Figure 4.3: Two orbits of a dynamical system cannot cross.

Figure 4.4: Many different orbits of a two-dimensional dynamical system.

limited. Essentially they can (1) bunch together toward a point, (2) zoom off toward
infinity, or (3) wrap more and more tightly around a simple closed curve.

These intuitive ideas are the heart of the Poincaré-Bendixson theorem, whichThe three behaviors open to
continuous time
two-dimensional systems.

states that a two-dimensional continuous time dynamical system x′ = f(x) will
have one of three possible behaviors as t → ∞: It may (1) converge to a fixed
point, (2) diverge to infinity, or (3) approach a periodic orbit.

Let’s consider an example. Let

x′1 = x1 + x2 − x3
1 and x′2 = −x1. (4.1)

The only fixed point (by solving f(x) = 0) is x̃ = 0. Computing the Jacobian
matrix, we have

Df =
[

∂f1/∂x1 ∂f1/∂x2

∂f2/∂x1 ∂f2/∂x2

]
=
[
−3x2

1 + 1 1
−1 0

]
,

so Df(0) =
[

1 1
−1 0

]
, whose eigenvalues are (1 ± i

√
3)/2, which have positive

real part. Thus 0 is an unstable fixed point of the system [equation (4.1)].

4.1. CONTINUOUS TIME 115

-2 -1 0 1 2

-2

-1

0

1

2

Figure 4.5: The dynamical system from equation (4.1) has 0 as an unstable fixed
point, but the system does not blow up.

Although 0 is an unstable fixed point, let’s see if V (x) = x2
1 + x2

2 is a Lyapunov Trying to find a Lyapunov
function for an unstable
fixed point!?

function. This, of course, is crazy. It is impossible for V to be a Lyapunov function,
since 0 is unstable. Let’s do it anyway. We know that V (x) > 0 for all x 6= 0, and
we now compute dV/dt:

dV

dt
=

∂V

∂x1

dx1

dt
+

∂V

∂x2

dx2

dt

= 2x1
dx1

dt
+ 2x2

dx2

dt

= 2x1

(
x1 + x2 − x3

1

)
+ 2x2 (−x1)

= −2x4
1 + 2x2

1

= 2x2
1

(
1− x2

1

)
.

We want dV/dt < 0 everywhere. What do we have? We see that when |x1| < 1,
then dV/dt is actually positive; this would be bad news if we really believed that
V were a Lyapunov function. On the other hand, if |x1| > 1, then dV/dt < 0. In
other words, if x1 is large, then the system is heading back toward 0. Now we can
ask, Can this system explode? That is, might |x(t)| → ∞ as t → ∞? We claim
the answer is no. Suppose |x(t)| were getting large. By our preceding analysis we
cannot have |x1(t)| large, so it must be the case that |x2(t)| is large and |x1(t)| is
bounded. But then since

x′1(t) = x2 − (terms with x1 only) ,

we see that dx1/dt is unbounded, implying that x1(t) would be unbounded. In
summary, we cannot have x(t) wandering too far from the origin.

We now know that the only fixed point, 0, is unstable, but explosive behavior
is impossible. What’s left? The Poincaré-Bendixson theorem leaves us only one
possible behavior: As t → ∞ we must have x(t) tending to a periodic orbit. Fig-
ure 4.5 illustrates how this system behaves. Notice that near 0 all the arrows are
pointing away from the origin. However, we know the system tends toward periodic
behavior.

116 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 4.6: Starting near the unstable fixed point 0 of the system in equation (4.1)
and approaching a stable cycle. (The trajectory starts near the origin and spirals
outward.)

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40

Figure 4.7: A plot of x1 with respect to t for the system of equation (4.1). Observe
that the system quickly becomes periodic.

Figure 4.6 shows the trajectory of this system starting near 0 and rapidly settling
into cyclic behavior. It is easy to see the periodic nature of this system in Figure 4.7,
which shows how x1(t) varies with time.

4.1.3 The Hopf bifurcation*

We have considered the example x′ = f(x) where

f(x) = f

[
x1

x2

]
=
[

x1 + x2 − x3
1

−x1

]
.

We saw that 0 is an unstable fixed point, but the orbits don’t escape to infinity.
Rather, they approach a periodic orbit. We showed that the orbits cannot escape
by considering V (x) = x2

1 + x2
2 and observing that dV/dt was negative once |x1|

was large enough.
Let’s see how far we can extend this idea. LetA family of related

dynamical systems.

4.1. CONTINUOUS TIME 117

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.4
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.4

Figure 4.8: How the system x′ = fa(x) [from equation (4.2)] develops over time.
On the left is the case where a = −0.1; the system spirals in toward the origin. On
the right is the case where a = 0.1; here the origin is an unstable fixed point and
the trajectory flies away from 0 and converges to a periodic orbit.

fa(x) = fa

[
x1

x2

]
=
[

ax1 + x2 − x3
1

−x1

]
, (4.2)

where a is a number we play with (i.e., a parameter). When a = 1, we have the
system we had before [equation (4.1)].

First, please check that regardless of the value of a, the only fixed point of the
system x′ = fa(x) is 0. We ask, For which values a is 0 a stable fixed point of
equation (4.2) and for which is 0 unstable? The Jacobian matrix is

Dfa =
[

∂f1/∂x1 ∂f1/∂x2

∂f2/∂x1 ∂f2/∂x2

]
=
[

a− 3x2
1 1

−1 0

]
,

which at x = 0 is Dfa(0) =
[

a 1
−1 0

]
. The characteristic polynomial of Dfa(0)

is (λ− a)λ + 1 = λ2 − aλ + 1, which we set equal to zero to get

λ =
a±
√

a2 − 4
2

.

Thus when a < 0, we know that 0 is a stable fixed point, and when a > 0, we know A sudden change in the
nature of the fixed point as
the parameter a passes 0.

that 0 is an unstable fixed point.
What becomes of our alleged Lyapunov function V (x) = x2

1 +x2
2? We compute,

as before, that

dV

dt
= 2x1

dx1

dt
+ 2x2

dx2

dt

= 2x1

(
ax1 + x2 − x3

1

)
+ 2x2(−x1)

= 2ax2
1 − 2x4

1

= 2x2
1

(
a− x2

1

)
.

Notice that when a < 0, we really do have a Lyapunov function; this reconfirms
the stability of 0 when a < 0. Otherwise (a > 0) V is not a Lyapunov function,
but it does tell us that the orbits of our system cannot go to infinity. Hence by the
Poincaré-Bendixson theorem, x(t) must approach a periodic orbit.

Figure 4.8 illustrates how this system evolves in the cases where a = −0.1 and
a = 0.1. When a = −0.1 (the left portion of the figure), we start our system at[

0.5
0.5

]
. Observe that as t increases, the orbit spirals inward toward the stable

118 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

fixed point 0. When a = 0.1 (the right portion of the figure), we start the system

at
[

0.1
0.1

]
. Observe that in this case the system spirals outward, not to infinity

but rather toward a periodic orbit.
Now imagine making a movie linking these two diagrams. The movie begins at

a = −0.1 and ends at a = 0.1. In between, a gradually increases. What do we see?
While a is negative we continue to observe the trajectory spiraling in to the origin.
This is because 0 is stable and the linearized version of the system has complex
eigenvalues with negative real parts. However, these real parts are creeping up
toward zero, so the rate of descent into the origin is slowing. Suddenly, as we pass
a = 0, there is a startling plot development. The fixed point 0 has lost its stability,
and the orbits begin to spiral outward instead of inward. However, they don’t go
totally insane (to infinity) but are attracted toward periodic orbits.

This movie (transition from stable fixed point to stable cycle) is called a HopfThe Hopf bifurcation.

bifurcation. A bifurcation is a change in the nature of a fixed point as we gradually
change the function f . In this case we were varying our function fa by adjusting a
from negative to positive. The phenomenon we witnessed was the destabilization
of the fixed point 0 and its ultimate demise into stable periodic orbits. We examine
other examples of bifurcations in §4.2.3.

4.1.4 Higher dimensions: the Lorenz system and chaos

We have seen that one-dimensional continuous systems either gravitate toward aChaotic behavior in three
dimensions. fixed point or diverge toward infinity. Two-dimensional systems can exhibit these

behaviors, but they may also settle into periodic behavior. In three dimensions we
can see these same behaviors and (here’s the surprise) more!

We present the following celebrated dynamical system due to Lorenz, who was
interested in modeling weather and the motion of air as it is heated. The physics
behind the system is not critical to us; the nature of the system is.

The Lorenz system’s state variable x(t) lives in R3. The system is

dx1

dt
= σ(x2 − x1),

dx2

dt
= rx1 − x2 − x1x3,

dx3

dt
= x1x2 − bx3,

where σ, b, and r are constants. We take σ = 10, b = 8
3 , and r = 28. As an exercise

(see problem 4 on page 121), find the three fixed points of this system and show
(by linearization) that they are all unstable.

Let’s begin the system in the state x0 =

 1
1

10

. Figures 4.9 through 4.11

show how the state variables x1(t), x2(t), and x3(t) fluctuate as time t progresses.
The behavior of x is seen to be bounded (the values don’t fly away to infinity) but
aperiodic (they don’t repeat). Thus this system stands in stark contrast to two-
dimensional continuous systems, which must blow up, converge to a fixed point, or
become periodic.

The full beauty of the Lorenz system is best appreciated by looking at a three-
dimensional plot of the trajectory of the system. Figure 4.12 shows the trajectory
of the system plotted in R3. It is hard to fully appreciate the intricacy of this three-
dimensional trajectory from a two-dimensional picture. A movie of this figure would
be much better. The point x(t) spirals around one loop of the diagram for a while
and then suddenly jumps and spins around the other before returning to the first
at seemingly random intervals. Of course, the intervals are not random: Each point
on the trajectory x(t) is completely determined by the starting vector x0.

4.1. CONTINUOUS TIME 119

-20

-15

-10

-5

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20

Figure 4.9: Plot of x1(t) for the Lorenz system.

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

Figure 4.10: Plot of x2(t) for the Lorenz system.

Now for the bad news. Figures 4.9 through 4.12, while correct in flavor, are Numerical nonsense?

probably inaccurate. We used good numerical methods (Matlab’s ode45 and
Mathematica’s NDSolve), but we seriously doubt the numerical accuracy. The fault
is not in the software but is inherent in the system itself.

Let us start the system at

 1
1
10

 and also at

 1
1

10.01

. There is a 0.1%

difference between the two x3 starting values. Surely this cannot make a big differ- Slight differences in the
beginning yield enormous
differences later.

ence in the trajectory. Wrong! In Figure 4.13 we plot x1(t) for both starting vectors.
We see that both curves are together initially, but suddenly (around t = 7.5) they
fly apart and are very different thereafter.

Here is the problem. Any numerical method for finding solutions to differential Sensitive dependence on
initial conditions.equations works to only a fixed number of digits of precision. The slight errors in

these computations result in enormous deviations between the value we compute
and the real value of the system. The Lorenz system exhibits sensitive dependence
on initial conditions, meaning that minute changes in the starting vector become

120 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18 20

Figure 4.11: Plot of x3(t) for the Lorenz system.

-10

0

10

-20

-10

0

10
20

0

10

20

30

40

-10

0

10

-20

-10

0

10
20

0

10

20

30

40

Figure 4.12: Three-dimensional plot of the trajectory of the Lorenz system.

4.1. CONTINUOUS TIME 121

-20

-15

-10

-5

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20

Figure 4.13: A plot of x1(t) for two different, but very similar starting vectors x0.

huge differences in the state vector as time progresses. This has also been called
the butterfly effect after the theory that a butterfly flapping its wings can cause
significant changes in the weather because of the slight changes it makes in the
atmosphere.

This is bad news for numerical methods and should make you very suspicious Have skepticism in numerical
methods.of any application of numerical methods for predicting the precise behavior of a

nonlinear system beyond a short interval of time.

Problems for §4.1

�1. Consider the double-spring system of problem 2 on page 105 (but suppose
there is no friction). Suppose that the restoring force from the spring is
nonlinear. For example, suppose that when we pull the spring a distance x,
the restoring force is proportional to x3.

Do computer simulations of such a system and observe its chaotic behavior.

�2. Consider a single mass-and-spring system with a nonlinear spring. Do com-
puter simulations and observe that the system is not chaotic. Explain.

�3. The van der Pol equation is an example of mass-and-spring type system with
nonlinear resistance. The equation is:

x′′ + µ(x2 − 1)x′ + x = 0.

(a) Use the ideas of Problem 13 on page 25 (from Chapter 1) to express the
van der Pol equation as a dynamical system with two state variables.
[Hint: Introduce a new variable y with y = x′.]

(b) Pick a value for µ (say µ = 1), and draw a picture of the phase space
of this system. Draw small arrows anchored at points (x, y) pointing in
the direction the system is heading. Sketch several trajectories.

�4. Find all fixed points of the Lorenz system (see §4.1.4 on page 118) with σ = 10,
b = 8

3 , and r = 28. [Hint: There are three.]

Use linearization to show that all the fixed points are unstable.

122 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

�5.* For each of the following families of dynamical systems x′ = fa(x) the origin,
0, is a fixed point. As the parameter a changes, the system undergoes a Hopf
bifurcation. Determine the value of a where this bifurcation occurs, and plot
trajectories of the systems for values of a that are ±0.1 of the bifurcation
value.

(a) fa

[
x1

x2

]
=
[

−x2

sinx1 + ax2

]
.

(b) fa

[
x1

x2

]
=
[

a(ex1 − 1) + x2

−x1

]
.

�6. Consider the four-dimensional system x′ = Ax where

A =

0 1 0 0
−1 0 0 0

0 0 0
√

2
0 0 −

√
2 0

 , and x0 =

0
1
0
1

 .

(a) Find an exact formula for x(t).

(b) Sketch graphs of x1(t), x2(t), x3(t), and x4(t).

(c) Explain why

(i) x(t) does not tend to a fixed point,

(ii) x(t) does not tend to infinity, and

(iii) x(t) does not tend to a periodic orbit.

For (iii), you need to use the fact that
√

2 is an irrational number, i.e.,√
2 cannot be written as the quotient of two integers.

(d) Despite (iii) from the previous part of the problem, explain that this
system can be decomposed into periodic subsystems.

(e) Explain why x(t) is not chaotic. In particular, explain why x(t) does
not exhibit sensitive dependence on initial conditions.

4.2 Discrete time

We now turn to studying the behavior of discrete time dynamical systems x(k+1) =
f(x(k)). Recall that a fixed point of such a system is a state vector x̃ for which
f(x̃) = x̃. The fixed point x̃ is stable if the eigenvalues of Df(x̃) have absolute
value less than 1.

We limit our discussion to one-dimensional systems. In this case we have a
simpler condition to check for stability: The fixed point x̃ is stable if |f ′(x̃)| < 1
and unstable if |f ′(x̃)| > 1.

In linear discrete time systems there are essentially only two behaviors: conver-
gence to a fixed point or divergence to infinity. There is one notable exception: If
f(x) = b− x, then as we iterate f , we achieve the values

x0 7→ b− x0 7→ x0 7→ b− x0 7→ x0 7→ · · · .

The system oscillates between two values.
We now explore periodic behavior of discrete systems.

4.2. DISCRETE TIME 123

-2 -1.5 -1 -0.5 0.5 1

-2

-1.5

-1

-0.5

0.5

1

Figure 4.14: The graph of the function f(x) = 1 − x2. The fixed points of f are
the points of intersection with the line y = x.

4.2.1 Periodicity

Let x(k + 1) = f(x(k)) be a one-dimensional discrete time dynamical system. We Recall that fk(x) does not
mean the kth power of f(x)
but rather the kth iteration
of f starting at x.

can write x(k) = fk(x).
A fixed point of this system is a value x̃ for which f(x̃) = x̃. More generally, a

periodic point of this system is a value x̃ for which fk(x̃) = x̃. We call the number
k a period of x. Now if x is a periodic point with period k we know that x = fk(x),
but it then follows that

f2k(x) = fk[fk(x)] = fk(x) = x,

so x is also periodic with period 2k. The same reasoning shows that x is periodic
with periods 3k, 4k, etc. These are not the fundamental period of x. We call the
least positive integer k for which x = fk(x) the prime period of x.

The term prime period can cause some linguistic confusion because prime periods Primality of periods is not
the same as primality of
numbers.

need not be prime numbers. It is possible for a function to have a periodic point x
of prime period 4. This simply means that f(x) 6= x and f2(x) 6= x and f3(x) 6= x,
but f4(x) = x. In this context prime means indecomposable. (See problems 7 and
8 on page 159.)

Let us consider an example. Suppose f is the function f(x) = 1 − x2. What
are the fixed points of f? They are the solutions to the equation f(x) = x, i.e, we
solve

1− x2 = x ⇒ x2 + x− 1 = 0 ⇒ x =
−1±

√
5

2
.

In Figure 4.14 we see the graph of the function y = f(x) and the line y = x; the
points where these graphs cross determine the fixed points of f .

To check the stability of these fixed points we note that f ′(x) = −2x, so f ′

evaluated at these fixed points give 1 +
√

5 ≈ 3.236 and 1 −
√

5 ≈ −1.236. Since
|f ′(x)| > 1 at both of these fixed points, they are unstable.1 Thus when we iterate
f , we do not expect the iterates to tend toward either of (−1±

√
5)/2.

What do we see? Let’s experiment and see what happens when we iterate f
starting at, say, x = 1

2 . We compute

0.50 7→ 0.75 7→ 0.44 7→ 0.81 7→ 0.35 7→ 0.88 7→ 0.23 7→ · · · .
1That f ′[(−1−

√
5)/2] > 1 is visible in Figure 4.14. Less clear, but also true, is that f ′[(−1 +√

5)/2] < −1.

124 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.15: The first several iterations of f(x) = 1− x2.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 4.16: Graphical analysis of iterating f(x) = 1− x2 starting at x = 1
2 .

From these few values, it is hard to see what’s going on. Let’s plot several iterations
to try to understand what’s happening. Figure 4.15 plots the first several values of
fk(1

2). It is now clear that as k →∞ the values fk(1
2) oscillate between 0 and 1.

We also show the iterations graphically in Figure 4.16. Notice that the iterations
spiral out from the unstable fixed point 1

2 (−1+
√

5) and start to alternate between
values approaching 0 and 1.

Notice that f(0) = 1 and f(1) = 0, hence 0 and 1 are periodic points of primeFinding all points of prime
period 2. period 2. We might wonder if there are other points of prime period 2. Such points

must satisfy the equation f2(x) = f(f(x)) = x. To solve this equation, we first

4.2. DISCRETE TIME 125

-2 -1 1 2

-2

-1.5

-1

-0.5

0.5

1

Figure 4.17: Graph of the function y = f2(x) where f(x) = 1−x2. The intersections
with the line y = x give the four points of period 2.

work out a formula for f(f(x)):

f(x) = 1− x2, so
f2(x) = f [f(x)]

= f
(
1− x2

)
= 1−

(
1− x2

)2
= 1−

(
1− 2x2 + x4

)
= 2x2 − x4.

Now, we need to solve f2(x) = x, i.e., we solve

x = 2x2 − x4 ⇒ x4 − 2x2 + x = 0.

We can factor x4−2x2 +x as x(x−1)(x2 +x−1), so the points of period 2 of f are
0, 1, and (−1 ±

√
5)/2. Can this be? Aren’t those last two values the fixed points

of f? Yes, they are and everything is OK. You see, the fixed points of f are also
left unchanged when we compute f(f(x)). Fixed points are periodic with period 2,
but their prime period is 1. Thus the only points of prime period 2 are 0 and 1.

We can also use graphical methods to verify that 0, 1, and (−1±
√

5)/2 are the
only points of period 2 of f . Figure 4.17 shows the graph of the function f2(x).
The four points where the curve crosses the line y = x correspond to f ’s four points
of period 2.

Now we can ask, Does f have points of prime period 3? If so, they satisfy Finding points of period 3.

f3(x) = x. We can compute that

f3(x) = f(f2(x))
= f(2x2 − x4)
= 1− [2x2 − x4]2

= 1− 4x4 + 4x6 − x8.

To solve f3(x) = x we solve x = 1− 4x4 + 4x6 − x8, or equivalently, 1− x− 4x4 +
4x6 − x8 = 0. This equation factors (a little) to give(

1 + x2 + x3 − 2x4 − x5 + x6
) (

1− x− x2
)

= 0.

126 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

-2 -1 1 2

0.5

1

1.5

Figure 4.18: The graph of y = x6 − x5 − 2x4 + x3 + x2 + 1.

The two roots of the quadratic factor are (−1±
√

5)/2, the fixed points of f . This
is no surprise, since if x is a fixed point, then certainly f3(x) = x as well. Any other
points of period 3 are the roots of the 6th degree polynomial x6−x5−2x4+x3+x2+1.
We plot the graph of this polynomial in Figure 4.18. From the graph it is clear
that x6 − x5 − 2x4 + x3 + x2 + 1 has no real roots. Indeed, we can find the six
roots of this polynomial by numerical methods, and they are 0.0871062±0.655455i,
−1.00914 ± 0.324759i, and 1.42203 ± 0.114188i. Thus f has no periodic points of
prime period 3.

For any function f it is simple in principle to find the points of period k. All oneHow to find periodic points.

has to do is solve the equation fk(x) = x. In practice this can be extremely difficult.
If f(x) is a quadratic polynomial, then the equation fk(x) = x is a polynomial of
degree 2k. (When k = 10, this means finding the roots of a polynomial of degree
over 1000.)

4.2.2 Stability of periodic points

We have considered the behavior of the function f(x) = 1 − x2. We saw that its
two fixed points, (−1±

√
5)/2, are unstable. Using numerical methods, we observed

that starting at x = 1
2 the iterates approach the period 2 points 0 and 1. Why does

this happen?
To understand why fixed points of a function f are stable, we can examine theA linearization test for the

stability of periodic points. graph y = f(x). To understand f ’s points of period 2, it is best to look at the
graph y = f2(x). The four fixed points of f2 are the four points of period 2 of f .
Look at Figure 4.17. The fixed points (−1 ±

√
5)/2 (at about −1.6 and 0.6) are

clearly unstable—it is easy to see that the slope of the curve y = f2(x) through
those points is steeper than the slope of the line y = x. How about the other two
fixed points of f2, namely 0 and 1? From the graph, it appears that the slopes at
these points are nearly flat. Thus we need to compute (f2)′(0) and (f2)′(1). To
compute these derivatives, we could work out f2(x), take the derivative, and then
substitute 0 and 1 for x. That method is fine, but here is another way using the
chain rule:

d

dx
f2(x) =

d

dx
f [f(x)] = f ′[f(x)] · f ′(x).

Now, f(x) = 1− x2, so f ′(x) = −2x. We compute

(f2)′(0) = f ′[f(0)]f ′(0) = f ′(1)f ′(0) = 0, and
(f2)′(1) = f ′[f(1)]f ′(1) = f ′(0)f ′(1) = 0,

4.2. DISCRETE TIME 127

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 4.19: Iterating f2(x) (where f(x) = 1− x2) starting at x0 = 1
2 .

which verifies our impression that the curve y = f2(x) is flat at x = 0 and x = 1.
Thus 0 and 1 are attractive fixed points of f2; see Figure 4.19. It is clear that when
we start at x0 = 1

2 and proceed two steps at a time (i.e., iterate f2), we approach 0.
Had we started just to the right of (−1+

√
5)/2 ≈ 0.62, we would have approached

1. In either case, we see that the iterates of f tend to the alternating sequence 0,
1, 0, 1, etc.

We know that {0, 1} is an attractive orbit of period 2 because |(f2)′(0)| < 1
(and also |(f2)′(1)| < 1).

Let us summarize what we have learned. Periodic points and their
stability: a summary.

• To find the points of period k, solve the equation fk(x) = x. Let p be a point
of period k.

• If |f ′(p)| < 1, then if the system starts near p, it gravitates to the orbit
{p, f(p), f2(p), . . . , fk−1(p)}. This is a stable periodic orbit.

• Otherwise, if |f ′(p)| > 1, then {p, f(p), f2(p), . . . , fk−1(p)} is an unstable
orbit. If the system is started near (but not at) one of these points, subsequent
iterations move farther away from the orbit.

4.2.3 Bifurcation

We have studied how to find fixed and periodic points of discrete time dynamical How a slight change in f can
dramatically alter the nature
of its periodic points.

systems x(k + 1) = f(x(k)). We are now interested in gently changing f and
observing what happens to the fixed and periodic points. We assume that we have
a family of functions fa where a is a parameter—a number we can adjust. We
assume that the function fa changes gradually as we change a. In particular, we
can think of fa(x) as a function of two numbers: a and x. As such, we require f to
be differentiable with continuous derivatives.

128 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

-1 -0.5 0.5 1 1.5

-0.5

0.5

1

1.5

Figure 4.20: Graphs of the functions fa(x) = x2 + a for various values of a near 1
4 .

A bifurcation is a sudden change in the number or nature of the fixed and
periodic points of the system. Fixed points may appear or disappear, change their
stability, or even break apart into periodic points!

Tangent (saddle node) bifurcations

Consider the functions
fa(x) = x2 + a.

We ask, What are the fixed points offa? We solve the equation fa(x) = x, i.e.

x2 + a = x ⇒ x2 − x + a = 0 ⇒ x =
1±
√

1− 4a

2
.

Notice that if a > 1
4 , then fa has no fixed points (because fa(x) = x has no real

roots). For a = 1
4 there is a unique fixed point, and for a < 1

4 there are two fixed
points. This can be seen most clearly in Figure 4.20. When a > 1

4 , the curve
y = fa(x) doesn’t intersect the line y = x, so there are no fixed points. Then, just
when a = 1

4 , there is a unique fixed point at x̃ = 1
2 . Graphical analysis shows that

this point is semistable; it attracts on the left and repels on the right. Now, just
as we decrease a below 1

4 , the fixed point 1
2 splits in two—it bifurcates. When a

is just below 1
4 , the two fixed points are (1 ±

√
1− 4a)/2. Glancing at the graph

in Figure 4.20, we see that the larger fixed point is unstable (the curve is steep),
while the smaller fixed point is stable (the curve is relatively flat). Let’s verify this
analytically.

The derivative of fa(x) = x2 + a is f ′a(x) = 2x. At the larger fixed point,
x̃1 = (1 +

√
1− 4a)/2, we have f ′a(x̃1) = 1 +

√
1− 4a > 1, confirming that x̃1 is

unstable.
At the smaller fixed point, x̃2 = (1−

√
1− 4a)/2, we have f ′a(x̃1) = 1−

√
1− 4a;

this value is clearly less than 1, and if a is not too much below 1
4 , it is also greater

than −1. In particular, if − 3
4 < a < 1

4 , then
√

1− 4a is real and less than 2. In this
range, the smaller fixed point is stable. (We discuss what happens near a = − 3

4 in
just a moment.)

It is interesting to plot both fixed points of fa as a function of a; Figure 4.21
does this. The horizontal axis represents a, and the vertical axis is x. For each

4.2. DISCRETE TIME 129

-0.2 -0.1 0.1 0.2

-0.2

0.2

0.4

0.6

0.8

1

1.2

Figure 4.21: Bifurcation diagram for fa(x) = x2 + a over the range − 1
4 ≤ a ≤ 1

4 .

value of a we plot the fixed points of fa. Notice that to the right of a = 1
4 there are

no fixed points, then as a decreases, we suddenly have a unique semistable fixed
point at a = 1

4 which splits in two below 1
4 .

This sudden change in fixed point behavior is called a bifurcation. This par-
ticular example (with the sudden appearance and then splitting of a fixed point)
is called a tangent (or saddle node) bifurcation. It is called a tangent bifurcation
because the curves y = fa(x) become tangent to the line y = x at the bifurcation
value (in this example 1

4 .)
Notice that at a tangent bifurcation we have f ′a(x̃) = 1, since the curve y = fa(x)

is just touching the line y = x.

Period-doubling (pitchfork) bifurcations

Now let’s see what happens near a = − 3
4 . The larger fixed point, x̃1 = (1 +√

1− 4a)/2, has f ′(x1) = 1 +
√

1− 4a > 1 and so is unstable. The other fixed
point, x̃2 = (1 +

√
1− 4a)/2, has f ′(x̃2) = 1 −

√
1− 4a. When a > − 3

4 , we have
−1 < f ′(x̃2) < 1, so x2 is stable. However, when a < − 3

4 , we have f ′(x̃2) < −1 and
therefore x̃2 becomes unstable. As a drops through − 3

4 we see a sudden change in
the nature of the fixed point x̃2 from stable to unstable.

Let’s see what happens if we iterate fa(x) for a just less than − 3
4 . Let us

take a = −0.8 < − 3
4 . When a = −0.8, we have x̃2 ≈ −0.5246951, so let us take

x0 = −0.5. Figure 4.22 plots the first 100 iterations. Notice that the values appear
to be periodic with period 2. Why does this happen?

To understand this phenomenon, it helps to first find the points of period 2 for
fa. In other words, we need to solve the equation

fa(fa(x)) = f2
a (x) = x.

Now,
f2

a (x) = fa(x2 + a) = (x2 + a)2 + a = x4 + 2ax2 + a2 + a.

Thus we must solve

x4 + 2ax2 + a2 + a = x ⇒ x4 + 2ax2 − x + a2 + a = 0.

Fortunately, this polynomial factors (a bit) to give

x4 + 2ax2 − x + a2 + a = (x2 − x + a)(x2 + x + a + 1) = 0.

130 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

0 10 20 30 40 50 60 70 80 90 100
-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

Figure 4.22: Several iterations of fa(x) = x2 + a with a = −0.8 < − 3
4 , starting at

x0 = −0.5, which is near x̃2.

Thus we have four roots to the equation f2
a (x) = x, namely,

1±
√

1− 4a

2
and

−1±
√
−3− 4a

2
.

The first two roots, (1±
√

1− 4a)/2, are the fixed points of fa. The other two roots,
which we call p1 and p2, are therefore points of prime period 2. Notice, however,Take a moment to verify

that fa(p1) = p2 and that
fa(p2) = p1.

that we need the term under the square-root sign to be positive in order for these
points to be real. This happens provided −3− 4a ≥ 0⇒ a ≤ −3

4 .
Aha! This can’t be a coincidence! Furthermore, when a = − 3

4 , we have p1 =
p2 = x̃2 = − 1

2 . Just as the point x̃2 goes from stable to unstable it gives birth to a
pair of points of period 2. We’ll see how this happens in just a moment. Figure 4.23
illustrates this birth. In this graph we plotted for each value of a on the horizontal
axis the fixed and periodic points of fa on the vertical axis. For example, at a = −1
we plotted three points: 0 (a point of period 2), −0.6 (a fixed point), and −1 (a
point of period 2).

Notice that as a drops past − 3
4 we see two new curves in the bifurcation diagram.

The pitchfork has three branches: the middle is the fixed point x̃2, and the other
two tines are p1 and p2.

Let’s check the stability of these points of period 2. We want to know |(f2
a)′(x)|

for x = p1 and x = p2. Now, (f2
a)′(x) = f ′a[fa(x)] · f ′a(x). For these points, we have

(f2
a)′(p1) = f ′a[fa(p1)] · f ′a(p1)

= f ′a(p2) · f ′a(p1)
= 2p2 · 2p1

=
(
−1−

√
−3− 4a

) (
−1 +

√
−3− 4a

)
= 1− (−3− 4a) = 4 + 4a.

Likewise, (f2
a)′(p2) = 4 + 4a. When a < − 3

4 we know that 4 + 4a < 1. So long as
a > − 5

4 we have 4 + 4a > −1 and we know that these periodic points are stable.
This bifurcation—where a stable fixed point becomes unstable and casts off two

stable points of period 2—is called a pitchfork or period-doubling bifurcation.
Let’s see how fa and f2

a behave during this bifurcation. Figures 4.24 through
4.26 are graphs of the functions fa and f2

a for values of a above, equal to, and below
− 3

4 .

4.2. DISCRETE TIME 131

unstable fixed point

sta
ble

 fi
xe

d
po

in
t

stable points o
f p

rim
e period tw

o

unstable fixed point

0.25–0.5–1

0.5

1

1.5

Figure 4.23: Bifurcation diagram for fa(x) = x2 + a showing the pitchfork bifurca-
tion at a = − 3

4 .

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0.25

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0.2

Figure 4.24: Plot of y = fa(x) (parabola) and y = f2
a (x) (S-shaped) where fa(x) =

x2 + a. In this plot a = −0.6 > − 3
4 .

132 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0.25

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0.2

Figure 4.25: Plot of y = fa(x) and y = f2
a (x) with a = −0.75 = − 3

4 .

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0.25

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0.2

Figure 4.26: Plot of y = fa(x) and y = f2
a (x) with a = −0.9 < − 3

4 .

In the first graph (Figure 4.24) we have a = −0.6 > − 3
4 . For this value of aPrior to bifurcation.

the fixed point x̃2 is stable and there are no points of prime period 2. The curve
y = fa(x) crosses the line y = x at x̃2 with a slope f ′a(x̃2) ≈ −0.84, hence it is
stable. Notice that the curve y = f2

a (x) crosses the line y = x just at the point x̃2;
the slope at the crossing is positive but less than 1.

In the second graph (Figure 4.25) we have a = − 3
4 , the critical value. The curveAt the bifurcation.

y = fa(x) crosses the line y = x at a slope exactly equal to −1. Thus linearization
does not tell us the stability of this fixed point. Notice that y = f2

a (x) crosses the
line y = x at exactly the same place but with slope +1. Again, we cannot tell from
linearization the stability of x̃2. Graphical analysis (or numerical experimentation)
reveals, however, that x̃2 is stable (but barely!).

Finally, the third graph (Figure 4.26) shows the case with a = −0.9 < − 3
4 .After the bifurcation.

Notice that now the curve y = fa(x) crosses y = x with a steeper slope (less than
−1), so the fixed point x̃2 is now unstable. However, the curve y = f2

a (x) has

4.2. DISCRETE TIME 133

0 2 4 6 8 10 12 14 16 18 20
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 4.27: Iterations of fa(x) = x2 + a with a = −1.3 and x0 = 0.5.

twisted even further and now intersects the line y = x three times: once at x̃2

(with slope greater than 1) and also at p1 and p2 (with positive slope less than 1).
This confirms the calculation that p1 and p2 form a stable periodic orbit of period
2.

Imagine Figures 4.24 through 4.26 linked by a movie. As a drops through − 3
4

we see the curve y = fa(x) twisting as it crosses the line y = x with steeper and
steeper slope, destabilizing the fixed point x̃2 as a passes − 3

4 . Likewise, the curve
y = f2

a (x) twists more and more (becoming more S-like) until (at a = − 3
4) it crosses

y = x three times: once at the now unstable fixed point and twice at the stable
points of period 2.

We checked that the points p1 and p2 form a stable orbit of period 2 once
a < − 3

4 , but we also required a > − 5
4 . What happens as we drop past a = − 5

4?
First, let’s do a numerical experiment. In Figure 4.27 we take a = −1.3 < − 5

4 and
start iterating. Observe that the values tend to repeat after four iterations. They
eventually settle down into an orbit whose values are approximately

−1.149 7→ 0.0194 7→ −1.2996 7→ 0.389 7→ −1.149.

What has happened? The points p1 and p2 of period 2 have destabilized and
undergone another period-doubling bifurcation, each splitting in two, giving four
points of period 4. The same type of twisting action can be seen in Figure 4.28.
In this figure we have plotted the graphs of the function y = f2

a (x) and y = f4
a (x)

for a = − 5
4 . (The graph of f2

a is roughly S-shaped, and the graph of f4
a is more

wiggly.) You should note that the curve y = f2
a (x) crosses the line y = x three

times in the figure. The middle crossing is an original fixed point x̃2. The other two
crossings are the nearly destabilized points of period 2, p1 and p2; at these latter
two crossings the curve y = f2

a (x) crosses with slope −1. The curve y = f4
a (x)

crosses y = x at the same points but with slope +1. As a drops below − 5
4 the

y = f4
a (x) curve will twist even more and give birth to four points, forming a stable

orbit of prime period 4.

The period-doubling (or pitchfork) bifurcation consists of a stable fixed point x̃
becoming unstable and giving rise to a stable orbit of period 2. At the bifurcation
value we have f ′(x̃) = −1, and (f2)′(x̃) = 1.

134 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

-1.5-1.25 -1 -0.75-0.5-0.25 0.25

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0.25

Figure 4.28: Graphs of the functions y = f2
a (x) and y = f4

a (x) for a = − 5
4 .

Bifurcation diagrams

In our example (fa(x) = x2 + a) we noticed that at a = 1
4 we have a sudden

appearance of two fixed points: the unstable x̃1 and the stable (for the moment)
x̃2. As a drops past − 3

4 the fixed point x̃2 becomes unstable and breaks apart into
two stable points of period 2: p1 and p2; then as a drops through − 5

4 these points
become unstable and give rise to four points of period 4.

What happens next? Not surprisingly, as a drops a bit farther these four points
destabilize and give rise to a stable orbit of period 8. As a drops a tiny bit more the
eight points of period 8 bifurcate again to give 16, then 32, etc. These bifurcations
become increasingly hard to compute exactly, so we switch to numerical methods.

If we take a = −1.3 (as we did in Figure 4.27), we can find the points of period
4 by two means. One is to work out the polynomial f4

a (x) and get its roots. This
involves solving a 16th order polynomial equation—yuck! A simpler method is toFinding periodic points

through iteration. start with some arbitrary value, say x0 = −1, and iterate fa many times (100 should
do). The next several values will tell us the behavior of fa for this value of a. What
we see is a repeating pattern every four stages. Try it! It is not hard to write a
simple computer program or to use spreadsheet software to do the computations.
What you do see are the stable periodic points of the system for your chosen value
of a. What you don’t see are the unstable ones.

We can do this for several values of a and then plot a graph. On the horizontal
axis we record the values of a, and on the vertical axis we plot the periodic points
the computer finds; see Figure 4.29. Look at the diagram from right to left. We
start at a = 0 (although we could start at a = 1

4 , where fa first has a fixed point).
From a = 0 down to a = − 3

4 we see a single curve representing the attractive fixed
point. At a = − 3

4 the curve splits in two (bifurcates). The two branches represent
the points of period 2. The fixed point x̃2 (which forms the middle tine of the fork in
Figure 4.22) has disappeared; this corresponds to the fact that it is an unstable fixed
point, so when we iterate fa, the iterates stay away from x̃2. At − 5

4 the diagram
bifurcates again into four branches: the attractive orbit of period 4. A bit farther
(just below a = −1.3) the split into an orbit of period 8 is visible. The branches of
subsequent splits into orbits of period 16, 32, 64, etc., are too tightly clustered to

4.2. DISCRETE TIME 135

Figure 4.29: Computer-generated bifurcation diagram for fa(x) = x2 + a. The
horizontal axis is a (and runs from −2 to 0). The vertical axis runs from −2 to 2.

see in the low-resolution picture we have presented. After all the period-doubling
has happened (somewhere around a = −1.4), we enter a chaotic region. For some
values between a = −1.5 and a = −2 we have periodic behavior. For example, just
below a = −1.75 it looks like we have an attractive orbit of period 3 (this is, in
fact, true, as we discuss later). For other values of a it is unclear whether we have
a periodic orbit (with some high period) or chaotic behavior (we discuss the idea
of chaos in §4.2.5).

Transcritical bifurcations

Before we leave this section, we discuss one more type of bifurcation: the transcrit-
ical bifurcation.

To illustrate the transcritical bifurcation, we use a different family of functions:
Let ga(x) = x2 + ax. Figure 4.30 shows plots of the function y = ga(x) (and the
line y = x) for various values of a. It is clear from the figure that ga(x) has two
fixed points: 0 and something else. Let’s work this out analytically. To find the
fixed points, we solve the equation ga(x) = x, i.e.,

x2 + ax = x ⇒ x2 + (a− 1)x = x[x + (a− 1)] = 0;

hence the fixed points of ga are 0 and 1− a. Notice that at the special value a = 1
these two fixed points become one. Something interesting is happening there!

Let’s check the stability of these fixed points. We note that g′a(x) = 2x + a,
hence

g′a(0) = a, and
g′a(1− a) = 2(1− a) + a = 2− a.

136 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

-2 -1 1 2

-1

1

2

3

Figure 4.30: Plots of the function ga(x) = x2 + ax for various values of a.

-1 0 1 2 3
-2

-1

0

1

2

Figure 4.31: Bifurcation diagram for the family of functions ga(x) = x2 + ax. This
is a transcritical bifurcation.

When −1 < a < 1, we see that 0 is a stable fixed point and 1− a is unstable, but
in the interval 1 < a < 3 it’s 1 − a that’s stable and 0 is unstable. At the value
a = 1 they swap roles.

Figure 4.31 shows the bifurcation diagram for the functions ga. Notice that at
the bifurcation value a = 1 the two fixed points merge, and when they split apart,
they have swapped stability.

This is a transcritical bifurcation: two fixed points that merge and then split
apart.

4.2. DISCRETE TIME 137

-2 -1 1 2

-2

-1

1

2

Figure 4.32: Graphs of the functions fa(x) = x2 + a and f3
a (x) for a = −1.76.

4.2.4 Sarkovskii’s theorem*

A function with points of prime period 3

Let us return to the main example of the preceding section: the family of functions Having points of one prime
period can imply having
points of another. In
particular, this example has
points of prime period 3. In
this section we show that
this implies having points of
all prime periods.

fa(x) = x2 +a. At a = −1.76, fa has points of period 3. If we perform a numerical
experiment, it is plausible that the iterates of fa settle into an orbit of period 3.
Let’s show this analytically. First, let us compute the points of period 3 for fa. To
do this we must solve the equation f3

a (x) = x. Now, fa(x) = x2 +a, and a = −1.76
and so (after some messy computations for which a package such as Mathematica
is very helpful) we have

f3
a (x) = 0.0291738− 9.4167 x2 + 15.0656 x4 − 7.04 x6 + x8.

We can use the computer to find the eight roots of the equation f3
a (x) = x,

namely, −1.75943, −1.74226, −0.917745, −0.133203, 0.0238308, 1.27546, 1.3356,
and 1.91774. Of these, −0.917745 and 1.91774 are actually fixed points of fa. Fig-
ure 4.32 shows the graph of the function y = f3

a (x) as well as the function y = fa(x)
and the line y = x. The two fixed points of fa are clearly visible. The other six
roots of f3

a (x) = x are not so clear. In Figure 4.33 we zoom in on the three places
where the curve y = f3

a (x) nicks the line y = x. These graphs are useful in distin-
guishing between the root x = −1.75943 of f3

a (x) = x, which crosses the line y = x
with a gentle slope, and x = −1.74226, where y = f3

a (x) crosses y = x with a steep
slope. Of course, we can compute the derivatives at each of the roots analytically.
We find

(f3
a)′(−1.75943) = −0.448,

(f3
a)′(−1.74226) = 2.368,

(f3
a)′(−0.133203) = 2.368,

(f3
a)′(0.0238308) = −0.448,

(f3
a)′(1.27546) = 2.368, and

(f3
a)′(1.3356) = −0.448.

138 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

-1.78 -1.77 -1.76 -1.75 -1.74 -1.73 -1.72
-1.77

-1.76

-1.75

-1.74

-1.73

-1.72

-1.71

-0.15 -0.1 -0.05 0 0.05

-0.15

-0.1

-0.05

0

0.05

1.26 1.28 1.3 1.32 1.34
1.24

1.26

1.28

1.3

1.32

1.34

Figure 4.33: Graphs of the function y = f3
a (x) where fa(x) = x2 + a (with a =

−1.76) and the line y = x near x = −1.75 (top), x = 0 (middle), and x = 1.3
(bottom).

4.2. DISCRETE TIME 139

x

y

y=
x

a

b

a b

Figure 4.34: Graph of a continuous function f with points {a, b} of prime period 2.

Thus {−1.75943, 0.0238308, 1.3356} form a stable orbit of period 3 (the other three
values form an unstable orbit of period 3). Indeed,

fa(−1.75943) = 1.3356,

fa(1.3356) = 0.0238308, and
fa(0.0238308) = −1.75943.

(You should also check that the other three values also form an orbit of prime
period 3.)

Consequences of period 3

We have expended much effort to show that fa(x) for a = −1.76 has orbits of prime
period 3. So what? The “so what” is nothing short of miraculous. We will soon
know that this function has points of prime periods 13,098 and 93 and 2 and 83
and 100,000,000.

How, you might ask, can we know this? It turns out that if a continuous function
f (of one variable) has points of prime period 3, then it has points of prime period
k for any k. This is a special case of Sarkovskii’s theorem (which we explain in full
detail later). To begin, let’s consider a very simple version of the Sarkovskii result:

Let f : R→ R be a continuous function. If f has points of prime period 2, then f Prime period 2 implies a
fixed point.must have a fixed point.

To see why this works, suppose the points of prime period 2 are a and b. This
means that a 6= b, f(a) = b, and f(b) = a. Now let’s look at a graph of the function
f . It must look something like Figure 4.34. The curve y = f(x) must connect the
points (a, b) and (b, a). These points lie on opposite sides of the line y = x. Since
f is continuous, the curve y = f(x) must cross the line y = x; indeed, it must
cross2 somewhere between a and b. The point where y = f(x) crosses y = x must
correspond to a fixed point of f .

Thus if f has points of prime period 2, then it must have a point of prime period
1 (i.e., a fixed point). We note, however, that having prime period 2 does not imply
having fixed points of any other prime period (except period 1). For example,
consider the simple function f(x) = −x. Consider any number x. If x 6= 0, then
x is a point of prime period 2, since x 7→ −x 7→ x. Thus f has (many) points of
prime period 2. From our preceding argument we know that f must have a fixed
point; indeed, f(0) = 0. This discussion exhausts all possible values of x, so we
know there are no points of prime period 3 or higher.

2See problem 9 on page 159.

140 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

x

y

a b c

a

b

c

Figure 4.35: Graph of f with f(a) = b, f(b) = c, and f(c) = a.

We are now ready to work on the following:

Let f : R→ R be a continuous function. If f has points of prime period 3, then fThis special case of
Sarkovski’s theorem is due
to Li and Yorke. We assume
only that f is continuous; it
need not be differentiable.

has points of prime period k for all positive integers k.

To say that f has points of prime period 3 means there are three distinct num-
bers a, b, and c for which

f(a) = b, f(b) = c, and f(c) = a.

By (perhaps) renaming3 the points, we can assume that b is between a and c, i.e.,
either a < b < c or a > b > c. For the rest of our discussion, we will consider only
the case a < b < c. The discussion in the other case is essentially the same.4

We now work to show that f has points of prime period 1, 2, 3, 4, etc.

Step 1: Why f has a fixed point (a point of prime period 1).
We know that a < b < c and f(a) = b, f(b) = c, and f(c) = a. Thus if we draw

the graph of f , it must go through the points (a, b), (b, c), and (c, a). This is shown
in Figure 4.35. Notice that the point (a, b) is above the line y = x, and the point
(c, a) is below. Since f is continuous, the curve y = f(x) must cross the line y = x
somewhere between b and c. Where it crosses, we have a fixed point.

Step 2: Why f has points of prime period 2.
A point of period 2 satisfies f2(x) = x, so we sketch a graph of y = f2(x). Now,

f2(a) = f [f(a)] = f(b) = c,

f2(b) = f [f(b)] = f(c) = a, and
f3(c) = f [f(c)] = f(a) = b.

Thus the curve y = f2(x) must go through the points (a, c), (b, a), and (c, b). This
is illustrated in Figure 4.36. Notice that (a, c) and (b, a) are on opposite sides of
the line y = x, so the curve y = f2(x) must cross y = x between a and b. Where

3If b isn’t between the other two, but say c is, we can rename the points a′, b′, c′, where b′ = c,
c′ = a, and a′ = b. We still have f(a′) = b′, f(b′) = c′, and f(c′) = a′. Notice that now b′ (the
‘old’ c) is between a′ and c′.

4Indeed, it would be a good exercise for you to reproduce everything we are about to do for
the case a > b > c to check your understanding. Do this the second time you read this material.

4.2. DISCRETE TIME 141

x

y

a b c

a

b

c

Figure 4.36: Plot of the graph y = f2(x) where f(a) = b, f(b) = c, and f(c) = a.
The curve y = f2(x) must go through the points (a, c), (b, a), and (c, b).

x

y

a b c

a

b

c

d

e

y =
 f(x)

y = f2(x)

Figure 4.37: A detailed look at y = f(x) and y = f2(x) where f(a) = b, f(b) = c,
and f(c) = a. The point d is the last fixed point of f in [a, b]. The point e satisfies
d < e < b and f(e) = b.

they cross we must have a point of period 2. But wait! Is this a point of prime
period 2? It is conceivable that this crossing represents a fixed point of f (and
would also satisfy f2(x) = x) and is not a point of prime period 2. We need to be
more careful.

It is possible that f has fixed points in the interval [a, b]. Let d be the last fixed
point of f in the interval [a, b]. Thus f(d) = d, but for all x with d < x ≤ b we
have f(x) 6= x [note that f(b) 6= b, since f(b) = c]; see Figure 4.37. So far we know
a < d < b < c, f(a) = b, f(b) = c, f(d) = d, f(c) = a, and for no x between d and
b do we have f(x) = x. So the curve y = f(x) must go from the point (d, d) to the

142 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

point (b, c) without crossing the line y = x.
Now, since d < b < c and the function f is continuous, we can’t get from

(d, d) to (b, c) without crossing the line y = b (the middle, horizontal dotted line
in Figure 4.37). Let e be a point where the curve y = f(x) crosses y = b with
d < e < b.

Let’s summarize what we know thus far:

• a < d < e < b < c,

• f(a) = b, f(b) = c, and f(c) = a,

• f(d) = d, and for no x between d and b does f(x) = x, and

• f(e) = b.

Now it’s time to consider the curve y = f2(x). Let’s consider f2(e) and f2(b).
We have

f2(e) = f(f(e)) = f(b) = c, and
f2(b) = f(f(b)) = f(c) = a.

Hence the curve y = f2(x) must go through the points (e, c) and (b, a), which are
on opposite sides of the line y = x. Thus somewhere between e and b we have a
point where f2(x) = x (circled in Figure 4.37). This point x must be a point of
period 2, but (and this is what all the fuss was about) is it of prime period 2? Is
it possible that x is just a fixed point of f? The answer, happily, is that x cannot
possibly be a fixed point of f , since d < x < b, and d was the last fixed point of f
between a and b. We therefore are delighted to declare that x is indeed a point of
prime period 2. Whew!

Step 3: Why f has points of prime period 3.
This is a freebie. Our assumption is that f has points (a, b, and c) of prime

period 3.

Step 4: Why f has points of prime period 4.Lest panic ensue in the
reader, rest assured that this
is the last step in showing
that f has points of prime
period k for all k. Although
what we are about to do is
tailored to showing that f
has points of prime period 4,
the methods we now discuss
can be used to show that f
has points of prime periods
5, 6, and so on.

Before we begin, we need to develop a few ideas. First, let I be a closed interval,
i.e., I = [p, q] = {x : p ≤ x ≤ q}. We know that f is a function which, for every
number x, returns a number f(x). We use the notation f(I) to stand for the set of
all values f(x) where x ∈ I. In other words,

f(I) = {f(x) : x ∈ I}.

For example, if f(x) = x2 and I = [−1, 3], then f(I) = [0, 9], because if we square
all the numbers from −1 to 3, the answers we get are the numbers from 0 to 9.

Now we present two claims we use in showing that f has points of prime period
4.

Claim 1: If I is a closed interval and f(I) ⊇ I, then f(x) = x for some x ∈ I.

The hypothesis that f(I) ⊇ I means that for any number y in the interval I
there must be an x ∈ I for which f(x) = y. In other words, every number in I
must be hit by f(x) as x ranges over the interval I.

This is best illustrated geometrically. Consider Figure 4.38. We focus on the
section of the curve y = f(x) for x ∈ I, i.e., the portion of the curve between the
vertical lines x = p and x = q. The condition that f(I) ⊇ I means that the curve
y = f(x) must cover every y-value between p and q. This means that for some
x we have f(x) down at p, and for another x we have f(x) up at q. This means
that the curve y = f(x) must wander from points below (or on) the line y = x to
points above it as x ranges between p and q. Therefore, there must be a fixed point
x = f(x) for some x in the interval I = [p, q]. This justifies Claim 1.

4.2. DISCRETE TIME 143

x

y

I

I

p

q

p q

Figure 4.38: If f(I) ⊇ I, then f has a fixed point in the interval I.

x

y

I

J

I
0

p q

s

t

Figure 4.39: If f(I) ⊇ J , then for some I0 ⊆ I we have f(I0) = J .

Claim 2: If I and J are closed intervals and f(I) ⊇ J , then I contains a closed
subinterval I0 ⊆ I for which f(I0) = J .

The hypothesis is that for every number y in J , there must be some number x in
I for which f(x) = y. Of course, there may be some numbers x ∈ I for which f(x)
is outside J . (We only assumed “⊇”.) This is depicted graphically in Figure 4.39.
Suppose I = [p, q] and J = [s, t]. The condition that f(I) ⊇ J means that the
portion of the curve y = f(x) between the vertical lines x = p and x = q must
include all y-values between y = s and y = t. As the curve wanders around, it may
start across the gap from y = s to y = t, only to wander outside that region. But
at some stage, we must cross from y = s to y = t in an uninterrupted path. The
interval I0 represents the x-values of this uninterrupted path from y = s to y = t.
Thus we have f(I0) = J as required.

Armed with Claims 1 and 2, we are ready to hunt for points of prime period 4.
Here we go:

(a) Let I0 = [b, c].

144 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

Since f(b) = c and f(c) = a, we note that f(I0) ⊇ [a, c] ⊇ [b, c] = I0. So
using Claim 2, . . .

(b) . . . choose I1 ⊆ I0 so that f(I1) = I0.
Now, f(I1) = I0 ⊇ I1. So using Claim 2, . . .

(c) . . . choose I2 ⊆ I1 so that f(I2) = I1.
Now,

f3(I2) = f2[f(I2)]
= f2(I1) by (c)
= f [f(I1)]
= f(I0) by (b)
⊇ [a, c] ⊇ [a, b].

So using Claim 2, . . .

(d) . . . choose I3 ⊆ I2 so that f3(I3) = [a, b].
Now,

f4(I3) = f [f3(I3)]
= f([a, b]) by (d)
⊇ [b, c] because f(a) = b and f(b) = c

= I0 by (a)
⊇ I1 by (b)
⊇ I2 by (c)
⊇ I3 by (d).

In short, f4(I3) ⊇ I3, so by Claim 1, . . .

(e) f4 has a fixed point p in I3, i.e., p ∈ I3 and f4(p) = p.

We have found a point, p, of period 4, but we worry if p is of prime period 4.
It is and let’s see why.

Let’s recap what we know so far:

I0 = [b, c] ⊇ I1 ⊇ I2 ⊇ I3,

f(I1) = I0,

f(I2) = I1,

f3(I3) = [a, b], and
f4(p) = p for some p ∈ I3.

Since p ∈ I3, we know that f3(p) ∈ [a, b] (because (d) f3(I3) = [a, b]).
Since p ∈ I3 and I3 ⊆ I2, we have

p ∈ I2 ⇒ f(p) ∈ I1 ⇒ f2(p) = f [f(p)] ∈ I0 = [b, c].

(The first ⇒ is by (c), f(I2) = I1, and the second ⇒ is by (b), f(I1) = I0.)
Now, since I2 ⊆ I1 ⊆ I0 = [b, c], we know that p, f(p), and f2(p) are all in [b, c],

but f3(p) ∈ [a, b].
We know that p is periodic of period 4. We are now ready to explain why p

is of prime period 4. Suppose, for sake of contradiction, that p is periodic with
some period less than 4. This means that p = f(p) or p = f2(p) or p = f3(p).
Since p, f(p), f2(p) ∈ [b, c] it follows that all iterates fk(p) are in [b, c]. However,
we also know that f3(p) ∈ [a, b]. Since b is the only number [a, b] and [b, c] have in
common, we must have f3(p) = b. But then, p = f4(p) = f(b) = c, and therefore
f(p) = f(c) = a. The trouble is, f(p) ∈ [b, c], but f(p) = a 6∈ [b, c]. This is a
contradiction. Therefore our supposition that p is periodic with period less than 4
is absurd, and we conclude that p is periodic with prime period 4.

4.2. DISCRETE TIME 145

We can use the preceding technique to show that f must have points of prime
period 5, 6, and so on. For example, to show that f has a point of prime period 5,
we argue (as we did in (a), (b), etc., previously) that there are intervals [b, c] = I0 ⊇
I1 ⊇ I2 ⊇ I3 ⊇ I4 for which f(I1) = I0, f(I2) = I1, f(I3) = I2, and f4(I4) = [a, b].
We find a point q ∈ I4 so that f5(q) = q and check that q, f(q), f2(q), f3(q) ∈ [b, c],
but f4(q) ∈ [a, b]. We then conclude that q has prime period 5.

We have shown, then, that any continuous function f with points of prime
period 3 (such as f(x) = x2 − 1.76) must have points of prime period k for any k.

The Sarkovskii order

We have learned the following about a continuous function f : R→ R:

• If f has points of prime period 2, then f has points of prime period 1 but not
necessarily points of any other prime period.

• If f has points of prime period 3, then f has points of prime period k for any
positive integer k.

Further, functions such as f(x) = x3 have points of prime period 1 (i.e., fixed
points) but no points of primes period k for any k > 1.

We introduce a convenient shorthand for expressing such results. We write k .j
to stand for the following sentence: “If a continuous function f : R→ R has points We can utter the sentence

“k . j” tersely as “k forces
j.”

of prime period k, then it must have points of prime period j.”
For example, 2 . 1 means “continuous functions with points of prime period 2

must have fixed points.” The sentence 2.1 is true. However, it is not true that 1.2;
the function f(x) = x3 has points of prime period 1 (fixed points) but no points
of prime period 2. Of course, some functions with fixed points do have points of
prime period 2; however, not all do, so the sentence 1 . 2 is false.

The sentences 1 . 1, 2 . 2, 3 . 3, etc., are all trivially true. We also know that all
the following sentences are true:

3 . 1, 3 . 2, 3 . 3, 3 . 4, 3 . 5,

We can ask questions with this notation: Does 15 . 16? (The answer is yes, as
explained next.) Does 80 . 90? (The answer is no.)

Sarkovskii’s theorem enables us to answer all questions of the form: Does k . j? . is a total order on the
positive integers.It is an amazing fact that the relation . is a total order on the positive integers;

this means:

• For any two numbers j and k, either j . k or k . j.

• If j . k and k . j, then it must be the case that j = k.

• If j . k and k . `, then j . `.

You are familiar with ordering the positive integers with the ≥ relation; note that
≥ satisfies the same three properties that . satisfies.

We know that 3 . k for all positive integers k. This says that 3 is first in the
Sarkovskii ordering. What comes next? The answer is 5. There is even a last
number in the Sarkovskii ordering (which you already know!)—it’s 1. We know
that 1 . j is false for any j 6= 1.

Here is the full Sarkovskii ordering (which we will explain fully):

3 . 5 . 7 . 9 . 11 . · · ·
6 . 10 . 14 . 18 . 22 . · · ·
12 . 20 . 28 . 36 . 44 . · · ·
24 . 40 . 56 . 72 . 88 . · · ·
. · · · .
· · · . 32 . 16 . 8 . 4 . 2 . 1.

146 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

0 1 2 3 4 5 6
-1

0

1

2

3

4

5

Figure 4.40: Graph of the function f(x) = 1
6

(
2x3 − 21x2 + 61x− 24

)
. Notice that

f(1) = 3, f(2) = 5, f(3) = 4, f(4) = 2, and f(5) = 1.

The first row contains the odd numbers (other than 1) in their natural ascendingExplaining the Sarkovskii
ordering. order. The second row is obtained by doubling the numbers in the first row. The

third row is double the second, and the fourth is double the third. This pattern
continues for infinitely many rows: each is double the previous. (There is more
to come; please stand by.) In which row would we find the number 100? Since
100 = 4× 25 = 22 × 25 we find 100 in row number 3, just between 4× 23 = 92 and
4 × 27 = 104. Numbers of the form m2n, where m is an odd number (other than
1), can be found in row n + 1. What numbers have we missed? The powers of 2.
Numbers such as 16 can’t be written in the form m2n, where m is odd and greater
than 1. The last row in our chart (occurring after all the infinitely many other
rows) contains the powers of 2 in descending numerical order, with 2 and then 1 at
the end of the list.

Sarkovskii’s theorem is the following: If j appears before k in the preceding list,
then j . k is true. Otherwise (if j is after k in the ordering), j . k is false.

For example, 5 is the second number on the list. Sarkovskii’s Theorem tells us
that for any integer k other than 3, we have 5 . k. The proof of this fact is similar
to (but more involved than) our argument for 3 . k.

The following example shows that the sentence 5 . 3 is false. LetWhy 5 . 3 is false.

f(x) =
2x3 − 21x2 + 61x− 24

6
.

Please compute that f(1) = 3, f(2) = 5, f(3) = 4, f(4) = 2, and f(5) = 1, so
1 7→ 3 7→ 4 7→ 2 7→ 5 7→ 1. In lieu of computing these values by hand, examine
the graph of f in Figure 4.40. Thus f has {1, 2, 3, 4, 5} as points of prime period 5.
Now, f has three fixed points (no surprise, since 5 . 1) at 0.543195, 3.33737, andThe only solutions to

f3(x) = x are the three fixed
points of f ; there are no
other real roots.

6.61943. (The first two you can see in the graph; the third is just beyond the range
we plotted.) The question is, Does f have points of prime period 3? To answer
this, we plot the graph of f3(x) − x in Figure 4.41. We see that the curve crosses
the x-axis only at the values corresponding to the fixed points of f . The plot is a
bit worrisome: Does the graph dip below the x-axis around x = 0.9? In Figure 4.42
we enlarge that region to assure ourselves there are no other crossings. We can also
solve the 27th order polynomial equation f3(x) = x and find there are only 3 real
roots; the other 24 roots are complex.

This example shows that 5 . 3 is false.

4.2. DISCRETE TIME 147

1 2 3 4 5 6 7

-4

-2

2

4

Figure 4.41: Graph of f3(x) − x where f(x) = 1
6

(
2x3 − 21x2 + 61x− 24

)
. There

are only three zeros, and these correspond to the fixed points of f ; hence f has no
points of prime period 3.

0.6 0.7 0.8 0.9 1.1 1.2 1.3

-1

1

2

3

4

Figure 4.42: Graph of f3(x) − x where f(x) = 1
6

(
2x3 − 21x2 + 61x− 24

)
, near

x = 0.9.

4.2.5 Chaos and symbolic dynamics

We have been exploring the family of functions fa(x) = x2 + a. In this section we
consider two particular values of a, the case a = −1.95, and the case a = −2.64.
The particular values are not especially important. What is important is that −1.95
is just slightly greater than −2 and that −2.64 is less than −2.

Suppose a > −2 and we iterate fa. If the initial value is in the interval [−2, 2],
then the iterations stay within [−2, 2] as well (see the bifurcation diagram Fig-
ure 4.29 on page 135). When a < −2, we will see that for most values x, the
iterates fk(x) tend to infinity. The set of values x for which fk(x) stays bounded
is quite interesting, and the behavior of f on that set can be worked out precisely.

The case a = −1.95: chaos observed

Let’s perform numerical experiments with the function f(x) = x2 − 1.95. We
compute the first 1000 iterations of f , starting with x = −0.5, i.e., we compute
f(−0.5), f2(−0.5), . . . , f1000(−0.5). The best way to see these values is to look
at a graph. Figure 4.43 shows the first 100 values. The iterations do not seem
to be settling down into a periodic behavior. Perhaps we have not done enough
iterations? You should experiment on your computer, and compute more iterations
to see if you find a pattern. You won’t. The iterations continue in what appears to
be a random pattern. Of course, the pattern isn’t random at all! The numbers are

148 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80 90 100

Figure 4.43: One hundred iterations of f(x) = x2 − 1.95 starting with x = − 1
2 .

-4

-3

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

Figure 4.44: The difference fk(−0.5)− fk(−0.50001) for k = 1 to 100.

generated by a simple deterministic rule, f(x) = x2 − 1.95.
Now let’s throw a monkey wrench into the works. Let’s repeat the experiment,A slight change in the initial

value yields huge changes in
subsequent iterations.

only this time starting with x = −0.50001. When we do the iterations f(x), f2(x),
f3(x), etc., the first dozen or so are numerically very close to the iterations we
computed starting with x = −0.5. After that, however, the iterates move apart.
You should do the computations yourself. You can see the results in Figure 4.44.
Observe that for k ≥ 20 the values fk(−0.5) and fk(−0.50001) are wildly different.
Subtle differences in x lead to enormous differences in fk(x). We are witnessing
sensitive dependence on initial conditions. [This is similar to what we saw in the

4.2. DISCRETE TIME 149

case of the Lorenz attractor in §4.1.4.]
The news is even worse. How did we compute the values fk(−0.5)? We used

a computer, of course. The computer doesn’t compute each value exactly but only
to an accuracy of several digits (depending on the machine and the software it is
running). So my machine claims that f22(−0.5) = 1.82968746165504, but the last
decimal place or so is a round-off from the previous calculation. Now we know
that in several iterations this round-off error will become enormous. Although my Different answers to the

same problem.computer says that f1000(−0.5) = −1.9106, the truth is, I haven’t the vaguest idea
if this value is even remotely correct! The preceding value was computed using
Matlab on my Macintosh computer. Switching to Mathematica and redoing the
computation (on the same computer!), I get f1000(−0.5) = 0.93856. Make a game
out of this! See how many different answers you can get for f1000(−0.5).

In short, we haven’t the vaguest idea what f1000(−0.5) is. The iterations of this
function, although deterministic, are unpredictable. They are chaotic.

Can we “beat the system” by using greater accuracy? Yes and no. Using
Mathematica, we can coerce the computer to use 1000 digits worth of accuracy
to the right of the decimal point. This slows the computer down considerably
and makes each computation more accurate, but is 1000-digit accuracy enough to
overcome the mistakes introduced in each iteration? Yes—let’s see why.

We begin our analysis by comparing two different evaluations of f(x) using
slightly different values of x. Let ε be a very small number and let’s compare
f(x + ε) and f(x)

f(x) = x2 − 1.95,

f(x + ε) = (x + ε)2 − 1.95
= x2 + 2εx + ε2 − 1.95,

so
|f(x + ε)− f(x)| = |2εx + ε2|.

As we compute the iterations f(−0.5), f2(−0.5), f3(−0.5), . . . please observe that
we always have |fn(−0.5)| < 2. (You can convince yourself of this either alge-
braically or geometrically. If you like, look ahead in §6.2 on page 238 and at
Figure 6.13.) Therefore, if the error ε is small (say |ε| < 0.01), we have

|f(x + ε)− f(x)| = |2εx + ε2|
≤ |2εx|+ |ε2|
< 4.01|ε|
< 10|ε|.

We can interpret this result as follows. If x and y are the same to 1000 decimal
places, then f(x) and f(y) are the same to at least 999 decimal places. Therefore,
if our computer’s calculations are correct to more than 1000 digits of accuracy, then
our calculation of f1000(−0.5) should be correct to at least a few decimal places.

Using 1000-digit accuracy, my computer reports that f1000(−0.5) = 1.468974.
However, if we wanted to calculate f1000000(−0.5), then we should use 1 million
digits of accuracy, and my computer isn’t powerful enough to do that!

Instead of using 100-digit or 1000-digit precision, a computer can perform “infi-
nite” precision arithmetic. Instead of storing a number such as 1

3 to a finite number
of decimal places, the computer can work with this number as a pair of integers, 1
and 3. Will using infinite precision arithmetic enable us to compute f1000000(−0.5)?
Let’s try and see what happens. We can write f(x) as x2− 39

20 (since 39
20 = 1.95) and

−0.5 as − 1
2 . Using Mathematica we find that f(− 1

2) = − 17
10 and f2(− 1

2) = 47
50 . So

far so good. It looks as if we ought to be able to evaluate the iterates of f exactly.
Now for the bad news. Let’s look at f7(− 1

2). How bad could that be? We get (and

150 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

I promise that this is the actual computer output):

f7

(
−1
2

)
= −2024563728614562663135957777230476986110199733

1084202172485504434007452800869941711425781250
.

I’m afraid to even think about how many digits would be in the numerator and
denominator of f1000000(−1/2).

The iterations of f(x) = x2 − 1.95 are chaotic. No matter how accurately we
try to perform our computations, eventually small round-off errors overwhelm the
true values of the iterations and our computer begins to spew nonsense. Greater
accuracy mearly delays the deterioration.

The case a = −2.64: chaos again

Now we consider the case a = −66/25 = −2.64. Why this value? The only thing
special (from our perspective) about this number is that it is less than −2. When a
drops past −2, there is a fundamental change in the behavior of fa. When a ≥ −2,
and if x0 is between −2 and +2, then the iterates fk(x0) always remain between
±2. However, when a < −2 it can be proved that the iterates typically explode.
We illustrate this in the case a = −2.64. The other reason we chose a = −2.64 is
that the fixed points of f are simple numbers. We solve f(x) = x to find

x2 − 66
25

= x ⇒ x =
11
5

, − 6
5

or in decimal notation, the fixed points are (exactly) 2.2 and −1.2.
What do we hope to learn about this function? We will note that for most

values x0, the iterates fk(x0) tend to infinity. Then we will focus on the values x0

for which fk(x0) stays bounded. We will then explore the structure of the set of
these bounded values and how f moves them around.

The first thing we need to notice is that if |x0| > 2.2, we have fk(x0) → ∞ asIf x /∈ [−2.2, +2.2], then
fk(x) →∞. k → ∞. We can see this graphically in Figure 4.45, which shows what happens

as we iterate f for any x0 just less than −2.2. Note that if x0 < −2.2, then
f(x0) = x2

0−2.64 > 4.84−2.64 = 2.2, so in one step we are to the right of the fixed
point 2.2. Now, f ′(2.2) = 2 × 2.2 = 4.4, so 2.2 is an unstable fixed point, and the
subsequent iterations are sent speeding off to +∞. What’s more, even if |x0| ≤ 2.2,
if we ever have fk(x0) > 2.2 for some number k, then we know that the iterates
must explode.

We are interested in studying the set B of all values x0 for which fk(x0) remainsDefinition of the set B: all
values that remain bounded
under iteration.

bounded (in the interval [−2.2, 2.2]) for all k. What we know so far is that B ⊆
[−2.2, 2.2].

We know that f(2.2) = 2.2 (it’s a fixed point), so fk(2.2) = 2.2 for all k, thus
2.2 ∈ B. Similarly, f(−2.2) = 2.22 − 2.64 = 2.2, so fk(−2.2) remains bounded,
and we conclude that −2.2 ∈ B. Perhaps B is the entire interval [−2.2, 2.2]? No!
Consider x0 = 0. We have f(0) = 02 − 2.64, so |f(0)| > 2.2. We now know
that subsequent iterations must go to infinity, so 0 6∈ B. Indeed, there’s a whole
chunk of numbers (an open interval) around 0 which get blown away by f . We can
see why by examining Figure 4.46. Let A1 be the set of all numbers x for which
f(x) < −2.2, i.e.,

x2 − 2.64 < −2.2 ⇒ x2 < 0.44 =
11
25

⇒ |x| <
√

11
5
≈ 0.6633

so A1 =
(
−
√

11/5,+
√

11/5
)
≈ (−0.6633,+0.6633). Thus for any number x in A1

we have |f(x)| > 2.2, so we know that fk(x) → ∞. Thus none of the numbers in
A1 are in B, so B ⊆ [−2.2, 2.2] − A1. Incidentally, the endpoints of A1, namely,

The notation X − Y , where
X and Y are sets stands for
the set of all elements which
are in X but not in Y .

4.2. DISCRETE TIME 151

-4 -2 2 4

-2

2

4

6

Figure 4.45: The iterates of f(x) = x2 − 2.64 with |x0| > 2.2 tend to infinity.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

A1L R

Figure 4.46: A graph of the function y = f(x) = x2 − 2.64. For all numbers x in
the open interval A1, the iterates fk(x) must go to infinity. Closed intervals L and
R are the left and right parts of [−2.2, 2.2]−A1.

152 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

±
√

11/5 are in B. Observe that

f

(
±
√

11
5

)
=

11
25
− 2.64 = 0.44− 2.64 = −2.2,

so f2(±
√

11/5) = +2.2, and for all future iterations, fk(±
√

11/5) = 2.2, so the
numbers ±

√
11/5 are in B.

Now, the set A1 breaks the interval [−2.2, 2.2] into two pieces: the closed inter-
vals

L =
[
−2.2,−

√
11/5

]
on the left, and

R =
[√

11/5, 2.2
]

on the right,

so B ⊆ L ∪R.
It is important to understand what happens to the intervals L and R when wef stretches L to [−2.2, +2.2]

but reverses its direction. compute f . Observe that f(L) = f(R) = [−2.2, 2.2]; this is visible in Figure 4.46.
For L, we see that the left endpoint of L (namely, −2.2) maps to the right end-
point of [−2.2, 2.2] (because f(−2.2) = 2.2) and the right endpoint of L (namely,
−
√

11/5) maps to the left endpoint of [−2.2, 2.2] (because f(−
√

11/5) = −2.2).
The function f maps the points in L in a one-to-one5 manner onto the interval
[−2.2, 2.2]. Further, the order of the points in L is reversed : The smaller numbers
in L become the larger numbers in [−2.2, 2.2].

Similarly, f(R) = [−2.2, 2.2]. The function f maps the interval R in a one-to-f stretches R to [−2.2, +2.2]
but preserves its orientation. one fashion onto the interval [−2.2, 2.2], but in this case, the order of the points in

R is preserved.
In both cases the effect of doing one iteration of the function f to the numbers

in L (or in R) is to stretch the short interval out and have it look like [−2.2, 2.2].
In essence L and R behave just like the interval [−2.2, 2.2]. To see this, consider
Figure 4.47. This figure shows the graph of y = f2(x). Within each of the intervals
L and R we see a section where f2(x) < −2.2; these sections are the open intervals
A2,1 and A2,2. We know that points in these intervals are sent to infinity when we
iterate f . What we see is that L and R each behaves like the full interval [−2.2, 2.2].

One can work out the exact values of the endpoints of the intervals A2,1 and A2,2,
but it’s a burdensome chore. Numerically, we have A2,1 = (−1.81751,−1.40594)
and A2,2 = (1.40594, 1.81751). The four endpoints of A2,1 and A2,2 are the four
solutions to the equation f2(x) = −2.2. Thus the four endpoints are in the set B.

The open intervals A2,1 and A2,2 subdivide the intervals L and R into four
new closed intervals we call LL, LR, RL, and RR. We now know that B ⊆
LL ∪ LR ∪RL ∪RR.

We now look at what happens in f3; see Figure 4.48. Within each of the intervals
LL, LR, RL, and RR (which behave just like [−2.2, 2.2] after two iterations of f)
there is an open interval where f3(x) < −2.2; we call these open intervals A3,1,
A3,2, A3,3, and A3,4. Points inside any of these A’s are destined to be iterated to
infinity. The endpoints, however, belong to B, since they satisfy f3(x) = 2.2, and
will be stuck at 2.2 thereafter. The new A’s break the intervals LL through RR
into eight pieces we designate LLL through RRR. We now know that

B ⊆ LLL ∪ LLR ∪ · · · ∪RRR.

Of course, we can now go to f4 and find 16 closed intervals named LLLL
through RRRR, and then on to f5, and so on. With each successive iteration,
we bite an open interval Ak,j from the midst of each of the LRRLLRLLRL-type
closed intervals.

5This means that if x1 and x2 are different numbers in L, then f(x1) 6= f(x2). Distinct points
in L retain their distinctiveness, i.e., are sent by f to distinct points in [−2.2, 2.2]

4.2. DISCRETE TIME 153

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

A1L R

LL LR RL RR

A2,1 A2,2

Figure 4.47: Graph of y = f2(x) where f(x) = x2 − 2.64. Points x in the open
intervals A2,1 and A2,2 are sent to infinity when we iterate f . The intervals L and
R are broken into two pieces each.

What happens in the long run? The points not in B are exactly those that end
up in an Ak,j . What remains is the set B, i.e.,

B = [−2.2, 2.2]−
⋃
k,j

Ak,j .

The question remains, What are the points in B? We can describe a few in
conventional notation: for example, −2.2 and

√
11/5 are in B. The others are

not readily described this way. We develop a better notation that enables us to
understand how points in B are affected by f .

Consider an infinite sequence of the letters L and R. For example: LLRRLRLL · · · .Symbolic representation of
points in B based on their
L,R address.

From this sequence, we construct a nested collection of closed intervals by taking
the first letter (L), then the first and second letters (LL), then the first three (LLR),
etc.:

L ⊃ LL ⊃ LLR ⊃ LLRR ⊃ LLRRL ⊃ · · ·

Each successive interval is smaller and smaller. Are there numbers that are in all
of these intervals? The answer is yes. To see that

L ∩ LL ∩ LLR ∩ LLRR ∩ LLRRL ∩ · · · 6= ∅

think about the left endpoints of the successive intervals. They form a bounded,
nondecreasing sequence of numbers which converges to some number `. Also, the
successive right endpoints form a bounded, nonincreasing sequence which converges
to some number r. The numbers ` and r must be in all the intervals in our list and
therefore in the intersection. Also, the numbers ` and r, since they are in none of
the A’s must be in B. So fk(`) and fk(r) are always in [−2.2, 2.2].

The next question is, Are r and ` different? We claim no. Suppose ` 6= r.
Note that since r and ` belong to L = [−2.2,−0.6633] and since f ′(x) = 2x, we

154 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

LL A
2

,2

LR RL RRA
2

,1

A3,1

LLL LLR

A3,2

LRL LRR

A3,3

RLL RLR

A3,4

RRL RRR

Figure 4.48: Plot of y = f3(x).

know that |f ′(x)| > 2 × 0.6633 > 1.2 for all numbers in L (this is also true in
R). Now, (f2)′(x) = f ′[f(x)]f ′(x). Since x ∈ B, we know that |f ′[f(x)]| > 1.2
and |f ′(x)| > 1.2, so |(f2)′(x)| > (1.2)2. By similar reasoning we work out that
|(fk)′(x)| > (1.2)k. Now let’s apply what we’ve been discussing to ` and r. We
apply the mean value theorem (see §A.3.1) to the function fk. We learn that for
some number c between ` and r,∣∣∣∣ (fk)(r)− (fk)(`)

r − `

∣∣∣∣ = |(fk)′(c)| > 1.2k.

So for k large enough, we have the distance between fk(`) and fk(r) is bigger than
4.4. But this is impossible, since fk(`) and fk(r) are always in [−2.2, 2.2]. The
only possibility is that ` = r.

Let us recap what we have learned: Suppose we have an infinite sequence of
symbols L and R such as LLRRLRLL · · · . Then the intersection of the intervals

L ⊃ LL ⊃ LLR ⊃ LLRR ⊃ LLRRL ⊃ · · ·

must contain a unique point of B; further, every point of B is described by such a
sequence.

4.2. DISCRETE TIME 155

For example, the point LLLLL · · · must be the number −2.2. The point
RLLLLL · · · is the left endpoint of the interval R, i.e., the sequence RLLLLL · · ·
identifies the point

√
11/5. Every point of B can be described by a “code” word

consisting of an infinite sequence of L’s and R’s.

Although we do not have a method for specifying all the points in B by con-
ventional notation (such as

√
11/5 or −2.2), we can name the points using the LR

notation. We also want to understand how f treats the points in B. The beauty
of the LR notation is we can understand how f works just by looking at the LR
symbols. When we work with these symbols in place of conventional numbers we
are dealing with symbolic dynamics.

Recall what f does to the intervals L and R: f stretches them out to the entire Computing f using the LR
notation.interval [−2.2, 2.2]. Further, f preserves the order of R but reverses L. Now ,what

does f do to the intervals LL, LR, RL, and RR? Since f stretches and reverses L,
we know that f(LL) = R and f(LR) = L, and since f simply stretches R, we have
f(RL) = L and f(RR) = R. Now what does f do to the intervals LLL through
RRR? Draw pictures to understand that

f(LLL) = RR, f(RLL) = LL,
f(LLR) = RL, f(RLR) = LR,
f(LRL) = LR, f(RRL) = RL,
f(LRR) = LL, f(RRR) = RR.

Do you see the pattern? Since f simply stretches out R, then we compute f(Rxxxx · · ·)
by just dropping the leading R. For example,

f(RLLRLRRLRL · · ·) = LLRLRRLRL · · · .

To compute f(Lxxxx · · ·) is almost as easy. We drop the initial L, but then we
swap R’s and L’s in the remaining portion (the xxxx · · ·). For example,

f(LRRLRLRRLLR · · ·) = LLRLRLLRRL · · · .

Let’s see how this works with some of the values we know. For example, we know
that RRRRR · · · corresponds to the values 2.2. Now, in conventional notation we
know f(2.2) = 2.22− 2.64 = 2.2, and again in symbolic notation f(RRRRR · · ·) =
RRRRR · · · ; either way, we see that 2.2 = RRRRR · · · is a fixed point of f . What
about the other fixed point, −1.2? Since −1.2 < 0, we know that −1.2 must be in
L, so the symbolic form of −1.2 must begin with an L. What is the rest of the code
for −1.2? Since −1.2 is a fixed point of f [note that f(−1.2) = (−1.2)2 − 2.64 =
1.44− 2.64 = −1.2], then we know

f(Lx2x3x4x5 · · ·) = x2x3x4x5 = Lx2x3x4x5 · · · ,

where L = R and R = L. In order to make the preceding equation work out, we
need

x2 = L, x3 = x2, x4 = x3, x5 = x4, . . . ,

from which we know that

x2 = R, x3 = L, x4 = R, x5 = L, . . . ,

and therefore the code for −1.2 is LRLRLRLR · · · .
We can use the symbolic notation to find points of period 2. We know that Finding periodic points

using LR codes.RRRRR · · · and LRLRLR · · · are fixed points and therefore have period 2, so
what we really seek are points of prime period 2. Now we know that these other
points cannot start RRx3x4x5 · · · because

f2(RRx3x4x5 · · ·) = x3x4x5 · · · = RRx3x4x5 · · · ,

156 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

so we have R = x3 = x4 = x5 = · · · . Also, we can learn that a point of prime
period 2 cannot begin LR · · · . To see why, we compute

f2(LRx3x4x5 · · ·) = f(Rx3x4x5 · · ·)
= f(Lx3x4x5 · · ·)
= x3x4x5 · · · = LRx3x4x5 · · · ,

from which we see that x3 = L, x4 = R, x5 = L, and so on, giving the code word
LRLRLRLR · · · , the other fixed point.

So, if p is a point of prime period 2, then p must begin with either LL or RL.
If p = LL · · · , then we have

f2(p) = f2(LLx3x4x5 · · ·)
= f(Rx3x4x5 · · ·)
= x3x4x5 · · ·
= LLx3x4x5 · · · = p.

So we must have L = x3, L = x4, x3 = x5, x4 = x6, and so on. Thus we have
p = LLRRLLRRLLRR · · · . Double checking, we see that

p = LLRRLLRRLL · · · 7→ f(p) = RLLRRLLRRL · · ·
7→ f2(p) = LLRRLLRRLL · · · ,

and we also learn that f(p) = RLLRRLLRRLLR · · · is another point of prime pe-
riod 2 (one that begins RL as we noted before). You can work out that RLLRRLLR · · ·
is the only point of prime period 2 which begins RL, so p and f(p) are the only
points of prime period 2.

Now we can work out explicitly the points of prime period 2 by solving the
quartic equation f(f(x)) = x. The four roots of this equation are

11
5

, −6
5
,
−25± 5

√
189

50
.

Since 11/5 and −6/5 are the fixed points of f , we know that

LLRRLLRRLL · · · =
−25− 5

√
189

50
≈ −1.8748, and

RLLRRLLRRL · · · =
−25 + 5

√
189

50
≈ 0.8748.

Note, however, that it is much easier to work with the symbol version.
We next consider points of period 3. There are eight possible ways the points’Points of period 3 and

higher via LR codes. codes might begin: from LLL to RRR. For each of these possibilities, we see there
is only one way to complete the sequence to make a point of period 3. Here are the
ways we can do this (the commas are for clarity):

LLL,RRR,LLL,RRR, · · · RLL,LRR,RLL, LRR, · · ·
LLR,LLR,LLR,LLR, · · · RLR, RLR, RLR, RLR, · · ·
LRL,RLR,LRL, RLR, · · · RRL, LLR,RRL,LLR, · · ·
LRR,LRR, LRR, LRR, · · · RRR,RRR, RRR,RRR, · · · .

Of these, LRLRLRL · · · and RRRRRR · · · are fixed points of f , but the other six
form two orbits of prime period 3:

LLL,RRR, · · · LLR, LLR, · · ·
↓ ↓

RRL, LLR, · · · RLR,RLR, · · ·
↓ ↓

RLL,LRR, · · · LRR,LRR, · · ·
↓ ↓

LLL,RRR, · · · LLR,LLR, · · · .

4.2. DISCRETE TIME 157

We can continue in this way to learn about the 16 points of period 4, of which 2
are fixed points and 2 are points of prime period 2, leaving 12 points of prime period
4 (arranged in three orbits). And there are 32 points of period 5, of which 2 are
fixed points, leaving 30 points of prime period 5 (arranged in six orbits). Indeed,
we know there are points of prime period k for any k (of course, this follows from
Sarkovskii’s theorem and the existence of points of prime period 3), and we can
work out their symbolic forms.

Chaos in B

We know that in B (the set of points which remain bounded when we iterate
f(x) = x2 − 2.64) we can find points of prime period k for any k, and we can work
out how many we have of each. Our symbolic approach, however, tells us that
there is much more to the story. The periodic points in B all have repeating code
names, that is, after a certain number of letters, the pattern of L’s and R’s repeats
verbatim over and over again. These repeating code words are, in a sense, atypical.
A more typical sequence is generated by the following method: Take a fair coin
and mark one side ‘L’ and the other side ‘R’. Flip the coin over and over again to
generate an infinite sequence of L’s and R’s. That is what a typical element of B
looks like. What happens when we iterate f on a typical point in B? We observe
that the trajectory of the point moves erratically around, coming near all points in
the set B as it wanders around.

What happens if we iterate f for two points that are very close together in B,
but different? This means their code words might match for dozens and dozens of
places, but eventually one will have an L where the other has an R. From that
point forth, the trajectory of the two nearly identical starting points will be wildly
different—f exhibits sensitive dependence on initial conditions. The behavior of
f on B is chaotic.

Problems for §4.2

�1. For each of the following functions find points of period 1, 2, and 3. Which
are prime periodic points? When reasonable, find exact answers; otherwise,
use numerical methods. For each periodic point you find, classify it as stable
or unstable.

(a) f(x) = 3.1x(1− x).

(b) f(x) = (−3x2 + 11x− 4)/2.

(c) f(x) = 53
40

(
1− x2

)
. (Note: 53

40 = 1.325.)

(d) f(x) = cos x

(e) f(x) = 3 cos x.

(f) f(x) = cos 3x.

(g) f(x) = ex − 1.

(h) f(x) = ex − 2.

(i) f(x) = 1
3ex.

(j) f(x) = −2 tan−1 x.

(k) f(x) = −3/(1 + x2).

(l) f(x) = 2 (1− |x|).

�2. For each of the following families of functions fa find values a at which the
family undergoes bifurcations. Categorize the bifurcations you find (as saddle
node, etc.).

(a) fa(x) = aex.

158 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

-4 -2 2 4

-4

-2

2

4

Figure 4.49: Graphs of the functions fa(x) = a + 2 cos x for various values of a
between −3 and 3. The line y = x is shown as well.

(b) fa(x) = a sinx.

(c) fa(x) = sin(ax).

(d) fa(x) = a + 2 cos x.

(e) fa(x) = ea−x2
.

[Note: It is helpful to plot several members of family of functions fa(x) on
the same set of axes. For example, in Figure 4.49 we display the family
fa(x) = a + 2 cos x by plotting the curves y = fa(x) for various values of a
between −3 and 3.]

�3. The function fa(x) = ax(1−x) is called the logistic map. Prepare a computer
generated bifurcation diagram for the family fa(x). You will need to do some
exploring to figure out the right range of values for the parameter a.

Compare your diagram with that in Figure 4.29 on page 135.

Find an exact value of a at which there is a tangent bifurcation.

Find two exact values of a at which there is a period doubling bifurcation.

�4.* Given that 2 . 1, prove that 4 . 1. [Hint: Think about f2.]

�5.* Explain why . is transitive. In other words, prove that for any positive
integers a, b, c if a . b and b . c, then a . c.

�6. Consider the following function f which acts on infinite sequences (“words”)
made up of the letters A, B, and C according to the following rules:

(a) If the word begins with an A, drop the initial A and swap B’s for C’s in
the remainder.

(b) If the word begins with a B, drop the initial B and swap A’s for C’s in
the remainder.

(c) If the word begins with a C, drop the initial C and swap A’s for B’s in
the remainder.

4.3. EXAMPLIFICATION: RIFFLE SHUFFLES AND THE SHIFT MAP 159

Some examples:

f(ABACCABAC · · ·) = CABBACAB · · · ,
f(CBBCACCAC · · ·) = AACBCCBC · · · ,
f(BBAACCBBA · · ·) = BCCAABBC · · · .

Find the fixed points and the points of prime periods 2 and 3 for this function.

�7. Give an example of a function f which has points of prime period 4. Note that
4 is not prime in the arithmetic sense. Primality of numbers and primality of
periods are not the same. However, see the next problem.

�8. Let f be a function with a point x of period p where p is a prime number.
Explain why x is either a fixed point or a point of prime period p.

�9. Let f : R → R be continuous. Suppose a < b, f(a) = b, and f(b) = a. Let
g(x) = f(x)−x. Use the intermediate value theorem (see §A.3.1 on page 254)
to show that g(c) = 0 for some c between a and b. Conclude that f has a
fixed point.

4.3 Examplification: Riffle shuffles and the shift
map

4.3.1 Riffle shuffles

Before playing a card game, the dealer shuffles the deck. A common way to do A mathematical model of
shuffling cards.this is known as a riffle (or dovetail) shuffle. First the deck is cut in half. The

dealer then merges the two halves by alternately dropping the bottom card of the
half-decks into a new pile. Of course, the dealer can’t do this perfectly. At the first
stage, the deck is split in half, but perhaps not perfectly.6 At the second stage, the
cards drop from the half-decks more or less alternately, but, again, not perfectly.

Let us develop a mathematical model for how people shuffle cards. This descrip-
tion of shuffling is called the GSR model after the inventors of this formulation:
Gilbert, Shannon, and Reeds.

Consider the first step. We want to cut the deck in half. One way to do this is Cutting the deck.

to flip a coin 52 times and record how many heads we see; call this number h. We
split the deck so the top half has h cards and the bottom half has 52−h cards. We
expect this split to be close to 26-26.

Next, consider the riffle step. From which half-deck do we drop the first card? Merging the two halves.

This is hard to say; you might like to run some experiments to see if people have a
tendency one way or the other. However, if one of the two half-decks has more cards
than the other, it seems reasonable that the heavier “half” is more likely to drop
a card than the lighter. Let’s make this more precise. As the cards are dropped
from the two half-decks, we arrive at a situation where there are a cards in one half
and b cards in the other. The side with more cards is more likely to be the next
to drop; let us set the probability that we drop a card from the size a subdeck to
be a/(a + b) and the probability we drop from the other subdeck to be b/(a + b).
Thus the probability we choose one side or the other is proportional to its size.

In summary, we split the deck by flipping a fair coin 52 times and we record the
number of heads h; we split the deck into two subdecks with h and 52 − h cards
each. Call the two subdecks left and right. We now drop the bottom cards of left
or right one at a time onto the combining pile. When there are a cards in the left
subdeck and b cards in the right, we choose left with probability a/(a + b) [and
right with probability b/(a + b)].

6Well, most dealers can’t. Some expert magicians can do a perfect riffle shuffle. If one does
eight consecutive perfect shuffles the deck will be restored to its original state. This fact forms
the basis for some amazing card tricks.

160 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

1 2 3 4

1

2

x

y

(1,0)(0,0)

(0,1) (1,1)

Figure 4.50: (Left) the graph of the function σ(x) = 2x mod 1; (right) a detailed
look at the graph inside the unit square.

Is the GSR shuffle a good mathematical model of shuffling cards? Yes, in theIs this a good model?

mathematical sense that it is mathematically precise and we can use this model to
solve problems such as, How many times should a person shuffle the deck to make
sure it is thoroughly mixed up? It is also a reasonable model of how humans actually
shuffle cards. However, many people tend to shuffle cards in a more clumped fashion
than the GSR model predicts. (See [7] pages 77ff.)

In this section our aim is to understand riffle shuffles using dynamical systems
methods.

4.3.2 The shift map

We now investigate the function

σ(x) = 2x mod 1.

The function σ takes a real number, multiplies it by 2, and returns the fractional
part of the result, i.e., it rounds the result down to an integer, dropping the digits
to the left of the decimal point. For example, let us compute σ(0.8). We know
that 2 × 0.8 = 1.6 and the fractional part of 1.6 is 0.6, so σ(0.8) = 0.6. Let’s do
another example: Let x = 2.4 and let us compute σ(x). Note that 2x = 4.8, and
since 4.8 mod 1 = 0.8, we have σ(2.4) = 0.8. The graph y = σ(x) is plotted in
Figure 4.50.

We are interested in exploring the effect of iterating the function σ and, ulti-
mately, in relating σ to GSR shuffles.

Notice first that for any number x we know that σ(x) must be between 0 and
1; indeed, 0 ≤ σ(x) < 1. We focus our attention on the effect of σ(x) just for x in
the unit interval [0, 1].

Notice that 0 is the only fixed point of σ. What are the points of period 2? We
want to solve σ(σ(x)) = x. It is awkward to write down a formula for σ2(x); it is

σ2(x) = [2(2x mod 1)] mod 1.

Setting that equal to x and solving is messy.7 However, if you plot the graphs
y = σ2(x) and y = x on the same set of axes, you quickly discover that σ(1

3) = 2
3

and σ(2
3) = 1

3 and that 1
3 , 2

3 are the only points of prime period 2.
The formula 2x mod 1 is a bit cumbersome. There is an alternate way to un-

derstand the function σ which justifies calling it the shift map.

7Actually, its not too bad. See problems 1 and 2 on page 166.

4.3. EXAMPLIFICATION: RIFFLE SHUFFLES AND THE SHIFT MAP 161

Let x be a number between 0 and 1. If x < 1
2 , then σ(x) = 2x; otherwise

(x ≥ 1
2), σ(x) = 2x− 1. If x is written as a decimal number, we can judge whether

x is less than 1
2 or at least 1

2 by looking at the first digit after the decimal point.
If that digit is 0, 1, 2, 3, or 4 we know that x < 1

2 , but if that digit is 5 or larger,
we know that x ≥ 1

2 . There’s a slight ambiguity if x = 1
2 . In this case we can write

x = 0.5 or x = 0.49999 · · · . It makes sense to write 1
2 = 0.5 in order for our “check

the first digit” test to work properly.
How do the digits of 2x relate to the digits of x? This is a difficult problem

(because of carries and the like) when we are working in base ten. However, mul-
tiplying by 2 is easy when we work in binary (base 2). Let us restart our digit
discussion, but this time working in binary.

Let x be a number between 0 and 1. If x < 1
2 , then σ(x) = 2x; otherwise Working in binary.

σ(x) = 2x − 1. If x is written in binary, we can judge whether x is less than
1
2 or at least 1

2 just by looking at the first digit after the decimal point.8 If the
first digit is a 0, then we know that x < 1

2 , and if the first digit is a 1, then we
know that x ≥ 1

2 . Again, there is an ambiguity when x = 1
2 . In this case we

can write (in binary) x = 0.1 or x = 0.01111 · · · . We opt for the first notation
not only because it is simpler but because it makes our “check the first digit” test
work properly. Furthermore, some other real numbers can be written with a finite
binary expansion. For example, 3

8 in binary is 0.011. It can also be written as
0.01011111 · · · . In such cases, let us agree to use the simpler notation.

To summarize, we can check whether or not x < 1
2 by examining x’s first digit

(in binary).
Next, let us understand how σ(x) works when we use binary notation. Suppose

we write x in binary as
x = 0.d1d2d3d4 · · · ,

where each di is either 0 or 1. We may assume that this sequence of digits does not
end in an infinite string of 1’s. Now let us calculate σ(x).

Notice that 2x = d1.d2d3d4 · · · ; multiplying by 2 simply shifts all the digits one
place to the left.

Now let us compute σ(x). When x < 1
2 (so d1 = 0), we know that σ(x) = 2x,

so σ(x) = 2x = d1.d2d3d4 · · · = 0.d2d3d4 · · · (because d1 = 0). On the other hand,
suppose x ≥ 1

2 (so d1 = 1). Then σ(x) = 2x−1 = (d1.d2d3d4 · · ·)−1 = 0.d2d3d4 · · ·
(because d1 = 1). Something wonderful has happened! We do not have to check
the first digit (d1) of x. In both cases we have

σ(x) = σ(0.d1d2d3d4 · · ·) = 0.d2d3d4 · · · .

In words, to compute σ of 0.d1d2d3d4 · · · we drop the first digit d1 and shift all the
digits one place to the left. The binary notation gives us a symbolic way to work
with the shift map. (This is similar to—and even simpler than—the symbolic LR
dynamics of the function f(x) = x2 − 2.64 from §4.2.5.)

Let us work with the symbolic dynamics for σ to learn about its fixed points Using the symbolic
representation to find
periodic points of σ.

and other properties. To solve the equation σ(x) = x, we have

σ(0.d1d2d3 · · ·) = 0.d2d3d4 · · · = 0.d1d2d3 · · · ,

so we know that d1 = d2 = d3 = d4 = · · · . There are only two choices: all the di’s
equal 0, or they all equal 1. If they are all 0, then we have x = 0 (which we know
is a fixed point). If they all equal 1, then we have x = 0.1111 · · · = 1; but we don’t
allow sequences which become an endless list of 1’s (indeed, σ(1) 6= 1). So 0 is the
only fixed point of σ.

To solve σ2(x) = x we write

σ2(0.d1d2d3d4 · · ·) = 0.d3d4d5 · · · = 0.d1d2d3 · · · ,
8For the purists: . . . after the binary point.

162 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

from which we learn

d1 = d3 = d5 = · · · and d2 = d4 = d6 = · · · .

We now know that the dodd’s are all 0 or all 1, and the deven’s are also all 0 or
all 1 (but we don’t have both dodd = deven = 1). This gives three solutions to the
equation σ2(x) = x:

0.000000 · · · = 0, 0.010101 · · · = 1
3
, and 0.101010 · · · = 2

3
.

By a similar analysis we can solve the equation σ3(x) = x. The solutions are of
the form x = 0.abcabcabc · · · , where a, b, and c are either 0 or 1, but they are not
all 1. There are two orbits of period 3:

.001001 · · · 7→ .010010 · · · 7→ .100100 · · · 7→ .001001 · · · , and

.011011 · · · 7→ .110110 · · · 7→ .101101 · · · 7→ .011011 · · · ,

or in more conventional notation, 1
7 7→

2
7 7→

4
7 7→

1
7 and 3

7 7→
6
7 7→

5
7 7→

3
7 .

In a similar manner, one can find the points of higher periods. It is worthwhile
to note, however, that none of the periodic points of σ are stable. Let’s see why.
The unique fixed point of σ is 0, and this is clearly an unstable fixed point. If x is
a little bit bigger than 0, then σ(x), σ2(x), σ3(x), . . . are equal to 2x, 4x, 8x, . . ., so
the iterates move away from 0. (If x is a little bit less than 0, we have a huge jump
to σ(x), which is nearly 1.)

Let’s now consider the other periodic points of σ. We need to look only inside
All periodic points of σ are
unstable.

the unit interval. First, σ is neither continuous nor differentiable; however, it is
continuous and differentiable for all values of x strictly between 0 and 1 except for
x = 1

2 (see Figure 4.50 on page 160). Now, x = 1
2 is not a periodic point of σ

because σ(1
2) = 0 and then σ(0) = 0. Thus if p is a periodic point of σ (other than

0) we know that σ′(p) is defined; indeed, σ′(p) = 2 for any p between 0 and 1 (other
than 1

2). Thus all periodic points of σ are unstable.
What happens when we iterate σ starting from a typical value x between 0 andFor typical x the iterations

σk(x) are chaotic. 1? A typical x, when written in binary, consists of a random string of 0’s and 1’s;
the kth digit of x is either 0 or 1 with probability 50%, and each digit is independent
of the others. Thus, as we iterate σk(x) we see the iterations jump wildly about the
unit interval coming close to every point between 0 and 1. For a typical starting
value of x the iterations σk(x) are chaotic!

4.3.3 Shifting and shuffling

At first glance the GSR model for riffle shuffling and the shift map σ have no con-Introducing the shift shuffle.

nection. We are now ready to explore how we can use the shift map to understand
riffle shuffling.

To forge the connection, we consider another method for mixing up the cards
of a deck. Let us call this method, which uses the function σ, a shift shuffle.

To begin, we choose 52 random numbers between 0 and 1, and we sort these
numbers numerically from smallest to largest; let’s call these numbers x1 < x2 <
· · · < x52.

We write these numbers (in blue ink), in order, on the cards in the deck. The
top card is labeled with the number x1, the next card is labeled x2, etc., and the
last card gets x52.

Next, we compute σ of each card’s number and write the result on the card also
(in red ink). So the top card is marked with the numbers x1 (in blue) and σ(x1) in
red, etc.

Now we reorder the deck so the cards appear in correct numerical sequence
according to their red numbers (the σ(xi)’s).

4.3. EXAMPLIFICATION: RIFFLE SHUFFLES AND THE SHIFT MAP 163

Card x x σ(x) σ(x)
name decimal binary decimal binary

A 0.1484 0.001001011111 0.2968 0.01001011111
2 0.2321 0.001110110110 0.4642 0.01110110110
3 0.3116 0.010011111100 0.6232 0.10011111100
4 0.3296 0.010101000101 0.6592 0.10101000101
5 0.4036 0.011001110101 0.8072 0.11001110101
6 0.4306 0.011011100011 0.8612 0.11011100011
7 0.5365 0.100010010101 0.0731 0.00010010101
8 0.6395 0.101000111011 0.2790 0.01000111011
9 0.8505 0.110110011011 0.7011 0.10110011011
T 0.8675 0.110111100001 0.7350 0.10111100001
J 0.9669 0.111101111000 0.9338 0.11101111000
Q 0.9873 0.111111001100 0.9746 0.11111001100
K 0.9976 0.111111110110 0.9952 0.11111110110

σ(x) σ(x) New
decimal binary order
0.0731 0.00010010101 7
0.2790 0.01000111011 8
0.2968 0.01001011111 A
0.4642 0.01110110110 2
0.6232 0.10011111100 3
0.6592 0.10101000101 4
0.7011 0.10110011011 9
0.7350 0.10111100001 T
0.8072 0.11001110101 5
0.8612 0.11011100011 6
0.9338 0.11101111000 J
0.9746 0.11111001100 Q
0.9952 0.11111110110 K

Table 4.1: Relating the shift map σ to riffle shuffling.

A

KQJ987

652 3 4

T

A 652 3 4

KQJ987 T

Figure 4.51: Understanding how the shift map induces a shuffle.

164 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

This procedure is illustrated in Table 4.1 and Figure 4.51. For simplicity, we
use a 13-card deck (ace through king in one of the suits) in place of the full 52-card
deck.

Look at the upper half of Table 4.1. The first column lists the names of the cards
(A through K) in order. The second column gives the values x1 through x13—13
random numbers. The third column gives the same numbers, but in binary notation.
In the fourth and fifth columns of the upper table are the computed values σ(x1)
through σ(x13).

The first two columns of the lower chart in Table 4.1 repeat the last two columns
of the upper chart, but now the values are rearranged in ascending numerical order.
The rightmost column of the lower chart shows the order of the cards after this
procedure is finished.

It is instructive to have a geometric view of the shift shuffle. Look at Figure 4.51.A geometric view of the shift
shuffle. The long horizontal lines represent the unit interval. The dotted vertical lines mark

the points 0, 1
2 , and 1. In the upper portion we show the locations of the numbers

x1 through x13. In the lower portion, we show the locations of the numbers σ(x1)
through σ(x13).

The geometric effect of σ on the unit interval is to stretch the intervals [0, 1
2]

and [12 , 1] to twice their length and then overlay the results.
In our example, the first six cards (A through 6) have labels which are less than

1
2 , and the remaining seven cards (7 through K) have labels larger than 1

2 . We
know that after we shift shuffle these cards together, cards A–6 and cards 7–K are
still in their natural order, but the two lists are interspersed.

Does this look similar to a GSR riffle shuffle? The punch line, of course, is thatThe two models are the
same! the shift shuffle is the GSR shuffle, only in a disguised form. Let’s understand why.

The first step of the GSR shuffle is to cut the deck by coin flips. We flip a coin
52 times and record the number of heads, h. We cut the deck after h cards. In
lieu of flipping a coin, we may choose random numbers uniformly between 0 and 1,
count the number of numbers that are less than 1

2 , and then cut that many cards.
This is the same as the number of card labels which begin with the binary digit
0 (see the horizontal line in the middle of Table 4.1). Thus the cut step of both
shuffles is the same.

Now that the deck is cut, we need to riffle the two parts together. In the GSR
shuffle, if the two decks have a and b cards, we drop the bottom card from the first
part with probability a/(a+ b) and from the second part with probability b/(a+ b).
In the shift shuffle, the bottom card depends on which new label σ(x) is largest.
Notice that the cut step in the shift shuffle uses only the first binary digit in the
label, while the relative order of the σ(x)’s is determined by the remaining digits.

Consider Figure 4.51. Those cards whose first digit is 0 (A–6) are uniformly
distributed over the interval [0, 1], as are those whose first digit is 1 (7–K). We can
see these two subdecks merging by reading the lower portion of the figure from right
to left. The cards drop in the following order: first the king, queen, and jack from
the “1” subdeck, followed by the 6 and 5 from the “0” subdeck, then the 10 and 9
from “1”, etc., until the last card to drop onto the combined pile is the 7 from the
“1” subdeck.

The question is, If we have two collections of points uniformly spread over an
interval (say a points of type “0” and b points of type “1”) what is the probability
that a type “0” point is the furthest to the right? The answer is a/(a+b) (hurray!).
Let’s see why. There are (a + b)! ways to arrange the points in the interval; each
of these is equally likely to occur (because we are spreading the points uniformly).
The number of orders which end with a type “0” point is a(a + b− 1)! (there are a
ways to choose which a type “0” point to be last and (a + b− 1)! ways to arrange
the remaining points). Thus the probability that a type “0” point is last is just

a(a + b− 1)!
(a + b)!

=
a

a + b
,

4.3. EXAMPLIFICATION: RIFFLE SHUFFLES AND THE SHIFT MAP 165

as promised. By a similar analysis, the probability that a type “1” point is last is
b/(a + b). Thus as we scan the values of σ(x) from right to left we encounter cards
whose label begins with 0 and cards whose label begins with 1. When we reach a
stage where there are a and b such cards left to scan, the probability that the next
card we see will be of type “0” is a/(a + b), and the probability that the next card
will be of type “1” is b/(a + b). Thus the merging step of the shift shuffle and the
merging step of the GSR shuffle are equivalent!

4.3.4 Shuffling again and again

Shuffling a deck of cards only once before playing is a bad idea. Although we have One shuffle isn’t enough.

mixed up the order of some of the cards, many cards are still in their same relative
order. To thoroughly mix up a deck, we need to do several shuffles.

Let’s look carefully at what information we use in shuffling the cards by means
of the shift shuffle. We use the first digit in each card’s label x to determine where
to cut the deck. Then we need the order of the σ(x)’s to riffle the parts together.
We don’t need the exact values of the σ(x)’s—only their order.

We are ready to do another shuffle. We could assign a new label to each vertex
and repeat the whole procedure; however, there is another choice. We can use the Recycle your numbers!

random labels σ(x) already on the cards!
When we perform a second shuffle on our deck, we use σ(x) as the labels and

reorder the deck by the σ2(x)’s. Please refer again to Table 4.1. A second shuffle
on this deck will cut the deck between the 2 and the 3 (see the horizontal line in
the lower portion of the table) and then reorder the deck according to σ2(x).

For a full deck, the order of the cards after k shuffles is determined by looking
at the order of σk(x1) through σk(x52).

We can give a geometric interpretation of doing k consecutive shuffles. As before, The geometric view, again.

we choose 52 numbers uniformly at random in the unit interval [0, 1] and assign
the smallest to the first card, etc. We divide the unit interval into 2k subintervals
of equal size and stretch each of these subintervals to the full length of the interval
[0, 1].

Notice that two labels lie in the same subinterval exactly when the first k (bi-
nary) digits of their labels agree. In this case, their relative order during the first
k shuffles is unchanged.

On the other hand, if the 2k subintervals contain at most one label each, then
when we stretch the subintervals to full length there will be no telling what order
the cards are in. The deck will be thoroughly mixed.

So the question is, How many shuffles do we need to do? Stated another way,
how large do we need to make k so that no two labels have the same first k binary
digits?

Since there are 52 labels, we claim that k = 5 is not sufficient. Here is why:
There are only 25 = 32 strings of five 0’s and 1’s. So there must be two (or more)
labels with the same first five digits. When k = 6, there are 26 = 64 different
strings of 0’s and 1’s (corresponding to the 64 subintervals of [0, 1]) so there is a
chance that the labels are all in distinct subintervals. How good a chance?

More specifically, if we select 52 points uniformly at random from [0, 1] what
What is the probability that
52 randomly selected points
will each be in its own
subinterval?

is the probability that no 2 of them occupy a common subinterval of length 1/2k?
We drop the points into [0, 1] one at a time. The first point dropped has a 100%
chance of falling into an empty subinterval. The second point dropped might end
up in the same subinterval as the first, but the probability of that happening is
1/2k. The probability that the second point is in its own compartment is therefore
1− 1/2k. Given that the first 2 points are each in their own subinterval, the third
point falls into an empty subinterval with probability 1 − 2/2k. In general, if the
first t points are each in their own subinterval, the probability that the next point
(number t + 1) goes into an empty compartment is 1− t/2k. Thus the probability

166 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.52: How many times do we need to shuffle a deck of 52 cards? The
horizontal axis shows the number k of riffle shuffles, and the vertical axis shows the
probability that 52 random points selected uniformly in the unit interval will each
be in its own subinterval of length 2−k.

that all 52 points end up each in their own subinterval is precisely(
1− 0

2k

)
×
(

1− 1
2k

)
×
(

1− 2
2k

)
×
(

1− 3
2k

)
× · · · ×

(
1− 51

2k

)
. (4.3)

If we take k = 6, equation (4.3) evaluates to approximately 3.17 × 10−14; it is
extremely unlikely that all 52 cards are each in their own compartment when we
partition [0, 1] into just 64 subintervals.

In Figure 4.52 we plot equation (4.3) for various values of k. Notice that we
need to take k = 14 to be at least 90% sure that no two labels have the same first
k digits. If we take k = 20, we can be very sure we have thoroughly randomized
the deck.

Twenty shuffles, in fact, is overkill. More sophisticated techniques show that for
a 52-card deck eight or nine GSR shuffles provide a good level of randomization.

Problems for §4.3

�1. Show that σk(x) = 2kx mod 1. [Hint: Use the symbolic/binary representation
for σ, not the formula σ(x) = 2x mod 1.]

�2. Use the formula σk(x) = 2kx mod 1 to find all the roots of the equation
σk(x) = x.

�3. Write a computer program to compute iterates of the shift map σ. Run
your program starting with x0 = 1/π. Compute 100 iterations (i.e., compute
σ(1/π), σ2(1/π), . . . , σ100(1/π).

Notice that most of the iterations you compute are zero. This is incorrect.
Explain why your computer made this mistake.

�4.* How many points of prime period n does the shift map have? Call this number
f(n). Prove that

2n − 1 =
∑
d|n

f(d),

where the sum is over all divisors d of n.

4.3. EXAMPLIFICATION: RIFFLE SHUFFLES AND THE SHIFT MAP 167

Prove that
f(n) =

∑
d|n

(
2d − 1

)
µ(n/d),

where

µ(n) =

{
(−1)t if n is the product of t distinct primes, and
0 otherwise.

�5. Show that performing eight “perfect” riffle shuffles of a standard 52-card deck
restores the deck to its original order.

�6. Consider the function f(x) = 3x mod 1. Develop a symbolic representation
of this function and find its points of prime period k for k = 1, 2, 3, 4.

�7. The inhabitants of the planet Zorkan have three arms (each with only one
hand). When a Zorkanite shuffles a deck of cards, it divides the deck into
three roughly equal piles and then riffles the three piles together. Develop
random models akin to the GSR shuffle and the shift shuffle to describe this
shuffle.

How many times should a Zorkanite shuffle to be sure its deck of 216 cards
is thoroughly mixed? (Zorkanologists believe the deck has 216 cards because
Zorkanites have 6 fingers on each of their hands.)

�8. Here is another way to shuffle cards. First cut the deck into roughly four
equal-size subdecks; call these decks (in order from the top) A, B, C, and D.
Now riffle decks A and C together, then riffle decks B and D together, and
finally riffle the two combined packs together.

Show that the effect of this procedure is the same as doing two ordinary riffle
shuffles in a row.

What happens if the first pair of riffles is A with B, and then C with D?

What happens if the first pair of riffles is A with D, and then B with C?

168 CHAPTER 4. NONLINEAR SYSTEMS 2: PERIODICITY AND CHAOS

Chapter 5

Fractals

Euclidean geometry is wonderful. Not only is it a beautiful mathematical theory,
but it is also tremendously useful for modeling the world around us. If you are
building a house, you use geometry every time you measure. Toss a ball and it
flies along a parabolic arc. And, as its name implies, geometry is invaluable in
surveying.

But there are shapes that classical (Euclidean) geometry isn’t designed to dis- It is difficult to describe a
tree with words such as line,
circle, and parabola.

cuss. Look at a tree, or the coast of the Chesapeake Bay. There are many shapes
in nature (from the surface of your brain to the surface of the moon) for which
Euclidean geometry falls short as a model. Rough shapes such as these are difficult
to describe using lines, circles, ellipses, and the like. However, a different category
of geometric objects—fractals—does provide an excellent model for these shapes.

In this chapter we explore the notion of fractals, how they are fixed “points”
of dynamical systems, and (as their name suggests) how to see them as objects of
fractional dimension.

5.1 Cantor’s set

The first fractal we explore in depth is known as Cantor’s set. If as we discuss
Cantor’s set it seems very familiar to you, that’s good. The set B from the previous
chapter (the set of values which stay bounded on iteration of the function f(x) =
x2 − 2.64 discussed in §4.2.5) has a structure that’s nearly identical with that of
Cantor’s set.

We use the letter C to denote Cantor’s set, and here is how we build it. Be-
ginning with the unit interval [0, 1], we delete from [0, 1] the open interval cover-
ing its middle third, i.e., we delete

(
1
3 , 2

3

)
. So far we are left with two intervals:[

0, 1
3

]
∪
[
2
3 , 1
]
.

Now we repeat the process: we delete the middle third of each of the intervals[
0, 1

3

]
and

[
2
3 , 1
]
, and we are left with[

0,
1
9

]
∪
[
2
9
,
1
3

]
∪
[
2
3
,
7
9

]
∪
[
8
9
, 1
]

.

This might be getting complicated to hold in your mind, so it’s best to look at
Figure 5.1. The first line of the figure is the unit interval [0, 1]. The second line
represents [0, 1] with its middle third removed. In the third line we have removed
the middle third of each of the closed intervals in the previous line. This pattern
continues ad infinitum. At each stage we remove the open middle third of all the
closed intervals in the previous stage.

How much have we taken away? The length of the unit interval is 1. At the first
step, we deleted one-third of its length. At the second step, we deleted one third
of the length of the remainder. In general, at the kth step the total length of the

169

170 CHAPTER 5. FRACTALS

0 1

Figure 5.1: Construction of Cantor’s set.

2k closed intervals is (2
3)k, which tends to zero as k →∞. Thus the total length of

C is 0. You might wonder, Is anything left after we have done this process? The
answer is, Quite a lot. Certainly, the numbers 0 and 1, as well as 1

9 , 2
9 , 1

3 , 2
3 , 7

9 ,
and 8

9 are all in C.
We now describe all the points in C in two manners: first, in a symbolic (LR)

notation, and then in more conventional notation.

5.1.1 Symbolic representation of Cantor’s set

When we take our first bite out of the unit interval (when we delete
(

1
3 , 2

3

)
), we areAn LR representation of

Cantor’s set. left with two pieces. We call the left piece L and the right piece R, i.e.,

L =
[
0,

1
3

]
and R =

[
2
3
, 1
]

.

Each of the pieces L and R is, in turn, broken in two. We can name the two pieces
on the left as LL =

[
0, 1

9

]
and LR =

[
2
9 , 1

3

]
, and the two pieces on the right as

RL =
[
2
3 , 7

9

]
and RR =

[
8
9 , 1
]
. We can name the eight closed intervals from the

third stage as LLL through RRR, and so on.
An infinite sequence of L’s and R’s, such as LLRRLRL · · · , gives rise to a nested

sequence of closed intervals:

L ⊃ LL ⊃ LLR ⊃ LLRR ⊃ LLRRL ⊃ · · · ,

and as we discussed in the previous chapter, the intersection of such a sequence is
nonempty. So

L ∩ LL ∩ LLR ∩ LLRR ∩ LLRRL ∩ · · ·
is nonempty and contains points of the Cantor set C. The intersection cannot
contain more than a single point, for otherwise it would contain an entire interval,
contradicting the fact that the total length of the Cantor set is 0. So each point of
the Cantor set is uniquely described by a sequence of L’s and R’s, just like the set
B from §4.2.5 of the previous chapter.

5.1.2 Cantor’s set in conventional notation

The LR notation shows us that the structure of Cantor’s set C and that of the set
B are the same. Now, it would be nice to be able to decide if numbers such as 3

4
are or are not in C.

To understand which numbers are in C it is helpful to work with numbers inWorking in ternary, base 3.

ternary (base 3) notation rather than decimal (base 10). This should not be too
shocking: Base 3 is especially convenient if you plan to do a lot of dividing by 3.

Let’s do a quick review of base 3. Integers in base 3 look like 10123. Reading
this number from right to left, we have the 2 is in the ones column, a 1 in the threes
column, then a 0 in the nines column, and lastly (leftmost) a 1 in the twenty-sevens
column. Thus

10123 = 1× 27 + 0× 9 + 1× 3 + 2× 1 = 32.

5.1. CANTOR’S SET 171

Just as we can express any real number in decimal, so too can we express real
numbers in ternary. The places to the right of the decimal point1 are the thirds,
ninths, etc., places, so

1.0123 = 1× 1 + 0× 1
3

+ 1× 1
9

+ 2× 1
27

=
32
27

.

How do we express the number 1
2 in base 3? We have 1

2 = 0.111 · · ·3. We check
that this is correct as follows:

Let x = 0.1111111 · · ·3 .

So 3x = 1.111111 · · ·3 .

Subtracting 3x− x ⇒ 2x = 1.

.
.
. x =

1
2
.

As an exercise, you should check that 3
4 = 0.20202020 · · ·3.

Now armed with base 3 notation, let us return to the problem of determining
which numbers are in Cantor’s set C. Let’s begin with the ones we know: the
endpoints of the closed intervals of the form LLR, etc. Consider the eight intervals
LLL through RRR. You should check that they are

LLL =
[

0
27 , 1

27

]
RLL =

[
18
27 , 19

27

]
LLR =

[
2
27 , 3

27

]
RLR =

[
20
27 , 21

27

]
LRL =

[
6
27 , 7

27

]
RRL =

[
24
27 , 25

27

]
LRR =

[
8
27 , 9

27

]
RRR =

[
26
27 , 27

27

]
Next we write the 16 endpoints of these eight intervals in ternary:

0/27 = 0.0003 18/27 = 0.2003

1/27 = 0.0013 19/27 = 0.2013

2/27 = 0.0023 20/27 = 0.2023

3/27 = 0.0103 21/27 = 0.2103

6/27 = 0.0203 24/27 = 0.2203

7/27 = 0.0213 25/27 = 0.2213

8/27 = 0.0223 26/27 = 0.2223

9/27 = 0.1003 27/27 = 1.0003

Do you see a pattern? If so, bravo! If not, that’s OK. It’s not obvious yet. The Ambiguity in place value
notation.difficulty is that the way we write numbers (in either base 10 or base 3) is slightly

imperfect in the sense that there can be two ways to write the same number.
For example, in base 10, the number 81 can also be written 80.9999 · · · = 80.9.
Similarly, in base 3 the number 1

3 can be written 0.13, but it can also be written
0.022222 · · ·3 = 0.023. This ambiguity arises only with numbers whose notation is
finite (doesn’t run on forever) and whose last digit is 1. We can always convert
that last 1 into 09 (in decimal) or 02 (in ternary). For understanding Cantor’s set
it is better to those convert numbers which end with 1 into their alternate, lengthy
notation.2 Let’s do that for the 16 endpoints we listed above. We get

0/27 = 0.0003 18/27 = 0.2003

1/27 = 0.00023 19/27 = 0.20023

2/27 = 0.0023 20/27 = 0.2023

3/27 = 0.0023 21/27 = 0.2023

6/27 = 0.0203 24/27 = 0.2023

7/27 = 0.02023 25/27 = 0.22023

8/27 = 0.0223 26/27 = 0.2223

9/27 = 0.023 27/27 = 0.23

1Actually, in base 3 it’s a ternary point, but that sounds funny.
2This is in contrast with how we denoted binary numbers in §4.3.2, where we preferred the

terse notation.

172 CHAPTER 5. FRACTALS

Notice that all the numbers listed are written exclusively with 0’s and 2’s; the digit
1 never appears. We claim this is true for all numbers in Cantor’s set C:

A number x ∈ [0, 1] is in Cantor’s set if and only if it can be written in base 3 usingCantor’s set in ternary.

only 0’s and 2’s.

In fancy notation, x ∈ C if and only if

x =
∞∑

j=1

aj3−j with all aj ∈ {0, 2}.

Let’s see why this is true. What do we know about numbers whose first digit
(after the decimal point) is 1 (in base 3, of course)? We know they are at least 0.13

and less than 0.23, i.e., they are between 1
3 and 2

3 . Furthermore, the number 0.13

doesn’t count as having a 1 in its first position because it can also be written as
0.023. So the numbers with an indelible 1 in their third’s column are the numbers
in the open interval

(
1
3 , 2

3

)
, and these are the numbers we eliminated in the first

step of constructing Cantor’s set!
Now, which numbers have a 1 in their second digit (ninths place), i.e., have theNumbers with a 1 in their

ternary notation lie in
intervals that get deleted.

form 0.212223? We’ve already handled the numbers with a 1 in the first digit,
so we are left to consider those numbers of the form 0.012223 and 0.212223. Of
course, the numbers 0.013 and 0.213 don’t worry us; they can be rewritten as 0.0023

and 0.2023. The numbers which really have their first 1 in the second digit are of
the form

0.013 < x < 0.023 or 0.213 < x < 0.223

or in more customary notation,

1
9

< x <
2
9

or
7
9

< x <
8
9
.

Aha! These are the numbers in the open intervals we deleted at stage 2. I hope
the situation is clear now. The numbers whose first real 1 is in the kth base 3 digit
are exactly those numbers we eliminate in the kth stage of constructing C. Those
numbers which remain (those numbers with only 0’s and 2’s) form Cantor’s set.

Now we can answer the question, Is 3
4 in C? Since 3

4 = 0.202020 · · ·3 = 0.203,
the answer is yes. On the other hand, 3

8 = 0.103 is not in C.

5.1.3 The link between the two representations

We have two ways to describe points in C: the symbolic (LR) notation and theL is 0 and R is 2!

ternary notation. Is there a nice way to see what the point, say, LRLRLRLR · · ·
might be? The answer is a beautiful yes.

What is the interval L? It is the interval
[
0, 1

3

]
, but let’s think about this in

another way. The interval L contains all those numbers whose first (base 3) digit
is 0 (from 0 = 0.03 to 1

3 = 0.023). The interval R contains those numbers whose
first digit is 2.

What is the interval LR? We know that LR =
[
2
9 , 1

3

]
=
[
0.0203, 0.0223

]
. Thus

the numbers in LR are exactly those numbers whose ternary notation begins with
0.02.

What are the numbers in LLRLR? The answer is: those whose ternary expan-
sion begins 0.00202. Thus the point LRLRLRLR · · · must be 0.02020202 · · ·3 =
0.023 = 1

4 .
Is the pattern clear? The symbol L becomes a 0, and the symbol R becomes a

2 (and we stick a decimal point in front). Thus we can easily switch between the
symbolic and ternary notations.

5.1. CANTOR’S SET 173

5.1.4 Topological properties of the Cantor set

Cantor’s set is a set of real numbers. We can also view it geometrically. Because
C has no length, the usual sort of geometric questions we might ask about it don’t
seem to be relevant. We consider more basic properties of C: topological properties.
Topology is (roughly) the study of properties of objects that are unchanged by
stretching (but not tearing). If Cantor’s set were drawn on an rubber band, then
its shape might change as we stretch the rubber band in various places, but its
topological properties would not change. It is well beyond the scope of this text to
do justice to the ideas of topology. Nonetheless, we describe C’s more important
topological properties (it is bounded, closed, compact, totally disconnected, and
perfect), as we need some of these ideas (especially compact sets) later.

Cantor’s set is bounded

When we say a set is bounded, we mean (roughly) that we can draw a circle around
it. More precisely, a set S is bounded means that there is a number b such that
all points in the set are within distance b of one another. For example, a line
segment in the plane is bounded. The unit interval [0, 1] of the real line is bounded.
Circles, triangles, and spheres are all bounded. However, lines and parabolas are
unbounded.

It is clear that Cantor’s set is bounded; all its points are within distance 1 of
one another, since the entire set lies inside the unit interval [0, 1].

Cantor’s set is closed

The idea of a closed set is more technical. Roughly, it means that points not in the
set are not extremely close to the set. Let’s make this precise. Let S be a set and
let p be a point not in S. We say that p is separated from S if there is some number Separation.

d so that all points within distance d of p are also not in S. (The number d might
depend on the point p in question.)

For example, let’s see why the point 1.1 is separated from the set [0, 1]. Note
that all numbers within distance d = 0.05 of 1.1 are also not in [0, 1]. Thus 1.1 is
separated from [0, 1]. On the other hand, 1 is not separated from the open interval
(0, 1). Although 1 /∈ (0, 1), we see that for any distance d, there are points a
distance d away from 1 which are in (0, 1). For similar reasons, the point (1, 0) (in
the plane) is not separated from the set {(x, y) : x2 + y2 < 1} (the interior of the
unit circle).

Now we are ready to define closed sets.3 Closed.

A set S is closed means that every point not in S is separated from S. For
example, the unit interval [0, 1] is closed. So are the x-axis of the coordinate plane,
and the unit circle {(x, y) : x2 + y2 = 1}. A set consisting of a single point (such
as the origin) is a closed set. However, the following sets are not closed: the open
interval (0, 1), the interior of a triangle, and the points in the plane (x, y) for which
x < y.

Cantor’s set is a closed set. To see why, think about a point p not in Cantor’s
set. If p > 1 or p < 0, we see that p is separated from C (choose d equal to half the
distance to 1 or 0, respectively). Otherwise (p is between 0 and 1) we know that
p is deleted at some stage in the construction of C. For example, if p is in

(
1
3 , 2

3

)
,

then p must be separated from C: We choose d to be half the distance to either 1
3

or 2
3 , whichever is closer. More generally, p is in some open interval (s, t) which was

deleted at some stage of the construction of C. We choose d to be half the smaller

3 There are other ways to define closed sets which are equivalent to the one we have given.
One definition says that a set is closed if boundary points of the set must be members of the set.
Another definition says that if a sequence of points from the set converges, the limit must also be
in the set.

174 CHAPTER 5. FRACTALS

of the distances from p to s or from p to t. Thus every point not in C is separated
from C; therefore, C is closed.

A restatement of this definition is that every point not in a closed set S is a
positive distance away from S. More precisely, the distance between a point p and
a closed set S is the minimum distance between p and any point in S. For example,
if S is the set {(x, y) : x2 + y2 ≤ 1} (the unit disk) and p = (3, 0), then the distance
from p to S is 2: the point of S closest to p is (1, 0), and it is at distance 2 from p.

For a closed set S, the distance from a point to p to S is zero if and only if
p ∈ S.

Cantor’s set is compact

A compact set is a set which is closed and bounded.4 Thus a circle is a compact
set, but neither a line (it’s unbounded) nor the interior of a square (it’s not closed)
is compact.

Clearly, Cantor’s set is compact. We have just seen that it is bounded and
closed.

All the fractals we consider in this book are compact sets. We will have more
to say about compact sets later in this chapter.

Cantor’s set is totally disconnected*

The words totally disconnected are virtually self-defining. Intervals, such as [0, 1]
are connected sets.5 A set such as [0, 1] ∪ [2, 3], while not connected, does contain
two connected pieces.

By contrast, Cantor’s set is totally disconnected. [We define what this means
only for subsets of the real line R.] A set S is totally disconnected means that
whenever p and q are points of S, then there is some point between p and q which
is not in S.

To see why Cantor’s set is totally disconnected, think about two numbers p and
q in Cantor’s set. We have to find a number between them which is not in C. To do
this, we write p and q in base 3 notation. At some digit they must disagree (since
they are unequal), say

p = 0.220200????? · · ·3 ,

q = 0.220202????? · · ·3 .

This means that p ∈ RRLRLL while q ∈ RRLRLR. This means that any number
x in the middle third of the interval RRLRL is not in C and is between p and q.
Therefore C is totally disconnected.

Cantor’s set is perfect*

We say that a set S is perfect if every point in S is the limit of other points in S.
Crudely, this means that the set can’t be spread out too thinly. The unit interval
[0, 1] is an example of a perfect set.

To show that Cantor’s set is perfect, we choose a point p in C, for example,
0.022020222 · · ·3. We have to show that there is a sequence of points p1, p2, . . .
which are all in C, are all different from p, and which converge to p. Here’s how

4This is not 100% correct. The actual definition of compact is a bit more technical. However,
for the sets we are considering (i.e., for subsets of Rn for some n) the “closed and bounded”
definition is equivalent to the full definition.

5There is a broad topological definition of connected, but we don’t need it. For subsets of the
real line R, it suffices to say that a set S is connected if whenever p, q are in S, then the entire
interval [p, q] must be a subset of S.

5.1. CANTOR’S SET 175

we do it. Let

p1 = 0.03,

p2 = 0.023,

p3 = 0.0223,

p4 = 0.02203,

p5 = 0.022023,

p6 = 0.0220223,

...

In words, we let pk be the ternary number obtained by truncating p after k digits.
Now, it is clear that all the pk’s are in C and that pk → p as k →∞. Finally, the
pk’s are all different from p unless p has a terminating ternary expansion, such as
p = 0.2023. In this case, our trick of using more and more digits of p doesn’t work, so
we reach back into our bag and pull out another trick. If p’s ternary representation
is finite (ends with an infinite stream of 0’s), then for, say p = 0.2023, we let

p1 = 0.20223,

p2 = 0.202023,

p3 = 0.2020023,

p4 = 0.20200023,

p5 = 0.202000023,

...

The trick here is to move the last, additional 2 farther and farther to the right.
Notice that none of the pk’s is equal to p, all are in C, and pk → p as k →∞.

Generalized Cantor sets*

Cantor’s set C is the Cantor’s set; it is also called Cantor’s middle thirds set. How- Cantor sets are also called
fractal dust.ever, there are other Cantor sets. Any set which is compact, totally disconnected,

and perfect is called a Cantor set. For example, the set B from the previous chapter
(points which are bounded under iteration of f(x) = x2 − 2.64) is a Cantor set.

5.1.5 In what sense a fractal?

The Cantor set C has many interesting mathematical properties, but it is not
exciting from a pictorial point of view. It looks (more or less) like the last row of
Figure 5.1—pretty boring. Nevertheless, it is a good first example of a fractal.

What is a fractal? Rather than give a precise definition, we list the two impor- The word fractal was coined
by Mandelbrot. It is meant
to convey the fractured look
these sets have as well as the
fact that they have
fractional dimension.

tant features of fractals: self-similarity and fractional dimension.
First, fractals look the same under a microscope as they do to the naked eye. By

this we mean if we zoom in on a section of a fractal image, what we see looks very
much (or exactly) like the set itself. For instance, we can look at the whole Cantor
set C or just the tiny bit that lies between 2

81 and 3
81 (in the interval LLLR). The

tiny portion is simply a 1
81 th scale model of the original! No matter how much we

magnify a portion of C, what we observe looks exactly like C.
Second, fractals have fractional dimension. We make this precise in §5.6, but

we can give a loose, intuitive idea here. A point is a zero-dimensional object: It
has no length. A real interval, or a line, or a curve in space are examples of one-
dimensional objects; they have length but no area. The interior of a square or the
surface of a sphere are examples of two-dimensional objects, having area but no
volume. Now, think about Cantor’s set. It has no length, so it makes sense that its
dimension is less than 1. On the other hand, there are a lot of points in Cantor’s

176 CHAPTER 5. FRACTALS

set and a lot of structure (it’s perfect, just like [0, 1]). It doesn’t seem fair to give
it the lowly zero-dimensional rating. These comments are very vague and mushy,
but they are meant only to convey an impression. In §5.6 we precisely work out the
exact dimension of Cantor’s set. That number, by the way, is log 2/ log 3 ≈ 0.6309.

Problems for §5.1

�1. Which of the following numbers are in Cantor’s set?

(a) 0.

(b) 1/9.

(c) 1/10.

(d) 3/4.

(e) 8/3.

(f) 19/26.

(g) 7/8.

(h) π.

�2. Consider a middle “three-fifths” version of Cantor’s set. Start with the unit
interval [0, 1]. Remove the open middle three-fifths, i.e., delete

(
1
5 , 4

5

)
. In

each remaining interval, remove the middle three-fifths again. Continue this
procedure ad infinitum.

Describe the set of numbers in this middle-three-fifths version of Cantor’s set.
[Hint: work in base 5.]

�3. Consider the function

f(x) = −3
∣∣∣∣x− 1

2

∣∣∣∣+ 3
2
.

When we iterate f we often have fk(x)→ −∞ (for example, try this starting
at x = 1

2). Let B be the set of starting values x0 so that fk(x0) 6→ −∞.

Find exactly the set B and describe how f treats the values in B.

�4. Which of the following sets are bounded? Which are closed? Which are
compact?

(a) The unit interval [0, 1].

(b) A ray (with its endpoint) in the plane.

(c) A half-plane including the boundary line.

(d) A half-plane without the boundary line.

(e) The real line.

(f) The set of points in the plane which are distance at least 5 from the
origin.

(g) The set of points in the plane which are distance at most 5 from the
origin.

(h) The interior of a triangle.

(i) Any set of 15 points in the plane.

(j) The empty set.

�5.* Give four examples of subsets of the line which are connected; make them as
different as possible.

�6.* Give three examples of subsets of the line which are totally disconnected. Can
a subset of the real line be both connected and totally disconnected?

5.2. BITING OUT THE MIDDLE IN THE PLANE 177

Figure 5.2: Construction of Sierpiński’s triangle by removing middle triangles.

5.2 Biting out the middle in the plane

Cantor’s set is constructed by repeated applications of the “bite out the middle”
operation. The resulting set C is mathematically intriguing but, as it is a subset of
the line, visually dull. Before we get on with the meat of this chapter, we thought
we’d sneak a few bites (ha!) from the dessert tray.

We consider two extensions of the “bite out the middle” concept to sets in the
plane, R2. The first gives us Sierpiński’s triangle and the second Koch’s snowflake.

5.2.1 Sierpiński’s triangle

The raw material for Cantor’s set was the unit interval. To build Sierpiński’s Biting out the middle of a
triangle.triangle, we start with a filled-in triangle in the plane. (By filled-in we mean that

we include the interior.)
The basic construction step for Cantor’s set was the removal of the middle part

of the interval. For Sierpiński’s triangle, the basic step is to remove the middle of
the triangle. What do we mean by the middle of the triangle? Given a triangle, we
can form another triangle by joining the midpoints of the three sides. This smaller
triangle, covering 1

4 the area of the original, is what we mean by the middle triangle.
We now delete the interior of the middle triangle. What we are left with is three
half-size copies of the original triangle which are just-touching each other at their
corners; see Figure 5.2. We now repeat this “delete the middle triangle” operation
on each of the three remaining triangles. (See the figure.) We continue this process
ad infinitum, and the result is the Sierpiński triangle (Figure 5.3).

Sierpiński’s triangle has the same self-similarity properties that Cantor’s set
has. Each of the three subtriangles (in the three regions left after the first bite) is
a half-size copy of the original.

Each bite removes 1
4 of the area left, so after k bites the area remaining is (3

4)k

times the original area. Thus, Sierpiński’s triangle has zero area. On the other hand,
it is clearly fatter than a one-dimensional curve, so it would seem appropriate to
award Sierpiński’s triangle with a dimension between 1 and 2. Indeed, we show (in
§5.6) that its dimension is log 3/ log 2 ≈ 1.585.

5.2.2 Koch’s snowflake

We now present a second construction akin to that of Cantor’s set. We start with Pushing out the middle.

an equilateral triangle (just the triangle without its interior). We want to bite out
the middle third of each of its sides, but instead of deleting that section, we bend it
out to make two sides of a smaller equilateral triangle; see Figure 5.4. We do this

178 CHAPTER 5. FRACTALS

Figure 5.3: Sierpiński’s triangle.

Figure 5.4: The basic step in the construction of the Koch snowflake.

basic step to push out each side of the equilateral triangle. The result (in the upper
left of Figure 5.5) looks like a Star of David. Next we perform the basic operation
on each side of the Star of David: We replace the middle third by pushing out
two sides of an equilateral triangle. The next three stages in the construction are
shown in Figure 5.5. The Koch snowflake, which looks very much like the lower
right image in Figure 5.5, is the result of repeating this operation ad infinitum.

At each stage, the length of the curve increases by a factor of 4
3 . Thus the Koch

snowflake has infinite length but zero area. Each section of the snowflake has the
same basic appearance as the whole, regardless of how closely you might zoom in
on a section.

Problems for §5.2

�1. Recall Pascal’s triangle, which displays the binomial coefficients. The nth row
of Pascal’s triangle are the coefficients of (x + y)n (binomial coefficients):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

5.2. BITING OUT THE MIDDLE IN THE PLANE 179

Figure 5.5: Steps 1, 2, 3, and 4 of the Koch snowflake construction.

Figure 5.6: Repeatedly deleting the middle third of a square.

Draw a picture (a computer is helpful here) of Pascal’s triangle in which every
odd entry is replaced by a dot, and every even entry is left blank. What is
the result?

�2. Start with the unit square, i.e., the set {(x, y) : 0 ≤ x, y ≤ 1}. Delete the
open square of side length 1

3 from the middle of this square. This leaves eight
closed squares of side length 1

3 remaining. Now repeat this procedure on each
of these pieces, and continue forever; see Figure 5.6.

Which ordered pairs of real numbers (x, y) are in this set?

180 CHAPTER 5. FRACTALS

5.3 Contraction mapping theorems

In this section we lay the theoretical foundation for understanding how fractals are
attractive fixed “points” of dynamical systems. This material is used to justify the
fractal algorithms we discuss later.

5.3.1 Contraction maps

Let x̃ be a fixed point of f , i.e., f(x̃) = x̃. Recall that if |f ′(x̃)| < 1, then x̃ isIf |f ′(x)| < 1, then f shrinks
distances. an attractive fixed point. Geometrically, the condition |f ′(x̃)| < 1 means that the

graph of f crosses the line y = x at x = x̃ with a gentle slope. We now present
another geometric view of this situation.

Suppose a and b are values near x̃. What do we mean by near? Let us suppose
that f ′ is continuous,6 and therefore f ′(x) doesn’t vary wildly near x̃. Thus we
know that f ′(x) stays between ±s for some positive number s < 1 whenever x is
in some open interval J around x̃. We assume a and b are in this open interval J
within which |f ′(x)| ≤ s < 1. What do we know about the distance between f(a)
and f(b)? This distance is |f(b)− f(a)|. By the mean value theorem (see §A.3.1),

f(b)− f(a) = f ′(c)[b− a]

for some c between a and b. We can rewrite this as

|f(b)− f(a)| = |f ′(c)| · |b− a| ≤ s|b− a|.

In other words, the distance between a and b shrinks by a factor of s (or better)
after we apply f . In particular, the distance between a and x̃ (and b and x̃) also
shrinks by at least a factor of s, so f(a) and f(b) move closer to x̃. What happens
after two iterations? We have

|f2(b)− f2(a)| ≤ s|f(b)− f(a)| ≤ s2|b− a|

so in two iterations of f , the distance between a and b has shrunk by at least a
factor of s2. We see that after k iterations,

|fk(b)− fk(a)| ≤ sk|b− a|

and since sk → 0 as k →∞ (because 0 < s < 1) we know that the distance between
points is shrinking to zero as we iterate.

The important feature we have found is that (near the fixed point x̃) the function
f is contractive: It shrinks distances. Let’s make this more precise.

Let f : R → R. We say that f is a contraction mapping provided there is aDefinition of contraction
mapping. number s, with 0 < s < 1, so that for any numbers a and b we have

|f(b)− f(a)| ≤ s|b− a|.

If we wish to be more specific, we can say that f is a mapping with contractivity s.

For example, let f(x) = 1
3x− 1. Let a and b be any numbers. Observe that

|f(b)− f(a)| =
∣∣∣∣(b

3
− 1)− (

a

3
− 1)

∣∣∣∣ = 1
3
|b− a|

so f is a contraction map with contractivity 1
3 .

Note that the condition |f(b) − f(a)| ≤ s|b − a| implies that if b → a, then
f(b) → f(a), i.e., f must be continuous. However, f need not be differentiable.
(See problems 2 and 3 on page 188.)

6In order to even talk about f ′ we need f to be differentiable. We also assume that this
derivative is a continuous function.

5.3. CONTRACTION MAPPING THEOREMS 181

5.3.2 Contraction mapping theorem on the real line

We now give a first version of the contraction mapping theorem.

Theorem (contraction mapping for R). Let f : R → R be a contraction
mapping. Then f has a unique, stable fixed point, x∗. Furthermore, for any
number a, we have fk(a)→ x∗ as k →∞.

Let’s see why this is true. We define This value x∗ turns out to
be the unique fixed point of
f . Does the infinite sum
converge?

x∗ = f(0) +
[
f2(0)− f(0)

]
+
[
f3(0)− f2(0)

]
+
[
f4(0)− f3(0)

]
+ · · · . (5.1)

This is an infinite sum, so our first worry is that this sum converges. The kth term
of this sum is fk+1(0)− fk(0), which we can also write as

f(fk(0))− f(fk−1(0)).

We now use the fact that f is a contraction mapping to write∣∣f (fk(0)
)
− f

(
fk−1(0)

)∣∣ ≤ s
∣∣fk(0)− fk−1(0)

∣∣
which we can rearrange to read∣∣∣∣f(fk(0))− f(fk−1(0))

fk(0)− fk−1(0)

∣∣∣∣ ≤ s.

What this says is that the absolute values of the ratios of the successive terms in
equation (5.1) are bounded by s < 1. Hence by the ratio test, we know that the
infinite sum defining x∗ converges (indeed, converges absolutely). So the number
x∗ exists!

Now, what is x∗? Let’s look at the partial sums of equation (5.1): Here we show that
f(x∗) = x∗.

One term → f(0).
Two terms → f(0) + [f2(0)− f(0)] = f2(0).

Three terms → f(0) + [f2(0)− f(0)] + [f3(0)− f2(0)] = f3(0).
...

Because the summation in equation (5.1) telescopes,7 we see that the partial sums
are f(0), f2(0), f3(0), · · · . In other words, we have shown that fk(0) → x∗ as
k →∞. We are almost done with our first goal: finding a fixed point of f . Now we
ask, What is f(x∗)? Since x∗ is the limit of fk(0) (as k →∞) and f is continuous,
we have

f(x∗) = lim
k→∞

f [fk(x∗)] = lim
k→∞

fk+1(x∗) = x∗.

Aha! We see that x∗ is a fixed point. What’s more, we can compute x∗ simply by
iterating f starting at 0.

Now we still have three tasks: Three tasks remain.

(1) to show that there are no other fixed points of f ,

(2) to show that x∗ is an stable fixed point, and

(3) to show that fk(a)→ x∗ as k →∞ for any a.

For (1) we note that if there were two (or more) distinct fixed points of f , say, There are no other fixed
points.a and b, then we would have the following contradiction to f ’s contractivity:

|f(a)− f(b)| = |a− b| 6≤ s|a− b|.

182 CHAPTER 5. FRACTALS

For (2) and (3) we choose any starting value a (not necessarily near x∗) and wex∗ is very stable.

repeatedly use f ’s contractivity to write

|fk(a)− x∗| = |fk(a)− fk(x∗)| ≤ sk|a− x∗|

which tends to 0 (since s < 1) as k → ∞. Thus fk(a) → x∗ for any number a.
This completes our justification of the contraction mapping theorem (for R).

5.3.3 Contraction mapping in higher dimensions

We plan to greatly extend the idea of contraction mapping and to present increas-
ingly general versions of this theorem. Our first extension is modest: We move
from R to Rn.

Let f : Rn → Rn, i.e., f is a function from n-vectors to n-vectors. Now we
know exactly what we mean by the distance between vectors x and y. We haveWe write d(x,y) to stand for

the distance between x and
y. d(x,y) = |x− y| =

√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

We can now express what it means for vector functions to be contraction map-
pings. A function f : Rn → Rn is a contraction mapping means that there is a
number s, with 0 < s < 1, so that for any vectors x and y we must have

d [f(x), f(y)] ≤ sd(x,y).

Theorem (contraction mapping for Rn). Let f : Rn → Rn be a contraction
mapping. Then f has a unique, stable fixed point, x̃. Furthermore, for any a ∈ Rn

we have fk(a)→ x̃ as k →∞.

The justification of this theorem is similar to that of the one-dimensional version.

5.3.4 Contractive affine maps: the spectral norm*

Later, we will use functions of the form f(x) = Ax+b to build fractals. We want toHow to tell if an affine
function is contractive. know whether these functions are contraction maps. In the one-dimensional case,

f(x) = ax+b, we just need |a| < 1. What do we need in the multidimensional case?
If you said “all eigenvalues of A have absolute value less than 1” you are—I’m very
sorry—wrong. But give yourself a big pat on the back; it was an excellent guess.

Let’s see what’s going on. We want d[f(x), f(y)] ≤ sd(x,y), that is,

|(Ax− b)− (Ay − b)| ≤ s|x− y|
⇒ |A(x− y)| ≤ s|x− y|

⇒ |A(x− y)|
|x− y|

≤ s.

For z = x − y 6= 0, this becomes |Az|/|z| ≤ s for any z ∈ Rn. Notice that since
A(rz) = rA(z), we may as well assume that z is a unit vector (has length 1). In
this case, we just want to be sure that |Az| ≤ s < 1 for all unit vectors z.

Let’s consider an example. Let A =
[

0.2 0.3
0.5 −0.4

]
. We ask, Given that z is a

unit vector, how large can |Az| be? Now, unit vectors are those with length 1 and

correspond to points on the unit circle. Thus z can be written as z =
[

cos θ
sin θ

]
,

where 0 ≤ θ ≤ 2π. So

Az =
[

0.2 0.3
0.5 −0.4

] [
cos θ
sin θ

]
=
[

0.2 cos θ + 0.3 sin θ
0.5 cos θ − 0.4 sin θ

]
,

7Yes, that’s really what mathematicians say, because the successive terms fold into each other
like a collapsing telescope.

5.3. CONTRACTION MAPPING THEOREMS 183

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 1 2 3 4 5 6 7

Figure 5.7: A plot of the possible values of |Az| where z is a unit vector.

and
|Az| =

√
(0.2 cos θ + 0.3 sin θ)2 + (0.5 cos θ − 0.4 sin θ)2.

We can plot this last expression as a function of θ, as we have done in Figure 5.7.
Note that |Az| varies roughly between 0.36 and 0.64. In any case, we see that
|Az| < 0.65 for any unit vector z. This implies, by our preceding work, that a map

of the form f(x) = Ax + b (with A =
[

0.2 0.3
0.5 −0.4

]
) is a contraction map.

Now, the eigenvalues of A are 0.3899 and −0.5899; neither is the special value
0.64. What we really want to know is the maximum value of |Az| for a unit vector
z. This number is called the spectral norm of A. Let us denote the spectral norm The spectral norm, not the

eigenvalues, of a matrix
determines whether or not it
is contractive.

of A by ||A||, i.e.,
||A|| = max

|z|=1
|Az|.

The spectral norm of A is also called the first singular value of A. How do we
calculate it? Advanced linear algebra texts give the full story,8 but we shall be How to compute ||A||.
content if our computer can compute it. In Matlab we use the norm function:

a =
0.2000 0.3000
0.5000 -0.4000

>>norm(a)
ans =

0.6414

Aha! There is the “magic” number we have been looking for. We that the maximum
of |Az| (i.e., ||A||) is about 0.6414. Since this number is less than 1, we see that that
Ax + b is a contraction mapping.

(Other computer packages also enable you to compute spectral norm. In Math-
ematica you can use the SingularValues function to compute the spectral norm.
You can create your own command by entering

SpectralNorm[matrix_] :=
Max[SingularValues[matrix][[2]]]

To compute the singular value of a matrix such as
[

0.2 0.3
0.5 −0.4

]
you would type

8Here’s a quick synopsis: Compute the square roots of the eigenvalues of AT A; these numbers
are the singular values of A. The largest singular value is the spectral norm.

184 CHAPTER 5. FRACTALS

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

Figure 5.8: A plot of z (the unit circle) and |Az| (the enclosed ellipse) for all unit
vectors z. The spectral norm of A is less than 1.

SpectralNorm[{{.2,.3},{.5,-.4}}]

and the computer would respond with 0.641421. You can also use Maple to com-
pute the spectral norm. Use the Svd command or the singularvals command in
the linalg package. The spectral norm is the largest of the singular values.)

We can also look at this situation graphically. If we plot all the unit vectorsA geometric view of spectral
norm. z in R2, we get the unit circle. If we also plot Az for all z, we get (typically) an

ellipse. If the ellipse lies entirely in the interior of the unit circle, then we know
that |Az| ≤ s < 1 for some number s. Such a plot is given in Figure 5.8. The circle
of radius 1 represents the set of all unit vectors z. The ellipse represents the set
of all vectors of the form Az (with z a unit vector). Since this ellipse is enclosed
in the interior of the unit circle, we see that ||A|| < 1, so Ax + b is a contraction
mapping.

Now let’s do another example. Let B =
[

0.8 −0.9
0 0.9

]
. The eigenvalues of BA matrix whose eigenvalues

have absolute value less than
1, but whose spectral norm
is greater than 1.

are 0.8 and 0.9; both have absolute value less than 1. We compute the spectral
norm of B using Matlab:

b =
0.8000 -0.9000

0 0.9000

>>norm(b)

ans =
1.4145

Since ||B|| > 1, we know that f(x) = Bx + b is not a contraction mapping. For

example, let x =
[

1
−1

]
and y = 0 =

[
0
0

]
. Now, d(x,y) = |x| =

√
2 ≈ 1.414.

However,

d(f(x), f(y)) =
∣∣∣∣[1.7
−0.9

]∣∣∣∣ ≈ 1.9235,

so the distance between x and 0 increases after we apply f to each.
We can also see that ||B|| > 1 geometrically. We plot the unit circle (all z with

|z| = 1), and we also plot the points Bz; see Figure 5.9. Notice that the ellipse is
not contained in the interior of the unit circle, but is a distance ||B|| > 1 from the
origin at its farthermost point.

5.3. CONTRACTION MAPPING THEOREMS 185

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 5.9: A plot of z (the unit circle) and |Bz| (the ellipse) for all unit vectors z.
The spectral norm of B is greater than 1.

In summary, we can judge if an affine function f(x) = Ax + b is contractive
by computing the spectral norm of A. If ||A|| < 1, then f is contractive with
contractivity ||A||. Otherwise (||A|| ≥ 1), the function is not a contraction mapping.

5.3.5 Other metric spaces

What is distance? On the real line, the distance between numbers x and y is the Generalizing the idea of
distance.absolute value of their difference. In the plane, the distance between two points

(given their coordinates) can be computed using the Pythagorean theorem. We can
generalize the idea of distance. We might want to talk about the distance between
two functions or two compact sets in the plane. We want to extend the notion of
distance.

Let X be a set of objects; in X we might have all points in the plane, or all
continuous functions from the reals to the reals. A function d, defined for pairs of
elements of X , is called a metric or a distance provided the following three properties Definition of metric

(distance).hold:

• For any x, y ∈ X , d(x, y) = d(y, x) is a nonnegative real number.

• For any x, y ∈ X , we have d(x, y) = 0 if and only if x = y.

• For any x, y, z ∈ X , we have d(x, y) + d(y, z) ≥ d(x, z).

Ordinary distance of points satisfies all three of these properties: The distance
between two points is a nonnegative number which is zero just when the two points
are the same. Ordinary distance also satisfies the third property (known as the
triangle inequality), which states that the distance from x to z is never bigger than
the distance from x to y plus the distance from y to z.

A set X which has a metric d is called a metric space. Now if f is a function
from X to X , we can ask, Is f a contraction mapping? This makes sense. We say
that f is a contraction mapping provided there is a number s, with 0 < s < 1, so
that for any points x, y ∈ X , we have d(f(x), f(y)) ≤ sd(x, y).

And now we can ask, Does the contraction mapping theorem hold for any metric
space (X , d)? Regrettably, the answer is no. We need one more technical condition:
The metric space should be complete. I don’t want to discuss what this means
except in very vague terms. Very roughly, to be complete, sequences of points in X
which you think ought to converge to a limit, in fact, do converge.

[In fact, we work with only one novel metric space: the set of nonempty compact
sets. And we promise that this metric space is complete (we fully describe this
metric space in the next section). The technical details of why that particular
metric space is complete can be found in other books.]

186 CHAPTER 5. FRACTALS

x

A

Figure 5.10: The distance between a point x and a compact set A is d(x,A) =
min{d(x, y) : y ∈ A}.

Even though we haven’t explained what complete means, we present our final
version of the contraction mapping theorem.

Theorem (contraction mapping for complete metric spaces). Suppose
(X , d) is a complete metric space. Let f : X → X be a contraction mapping. Then
f has a unique, stable fixed point, x̃. Further, for any a ∈ X we have fk(a)→ x̃ as
k →∞.

This has been rather abstract. We now turn to considering a new metric space.

5.3.6 Compact sets and Hausdorff distance

Recall (page 174) that a compact set is a closed and bounded subset of Rn. Let
Hn denote the set of all nonempty compact sets in Rn. Thus an element X ∈ Hn

is an entire set of points in Rn. For example, the unit circle, {(x, y) : x2 + y2 = 1},
is an element of H2.

We want to talk about the distance between two compact sets. In order for thisThe distance between
compact sets: the Hausdorff
metric

distance to be a metric we need to satisfy the three properties listed above: (1) the
distance is a nonnegative real number which (2) is zero exactly when the objects
are the same, and (3) the distance function must obey the triangle inequality.

The definition of distance for Hn takes a bit of work to develop. We already
know what the distance between points x and y is, and we write this distance as
d(x, y). Now we work to develop a notion of distance between nonempty compact
sets d(A,B) with A,B ∈ Hn.

We proceed in steps.

Step 1: Distance between a point and a compact set.d(point,set)

The first step is to define the number d(x, A), where x is a point and A is a
nonempty compact set in Rn. We define d(x, A) to be the distance between x and
a point in A which is closest to x, that is,

d(x, A) = min{d(x, y) : y ∈ A}.

This is illustrated in Figure 5.10. The distance between x and A is the distance
from x to a nearest point in A.

Notice that if x ∈ A, then d(x,A) = d(x, x) = 0, but if x /∈ A, then d(x,A) > 0.

Step 2: Asymmetrical distance from one compact set to another.~d(set,set)

The next step is to build an asymmetrical distance from a compact set A to a
compact set B. We define ~d(A,B) to be the largest distance from a point in A to
the set B, i.e.,

~d(A,B) = max{d(x,B) : x ∈ A}.

5.3. CONTRACTION MAPPING THEOREMS 187

A
B

Figure 5.11: The asymmetrical distance ~d(A,B) from compact set A to compact
set B.

A B

C

a

x

b

c

Figure 5.12: Understanding why ~d satisfies the triangle inequality.

This idea is illustrated in Figure 5.11. The function ~d is, unfortunately, not a
metric because it is not symmetric: We can have ~d(A,B) 6= ~d(B,A). For example,
if A and B are distinct elements of Hn with A ⊂ B, then ~d(A,B) = 0 (the point
in A farthest from B is still in B), but ~d(B,A) > 0 (there are points in B that
aren’t in A). This example (A ⊂ B) also shows that we can have ~d(A,B) = 0
without A = B (violating the second part of the definition of metric). So ~d is not a
metric, but it’s getting close. We now show that ~d satisfies the triangle inequality:
~d(A,B) + ~d(B,C) ≥ ~d(A,B).

To see why, we select A,B,C ∈ Hn. To compute ~d(A,C), we find a point Why ~d satisfies the triangle
inequality.a ∈ A maximally distant from C and let x be a point in C to which a is closest.

Thus ~d(A,C) = d(a, x); see Figure 5.12. Next, we find a point b ∈ B closest to
a, so d(a,B) = d(a, b). Finally, we find a point c ∈ C which is closest to b, so
d(b, C) = d(b, c). We also know the following facts:

(1) ~d(A,B) ≥ d(a,B) = d(a, b) because ~d(A,B) is the greatest distance of a point
in A to B.

(2) Likewise, ~d(B,C) ≥ d(b, C) = d(b, c) because ~d(B,C) is the greatest distance
of a point in B to C.

(3) d(a, c) ≥ d(a, x) because x is a point of C closest to a.

188 CHAPTER 5. FRACTALS

Armed with these facts, we now reason

~d(A,B) + ~d(B,C) ≥ d(a, b) + d(b, c) by (1) and (2),
≥ d(a, c) by the triangle inequality,
≥ d(a, x) by (3),
= ~d(A,C) by construction.

Thus ~d(A,B) + ~d(B,C) ≥ ~d(A,C) as promised.

Step 3: The Hausdorff metric on Hn.d(set,set)

The last step in defining a metric on Hn is to fix the asymmetry in ~d. We do
this by defining

d(A,B) = max{~d(A,B), ~d(B,A)},

that is, d(A,B) is the larger of the numbers ~d(A,B) and ~d(B,A). It is clear
that d(A,B) = d(B,A) is a nonnegative real number. We have d(A,A) = 0,
since ~d(A,A) = 0. Also if A 6= B, then one of ~d(A,B) or ~d(B,A) is positive, so
d(A,B) > 0. Lastly,

d(A,B) + d(B,C) ≥ ~d(A,B) + ~d(B,C) ≥ ~d(A,C), and

d(A,B) + d(B,C) ≥ ~d(B,A) + ~d(C,B) ≥ ~d(C,A),

and therefore d(A,B) + d(B,C) ≥ d(A,C) verifying the triangle inequality. Thus
d is a metric, called the Hausdorff metric for Hn.

Now (Hn, d) is a complete metric space (we haven’t explained or proved the
“complete” part) and therefore the contraction mapping theorem applies: If f : Hn →
Hn is a contraction mapping, then f must have a unique, stable fixed point,
X ∈ Hn, and for any A ∈ Hn we have fk(A)→ X as k →∞.

It is important to understand that the fixed “point” of the function f is not aThe stable fixed “point” of f
is actually an entire compact
set, also called the attractor
of f .

point in the usual sense. We are using the word “point” in a rather broad sense. In
this setting, it simply means a member of Hn, i.e., a compact set. Thus the fixed
point of f : Hn → Hn need not be a single dot—it can be an intricate compact set.

Indeed, this is exactly how we build fractals. In the next section we create
fractals by first constructing contraction maps and then finding their fixed “points.”

Problems for §5.3

�1. Which of the following are contraction maps? For those that are, find their
contractivities (a number s < 1 so that |f(x)− f(y)| ≤ s|x− y| for all real x
and y).

(a) f(x) = 3x− 4.

(b) f(x) = −x
2 + 10.

(c) f(x) = 1
3 − x.

(d) f(x) = cos x.

(e) f(x) = 1
2 sinx.

(f) f(x) = exp{−x2}.

�2.* Let f : R→ R be a contraction map. Prove that f must be continuous.

To do this, suppose the sequence x1, x2, . . . converges to x, i.e., the distance
between the xj ’s and x goes to 0. Show that f(x1), f(x2), . . . converges to
f(x).

�3. Let f : R→ R be a contraction map. Show that f need not be differentiable.

To do this, find an example of a function which (1) is a contraction map and
(2) is not differentiable at all values x.

5.4. ITERATED FUNCTION SYSTEMS 189

�4. Suppose f : R→ R is differentiable, and let 0 < s < 1. Show that if |f ′(x)| ≤
s for all x, then f is a contraction mapping.

[Hint: Use the mean value theorem.]

�5. Let’s weaken the assumptions of the previous problem. Suppose f : R→ R is
differentiable, and |f ′(x)| < 1 for all x. Show that f need not be a contraction
map and that f need not have a fixed point.

[Hint: Let f(x) = x− 1
2 log (ex + 1).]

�6. Let J be the unit square and K be the unit disk, i.e.,

J = {(x, y) : 0 ≤ x, y ≤ 1}, and
K = {(x, y) : x2 + y2 ≤ 1}.

Find ~d(J,K), ~d(K, J), and d(J,K).

�7. Let J be the unit circle and K be the unit disk, i.e.,

J = {(x, y) : x2 + y2 = 1}, and
K = {(x, y) : x2 + y2 ≤ 1}.

Find ~d(J,K), ~d(K, J), and d(J,K).

�8.* The purpose of this problem is to give an example of a metric space in which
the contraction mapping theorem doesn’t hold. Thus this example is not a
complete metric space.

Recall that Q denotes the set of rational numbers, i.e., the set of all numbers
of the form p/q, where p and q are integers and q 6= 0. Let X = Q ∩ [1, 2],
i.e., X is the set of rational numbers between 1 and 2 inclusive.

We can consider X to be a metric space by endowing it with the usual distance
function, i.e., for x, y ∈ X we put d(x, y) = |x− y|.

Now, we define f : X → X by

f(x) = x− x2 − 2
2x

.

You should check that if x ∈ X , then f(x) ∈ X as well. This means checking
that if x is rational and in [1, 2], then f(x) is also rational and in [1, 2].

Please show (1) that f is a contraction mapping on X , but (2) f does not
have a fixed point.

[Comments and hints: (1) Forget for a moment that f is a function defined
on rational numbers and think about f ′(x) in the interval [1, 2]; how big can
|f ′(x)| be? (2) If you think of f as a function from [1, 2] to [1, 2] (the full
interval), then f does have a fixed point (what is it?); nevertheless, f—defined
just on X—does not have a fixed point.]

5.4 Iterated function systems

In this section we introduce the notion of iterated function systems, or IFSs, for
short. The IFSs are, in fact, functions defined on Hn. We develop methods to
check if they are contraction maps and then create fractals as the fixed points of
these maps. Our raw ingredients are affine functions.

190 CHAPTER 5. FRACTALS

5.4.1 From point maps to set maps

Recall that Hn stands for the set of all nonempty compact subsets of Rn.
There is a natural way to convert a function defined on Rn to a function definedf(set)

on Hn. Let f : Rn → Rn be a continuous function. If A is a nonempty compact
set in Rn (i.e., A ∈ Hn), then we define

f(A) = {f(a) : a ∈ A}.

In other words, f(A) is the set of all points of the form f(a), where a ranges over
the possible elements of A. For example, if f(x) = x2 and A = [−1, 3], then
f(A) = [0, 9]. Why? As a ranges over the compact interval [−1, 3], then f(a) = a2

takes on all values from 0 (at the lowest) to 9 (at the greatest).
Here is another example. Let f : R2 → R2 be defined by f(x) = Ax, where A

is a 2× 2 matrix. Let C be the unit circle, a compact set and therefore an element
of H2; then f(C) is an ellipse (unless A is noninvertible).

Another example: A singleton set {a} is a compact set. What is f({a})? There
is only one value in {a}, so, by definition, f({a}) is the set {f(a)}.

It is a theorem of topology that if f is continuous and A is a compact set, then
f(A) is also compact.9

The double use of the letter f (as a function defined on points and as a function
defined on sets) is undesirable but something we can tolerate. The crux is, if we
have a continuous function defined from points to points (f : Rn → Rn), it extends
to a function defined on compact sets (f : Hn → Hn).

Contraction implies contraction

Suppose f : Rn → Rn is a contraction mapping (with contractivity s). We know
we can also view f as a function defined on Hn, which is a metric space. Thus it
makes sense to ask, Is f a contraction mapping on Hn as well? Happily, the answer
is yes.

If f : Rn → Rn is a contraction map with contractivity s, then f : Hn → Hn is also
a contraction map with contractivity s.

Let’s prove this. We know that d(f(a), f(b)) ≤ sd(a, b) for any a, b. We work
to show that d(f(A), f(B)) ≤ sd(A,B) for any A,B ∈ Hn.

Step 1: d(f(a), f(B)) ≤ sd(a,B) for any point a ∈ Rn and any set B ∈ Hn.

We compute

d(f(a), f(B)) = min{d(f(a), y) : y ∈ f(B)} def’n d(point,set)
= min{d(f(a), f(b)) : b ∈ B} def’n f(B)
≤ min{sd(a, b) : b ∈ B} f is a contraction
= smin{d(a, b) : b ∈ B} factor out s
= sd(a,B) def’n d(point,set).

Step 2: ~d(f(A), f(B)) ≤ s~d(A,B) for any two sets A,B ∈ Hn.

We compute

~d(f(A), f(B)) = max{d(x, f(B)) : x ∈ f(A)} def’n ~d
= max{d(f(a), f(B)) : a ∈ A} def’n f(A)
≤ max{sd(a,B) : a ∈ A} by step 1
= smax{d(a,B) : a ∈ A} factor out s

= s~d(A,B) def’n ~d.

Step 3: d(f(A), f(B)) ≤ sd(A,B) for any two sets A,B ∈ Hn.
9This theorem is not, in fact, hard to prove. It is simply beyond the scope of this text.

5.4. ITERATED FUNCTION SYSTEMS 191

We compute

d(f(A), f(B)) = max
{

~d(f(A), f(B)), ~d(f(B), f(A))
}

def’n d(set,set)

≤ max
{

s~d(A,B), s~d(B,A)
}

by step 3

= smax
{

~d(A,B), ~d(B,A)
}

factor out s

= sd(A,B) def’n d(set,set).

Thus we have shown that if f : Rn → Rn is a contraction map (as a pointwise
function), then f : Hn → Hn is also a contraction map (as a setwise function).

Summary

We summarize the main points of this section:

• If f is a (pointwise) function from Rn to Rn, then f can also be considered
a (setwise) function from Hn to Hn.

• If f is contractive as a pointwise function, then f is also contractive as a
setwise mapping.

• If f is contractive, then f has a unique stable fixed point.

– In the pointwise setting (f : Rn → Rn) this is a vector x̃ for which
f(x̃) = x̃.

– In the setwise setting (f : Hn → Hn) this is a compact set X ∈ Hn for
which f(X) = X.

We now know that if f is a pointwise contractive map, then f is also a setwise
contractive map. Thus, by the contraction mapping theorem, f has a setwise fixed
“point.” What is the set for which f(A) = A? The answer is anticlimactic. We
know that as a pointwise map, a contractive map f has a unique fixed point x̃, i.e.,
f(x̃) = x̃. Thus f({x̃}) = {f(x̃)} = {x̃}. Thus the singleton set {x̃} is the setwise
fixed “point” of f . Since the fixed point of a contraction map is unique, this can
be the only one!

We said that we create our fractals as fixed points of contractive set maps.
A one-point set is not an exciting fractal. What we need to do next is find an
additional source of contractive maps defined on Hn.

5.4.2 The union of set maps

Suppose f and g are both set maps, i.e., f : Hn → Hn and g : Hn → Hn. We define
a new function defined on Hn by taking the union of f and g, which we denote by
f ∪ g. The definition is simple. Let

(f ∪ g)(A) = f(A) ∪ g(A).

In words, the function F = f ∪ g is computed on a set A by taking the union of
f(A) and g(A).

For example, let f(x) = x2 and g(x) = 2x + 5. We can also think of f and
g as functions on sets. Thus f([−1, 1]) = [0, 1] and g([−1, 1]) = [3, 7]. Thus
(f ∪ g)([−1, 1]) = [0, 1] ∪ [3, 7].

Another example: Suppose

f

[
x
y

]
=
[

2 0
0 1

] [
x
y

]
and g

[
x
y

]
=
[

1 0
0 2

] [
x
y

]
.

Let us compute (f ∪ g)(C), where C is the unit circle. Now f stretches the x-axis
by a factor of 2, stretching C into a horizontal ellipse, while g stretches the y-axis

192 CHAPTER 5. FRACTALS

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2

Figure 5.13: The result of (f∪g)(C) where f and g are simple linear transformations
and C is the unit circle.

by a factor of 2, transforming C into a vertical ellipse. The result of (f ∪ g)(C) is
shown in Figure 5.13.

We want to use the idea of union of functions to build contraction maps. TheThe union of contraction
maps is a contraction map. question is, If f and g are contraction maps, is f ∪ g a contraction map as well?

The answer is yes. Here’s the result.

If f, g : Hn → Hn are contraction maps with contractivities s and t respectively,
then F : Hn → Hn defined by F = f ∪g is also a contraction map with contractivity
max{s, t}.

To prove this, we begin by proving an important intermediate step. We claim
that for any sets A,B, C, D ∈ Hn we have

d(A ∪B,C ∪D) ≤ max {d(A,C), d(B,D)} . (5.2)

The verification of inequality (5.2) goes in three steps.

• Step 1: ~d(X ∪ Y, Z) = max
{

~d(X, Z), ~d(Y, Z)
}

.

To see why this is true, we simply choose x ∈ X so that d(x,Z) is greatest,
and we choose y ∈ Y so that d(y, Z) is greatest. Now we ask, What point in
X ∪ Y is farthest from Z? It must be either x or y, thus

~d(X ∪ Y, Z) = max {d(x, Z), d(y, Z)} = max
{

~d(X, Z), ~d(Y, Z)
}

.

• Step 2: ~d(X, Y ∪ Z) ≤ min
{

~d(X, Y), ~d(X, Z)
}

.

Note that for any x ∈ X, we have d(x, Y ∪ Z) ≤ d(x, Y) and d(x, Y ∪ Z) ≤
d(x,Z). Thus if x is a point of X farthest from Y ∪ Z, we have

~d(X, Y ∪ Z) = d(x, Y ∪ Z)
= min {d(x, Y), d(x,Z)}

≤ min
{

~d(X, Y), ~d(Y, Z)
}

verifying step 2.

• Step 3. We use steps 1 and 2 to complete the proof of inequality (5.2) as

5.4. ITERATED FUNCTION SYSTEMS 193

follows:

d(A ∪B,C ∪D) = max
{

~d(A ∪B,C ∪D), ~d(C ∪D,A ∪B)
}

= max
{

~d(A,C ∪D), ~d(B,C ∪D),

~d(C,A ∪B), ~d(D,A ∪B)
}

≤ max
{

~d(A,C), ~d(B,D), ~d(C,A), ~d(D,B)
}

= max {d(A,C), d(B,D)} ,

verifying inequality (5.2).

We now complete the proof that F = f ∪ g is a contraction mapping. We let A
and B be nonempty compact sets, then we use inequality (5.2) to compute

d(F (A), F (B)) = d(f(A) ∪ g(A), f(B) ∪ g(B))
≤ max {d(f(A), f(B)), d(g(A), g(B))}
≤ max {sd(A,B), td(A,B)}
= max{s, t}d(A,B).

Thus F is a contraction map with contractivity max{s, t} < 1.

Summary

In this section we introduced the idea of the union of functions. If f and g are
functions from Hn to Hn, then (f ∪ g) is also a function from Hn to Hn defined by
(f ∪ g)(A) = f(A) ∪ g(A).

Furthermore, if f and g are contraction maps, then so is f ∪ g.

5.4.3 Examples revisited

Cantor’s set, again

Let’s see how the idea of the union of functions gives rise to a world of fractals.
Our first goal is to re-create the Cantor set.

Let

f(x) =
1
3
x and g(x) =

1
3
x +

2
3
.

Both f and g are affine functions with constant derivative 1
3 (which has absolute

value less than 1). Hence both are contractive mappings: both as pointwise map-
pings and as functions on H1. The fixed point of f is 0 and the fixed point of g is
1. As setwise mappings, the fixed point of f is {0} and the fixed point of g is {1}.

We now ask, What is the fixed “point” of the setwise map F = f ∪ g? Since Remember: The fixed
“point” of F is not a point
at all; rather, it is a compact
set S for which F (S) = S.

f and g are contraction maps with contractivity 1
3 , so is F . Thus F has a unique

fixed point which satisfies F (X) = f(X) ∪ g(X) = X. What is this fixed point? A
reasonable guess might be the interval [0, 1]. This is incorrect, and let’s see why.
We have f([0, 1]) = [0, 1

3], and g(0, 1) = [23 , 1], so

F ([0, 1]) =
[
0,

1
3

]
∪
[
2
3
, 1
]

.

Since F ([0, 1]) 6= [0, 1] we know that [0, 1] is not the unique fixed point of F .
However, we see something interesting: the first step in the construction of Cantor’s

194 CHAPTER 5. FRACTALS

set. What happens if we apply F again? Let’s work it out:

f

([
0,

1
3

])
=

[
0,

1
9

]
,

g

([
0,

1
3

])
=

[
2
3
,
7
9

]
,

f

([
2
3
, 1
])

=
[
2
9
,
1
3

]
,

g

([
2
3
, 1
])

=
[
8
9
, 1
]

,

so

F 2([0, 1]) =
[
0,

1
9

]
∪
[
2
9
,
1
3

]
∪
[
2
3
,
7
9

]
∪
[
8
9
, 1
]

,

which is the second step in the construction of Cantor’s set. Go ahead. Check
out that F 3([0, 1]) gives just what you want: the third step in the construction. It
would seem that F k([0, 1]) is converging to the Cantor set. That’s exactly right;
let’s see why.

Let C be the Cantor set. We ask, What is F (C)? Now, f(C) shrinks C by
a factor of 3, and therefore f(C) is the portion of C between 0 and 1

3 . Similarly,
g(C) shrinks C by factor of 3 and then slides the result to the right a distance of 2

3 .
Thus g(C) is the portion of C between 2

3 and 1. Together, f(C) ∪ g(C) is simply
C. In other words, F (C) = C. Aha! Cantor’s set is a fixed point of F . Indeed, by
the contraction mapping theorem, it is the unique, stable fixed point of F , and if
we start with any nonempty compact set A ∈ H1, we have F k(A)→ C as k →∞.

At first blush the choice of f and g might seem mysterious. You might wonder,How did we find f and g?

How did you ever think to pick those particular functions? Actually, the choice
was rather simple. When we look at Cantor’s set, we see two third-sized copies of
Cantor’s set sitting inside. So we choose f to map the whole of Cantor’s set onto
the left portion and we choose g to map the whole of Cantor’s set onto the right.
Because we were shrinking, we knew that f and g would be contraction maps. We
also rigged it so that C = f(C) ∪ g(C). Let’s see if we can recreate Sierpiński’s
triangle by the same method.

Sierpiński’s triangle, again

We can build a Sierpiński triangle S by iteratively biting out the middle of a triangle.
For this example, we use the isosceles triangle with corners at (0, 0), (1, 0), and
(1
2 , 1). See Figure 5.14, in which we show the first step in the construction. When

the construction is complete, we know we have three half-sized copies of the original
Sierpiński triangle in regions A, B, and C. What we need to do is to find three
contraction maps for which f1(S) = A, f2(S) = B, and f3(S) = C. Notice that
the basic steps we need are rescaling and translation. Copy A is the simplest, so
we begin with it. If we simply shrink the x- and y-coordinates of all the points in
S by a factor of 2, we will get exactly A. So let us put

f1

[
x
y

]
=
[

1
2 0
0 1

2

] [
x
y

]
.

Next we want to make copy B. Notice that B is the same as A but just shifted to
the right a distance 1

2 . To do this, we let

f2

[
x
y

]
=
[

1
2 0
0 1

2

] [
x
y

]
+
[

1
2
0

]
.

5.4. ITERATED FUNCTION SYSTEMS 195

(0,0) (1,0)

(1,1)(0,1)

A

C

B

Figure 5.14: Sierpiński’s triangle contains three half-sized copies of itself: A, B,
and C.

Copy C is the trickiest, but not really any harder. We want to take A and move it
to the right a distance of 1

4 and up a distance of 1
2 . Thus we let

f3

[
x
y

]
=
[

1
2 0
0 1

2

] [
x
y

]
+
[

1
4
1
2

]
.

Notice that f1, f2, and f3 are all contraction maps with contractivity 1
2 . Thus

F = f1 ∪ f2 ∪ f3 is also a contraction map with contractivity 1
2 . Thus F has a

unique fixed point in H2, which we hope is our Sierpiński triangle S. Let’s see if
that’s correct. By construction, we know

f1(S) = A, f2(S) = B, and f3(S) = C;

therefore
F (S) = f1(S) ∪ f2(S) ∪ f3(S) = A ∪B ∪ C = S.

Thus S is a fixed point of F and, by the contraction mapping theorem, it’s the only
fixed point of F . Further, it’s a stable fixed point. If we begin with any nonempty
compact set X and iterate F , i.e., compute F k(X), we converge to the Sierpiński
triangle S.

(Now you may be wondering about how we compute—on a computer—the set
F k(X). We show how to do these computations in the next section.)

Koch’s snowflake, again

There is no subset of the Koch snowflake K (Figure 5.5 on page 179) which is a
miniature copy of K. Rather, we look at just the top portion of the snowflake. The
top portion is what we get when we iterate the basic Koch step on a horizontal
line segment (with the tent portion sticking upward); see Figure 5.15. Let us call
the top of Koch’s snowflake T . Observe that within T there are four third-sized
versions of T , which are labeled A through D in the figure. Let us construct four
contraction maps, f1 through f4, for which f1(T) = A, f2(T) = B, f3(T) = C, and
f4(T) = D. Let’s assume the origin (0, 0) is situated at the lower left corner of the
diagram and the far right of the diagram is located at (1, 0).

The first contraction, f1, is the simplest. We want to contract the whole set T
by a factor of 3. So we simply let

f1

[
x
y

]
=
[

1
3 0
0 1

3

] [
x
y

]
.

196 CHAPTER 5. FRACTALS

A D

B C

Figure 5.15: The top of the Koch snowflake. Notice that there are four sections
which are miniatures of the original.

Thus f1(T) = A.
Let’s skip to D since that’s the next easiest. We want to contract by a factor

of 3 and then slide the result to the right a distance of 2
3 . The following works:

f4

[
x
y

]
=
[

1
3 0
0 1

3

] [
x
y

]
+
[

2
3
0

]
.

This gives f4(T) = D.
Now let’s tackle B. We want to first shrink by 1

3 , then rotate 60◦ = π
3 , and then

slide a distance 1
3 to the right. To do this, we let

f2

[
x
y

]
=
[

cos π
3 − sin π

3
sin π

3 cos π
3

] [
1
3 0
0 1

3

] [
x
y

]
+
[

1
3
0

]
.

Let’s take this apart piece by piece. First we multiply
[

x
y

]
by
[

1
3 0
0 1

3

]
; this

shrinks the vector
[

x
y

]
by a factor of 3. Next, we multiply by the matrix[

cos π
3 − sin π

3
sin π

3 cos π
3

]
; this is a rotation matrix corresponding to a rotation through

an angle of π
3 . Thus the shrunken vectors are rotated 60◦ counterclockwise. Finally,

we add
[

1
3
0

]
to shift to the right a distance 1

3 . Thus f2(T) = B.

Finally, we work out f3, the most complicated of the lot. To make the C section
from the original, we want to (1) shrink to 1

3 size, (2) rotate through −60◦ = −π
3 ,

(3) slide to the right a distance 1
2 , and (4) slide upward a distance

√
3/6 (that’s the

height of an equilateral triangle of side length 1
3 .) To do this, we let

f3

[
x
y

]
=
[

cos(−π
3) − sin(−π

3)
sin(−π

3) cos(−π
3)

] [
1
3 0
0 1

3

] [
x
y

]
+
[1

2√
3

6

]
.

Although it is a bit messy, it does give f3(T) = C.
Summarizing, we have created the four affine transformations f1 through f4

which are contractive maps (with contractivity 1
3). Thus F = f1 ∪ f2 ∪ f3 ∪ f4 is

also a contractive map on H2. We know that

F (T) = f1(T) ∪ f2(T) ∪ f3(T) ∪ f4(T) = A ∪B ∪ C ∪D = T ;

therefore T is the unique, stable fixed point of F .

5.4. ITERATED FUNCTION SYSTEMS 197

Function a b c d e f

#1 0.5 0 0 0.5 0 0
#2 0.5 0 0 0.5 0.5 0
#3 0.5 0 0 0.5 0.25 0.5

Table 5.1: IFS for Sierpiński’s triangle

Summary

In each of the preceding examples, we exploited the self-similar nature of fractals
to find functions f1, f2, . . . so that the fractal is the unique stable fixed point of the
setwise map F = f1 ∪ f2 ∪ · · · . In particular, since the fractal contains miniature
copies of itself, we devise f1, f2, . . . to map the entire fractal onto all the smaller
copies it contains of itself. Because the embedded copies are smaller than the whole,
we know that the fi’s are contraction maps. Because we cover all the copies, we
know that the fractal is the fixed point of F . We call the fractal the attractor of
the IFS.

5.4.4 IFSs defined

We have seen that a single pointwise contraction map f , when considered setwise,
does not lead to interesting fractals. However, by combining two or more by the
union operation, f ∪ g, we create new setwise contraction maps with interesting
fixed points: fractals!

We give a formal name to this idea. Suppose f1, . . . , fk are contraction maps
defined on Rn (and therefore on Hn as well). We call the union of these functions,
F = f1 ∪ f2 ∪ · · · ∪ fk, an iterated function system or IFS for short.

For the most part we are interested in working in the plane, R2. The reasons
are both practical and aesthetic. The practical rationale is that fractals in R3 are
hard to draw, and the aesthetic rationale is that fractals in R1 are dull. However,
in R2 we are able to produce figures that are visually appealing.

In the previous section we gave examples of iterated function systems which give
rise to Cantor’s set, Sierpiński’s triangle, and the top of the Koch snowflake. In each
case the individual functions making up the IFSs are affine functions: f(x) = ax+b
for Cantor’s set, and f(x) = Ax + b for the others.

For the fractals we draw in R2, we use affine functions, i.e., functions of the
form

g

[
x
y

]
=
[

a b
c d

] [
x
y

]
+
[

e
f

]
.

To specify this function g, we need to know just the six numbers a through f . For
example, the third function for Sierpiński’s triangle is

f3

[
x
y

]
=
[

1
2 0
0 1

2

] [
x
y

]
+
[

1
4
1
2

]
To specify this function, we can list just the six numbers (a, b, c, d, e, f) = (0.5, 0, 0, 0.5, 0.25, 0.5).
The full recipe for Sierpiński’s triangle consists of listing the three lists of six num-
bers. We can package these recipes (called IFS codes) into tables such as Tables 5.1
and 5.2.

5.4.5 Working backward

Given a fractal K, can we find an IFS for which K is the attractor, i.e., can we Given a fractal, find its IFS.

198 CHAPTER 5. FRACTALS

Function a b c d e f

#1 0.3333 0 0 0.3333 0 0
#2 0.1667 −0.2887 0.2887 0.1667 0.3333 0
#3 0.1667 0.2887 −0.2887 0.1667 0.5 0.2887
#4 0.3333 0 0 0.3333 0.6667 0

Table 5.2: IFS for top of Koch’s snowflake.

Function a b c d e f

#1 0.3333 0 0 0.3333 0 0
#2 0.3333 0 0 0.3333 0.6667 0
#3 0.3333 0 0 0.3333 0 0.6667
#4 0.3333 0 0 0.3333 0.6667 0.6667
#5 0.3333 0 0 0.3333 0.3333 0.3333

Figure 5.16: A fractal and its associated IFS.

find pointwise contraction maps f1, . . . , fk so that K is the stable fixed point of the
union F = f1 ∪ · · · ∪ fk?

Often the answer is yes, but finding the maps fj can be tricky. With some
practice, you can develop this art. Let’s start with a simple fractal and try to find
an IFS for it. Look at the fractal in Figure 5.16 (don’t look at the table of numbers
below it yet). You should observe five third-size copies of the original (four corners
and center). This tells us we want five affine functions g1, . . . , g5. Each is of the
form

gj

[
x
y

]
=
[

1
3 0
0 1

3

] [
x
y

]
+
[

ej

fj

]
.

Now we have to figure out the offsets (the e’s and f ’s). It is helpful to imagine the
fractal as sitting inside the unit square: {(x, y) : 0 ≤ x, y ≤ 1}. The first third-sized
copy is not displaced at all (e1 = f1 = 0). For the three other corners, we want to

displace
[

2/3
0

]
,
[

0
2/3

]
, and

[
2/3
2/3

]
. And for the center copy we want to shift[

1/3
1/3

]
. The IFS code below the figure gives these values (with the numbers in

approximate decimal form).

Let’s look at a somewhat more complicated image. Consider the fractal in

5.4. ITERATED FUNCTION SYSTEMS 199

Function a b c d e f

#1 0.25 0 0 0.25 0 0.75
#2 0.25 0 0 0.25 0.25 0.5
#3 0.25 0 0 0.25 0.5 0.75
#4 0.25 0 0 0.25 0.75 0.5
#5 0.75 0 0 0.5 0 0

Figure 5.17: A fractal W and its associated IFS.

(0,0)

(0,1)

(1,0)

(1,1)

A

B

C

D

E

Figure 5.18: Understanding the fractal W from Figure 5.17.

Figure 5.17. Let’s call this fractal W . Notice there are four quarter-sized copies of
W in the top half of the image. In the bottom half of the image, we see a copy of
the whole, but it is distorted (stretched a bit wide).

This can be seen more clearly in Figure 5.18. Portions A, B, C, and D are the
quarter-sized copies of the whole fractal W . In portion E we see a copy of W which
has been reduced by a factor of 3

4 in the horizontal direction and by a factor of 1
2

in the vertical. Examine the IFS code (Figure 5.17) to understand which function
gives rise to each portion. The five functions are clearly contraction mappings, and
we have F (W) = g1(W) ∪ · · · ∪ g5(W) = A ∪ · · · ∪ E = W .

Finding IFSs from a fractal image can get rather complicated. As a modest
example, consider the fractal J in Figure 5.19. If you look carefully, you can find a
third-sized copy in the lower right, a two-third-sized copy in the upper right, and
a shrunken and rotated copy in the lower left. This is made clearer in Figure 5.20.
The affine transformations to make the B and C portions are easy. They are,

200 CHAPTER 5. FRACTALS

Function a b c d e f

#1 0.3333 −0.3333 0.3333 0.3333 0.3333 0
#2 0.6667 0 0 0.6667 0.3333 0.3333
#3 0.3333 0 0 0.3333 0.6667 0

Figure 5.19: A fractal J and its associated IFS.

(0,0)

(0,1)

(1,0)

(1,1)

A

B

C

Figure 5.20: Understanding the fractal J from Figure 5.19.

respectively,

f2

[
x
y

]
=

[
2
3 0
0 2

3

] [
x
y

]
, and

f3

[
x
y

]
=

[
1
3 0
0 1

3

] [
x
y

]
+
[

2
3
0

]
.

It is easy to see that f2(J) = B, and f3(J) = C.
The affine transformation for which f1(J) = A is harder. We know that f1 has

the form

f1

[
x
y

]
=
[

a b
c d

] [
x
y

]
+
[

e
f

]
.

Further, we see that

f1

[
0
0

]
=
[

1
3
0

]
, f1

[
1
0

]
=
[

2
3
1
3

]
, and f1

[
0
1

]
=
[

1
3
2
3

]
.

Now, since f1

[
0
0

]
=
[

1
3
0

]
, we know that e = 1

3 and f = 0. Working from the

5.4. ITERATED FUNCTION SYSTEMS 201

other two equations, we get

a =
1
3
, b = −1

3
, c =

1
3
, and d =

1
3
.

This confirms the first entry in the table in Figure 5.19.

In general, the affine transformations can be much more complicated. They
might reflect and rotate the image and then skew and shrink it. The transformations
might overlap one another. Finding IFSs to generate desired fractal images is an
art. It’s a good idea to develop an affine transformation tool (see problem 2) to
assist you.

On the other hand, once you have an IFS, you naturally want to see what it
looks like. To do this, there is no substitute for a computer. In the next section we
discuss algorithms for drawing fractal images.

Problems for §5.4

�1. Let f and g be functions and let X be a compact set. Compute f(X), g(X),
and (f ∪ g)(X) when f , g, and X are:

(a) f(x) = x2, g(x) = x + 2, and X = [−1, 1].

(b) f(x) = x/2, g(x) = 2x, and X = [1, 2].

(c) f(x) =
√

x, g(x) = −x, and X = [0, 1].

(d) f(x) = x/3, g(x) = (x + 2)/3, and X is Cantor’s set.

(e) f(x) =
[

1 0
0 2

]
x, g(x) =

[
2 0
0 1

]
x, and X is the unit square, i.e.,

X = {(x, y) : 0 ≤ x, y ≤ 1}.

(f) f(x) =
[

0 −1
1 0

]
x, g(x) =

[
0 1
−1 0

]
x, and X is the unit square.

�2. Develop a computer tool which will help you find affine transformations of
R2, g(x) = Ax + b, where A is a 2× 2 matrix and b is a fixed vector in R2.
Specifically, if it is told the action of g on three points,

g(x) = x∗, g(y) = y∗, and g(z) = z∗,

your program should return the six numbers a, b, c, d, e, and f so that

g

[
x
y

]
=
[

a b
c d

] [
x
y

]
+
[

e
f

]
.

�3. Let 0 < t < 1 be a real number. Let Ct be constructed in the same manner
as Cantor’s set, but instead of removing the middle 1

3 , remove the middle t
section. In other words, begin with the unit interval [0, 1] and delete the open
interval

(
1−t
2 , 1+t

2

)
. Now repeat this on each of the two remaining subintervals,

and then on the remaining four, etc.

[The fractal in problem 2 on page 176 is C3/5.]

Find an IFS for which Ct is the attractor.

�4. Find an IFS for which the fractal of problem 2 on page 179 (see Figure 5.6)
is the attractor.

�5. Let f(x) = x/2 and let g(x) = (x + 1)/2. What is the unique, stable fixed
“point” of f ∪ g.

202 CHAPTER 5. FRACTALS

5.5 Algorithms for drawing fractals

In this section we develop two algorithms for drawing a fractal given its IFS code.
The first is a deterministic algorithm based on the contraction mapping theorem.
It is slow and memory intensive.

The second is a randomized algorithm (an algorithm which makes random
choices), and we discuss its theoretical underpinnings. This latter algorithm is
quicker and requires much less memory.

It is well worth your while to actually implement these algorithms on a com-
puter. Besides being good programming exercises, they give you an opportunity to
explore your own IFSs and generate delightful fractal pictures.10

5.5.1 A deterministic algorithm

Let F = f1∪f2∪· · ·∪fk be an iterated function system where the fi’s are contractive
affine functions of the plane.

By the contraction mapping theorem, we know that if A is any compact set,
then F k(A) tends to a unique, stable fixed point, i.e., the attractor of F . In this
case the “point” is the fractal we want to draw. The idea of our first fractal drawing
algorithm is quite simple. We start with an arbitrary compact set A and iterate F .

Now, computers can easily store numbers; how do we put a compact set into aRepresenting a compact set
in a computer as a matrix. computer? Anything we draw on a computer screen can be thought of as a compact

set. The screen is actually an array of tiny dots, and we turn on those dots which
are part of the image and turn off those dots which are not. Thus we can think of
the computer screen as a large matrix of 0’s and 1’s. The 0’s represent points that
are not in the compact set, while the 1’s represent points that are in it.

We assume that the fractal we want to draw sits inside the unit square, i.e., all
of its x- and y-coordinates are between 0 and 1. We store the image in an n × n
array. Now the tricky part is that the i, j entry of our array corresponds to a point
in the plane. We make the following correspondences between mij (an entry in our

matrix) and
[

x
y

]
(a point in the plane):The notation b·c means

“round down to the nearest
integer”; it’s called the floor
function.

mi,j →
[i−1

n−1
j−1
n−1

]
, and[

x
y

]
→ mi,j with i = bx(n− 1)c+ 1, and j = by(n− 1)c+ 1.

In this way, for each entry in M we have a point in the unit square, and each point

in the unit square corresponds (approximately) to an entry in M . Notice that
[

0
0

]
corresponds to m1,1, and

[
1
1

]
corresponds to mn,n.

The last step of our algorithm is to display the matrix M on the computer
screen. How you do this depends very much on the kind of computer and the
programming environment you use. We present this algorithm on page 203.

What’s going on in this algorithm? The matrix M corresponds to the compact
set S which is inside the unit square. All the work of this algorithm occurs in step
2(b), where we compute F (S), saving the result in a temporary matrix A. Each
point of S (corresponding to each ‘1’ entry in M) is mapped to several points when
we compute F (S) = f1(S) ∪ · · · ∪ fp(S); this happens in step 2(b)ii. In step 2(c)
we copy the result of the computation of F (S) (stored in A) back over S (stored in
M) and then repeat the whole procedure.

This algorithm is quite slow. For the most basic image we would like n to be
around 200. This will give acceptable resolution in a modest-sized picture. The

10See the fractory and fraclite programs in the accompanying software.

5.5. ALGORITHMS FOR DRAWING FRACTALS 203

Deterministic Fractal Drawing Algorithm

Inputs:

• A 6 × k matrix IFSDATA containing a through f for each affine function in the
iterated function system,

• a positive integer n (the resolution), and

• a positive integer NITS (number of iterations).

Procedure:

1. Initialize. Let M be an n× n matrix of all 1’s. (We assume our initial compact set
is the entire unit square.)

2. Do the following set of instructions NITS times:

(a) A be an n× n matrix of all zeros.

(b) For i = 1, 2, . . . , n, and j = 1, 2, . . . , n do:

i. Let

»
x
y

–
be the point in the unit square corresponding to mi,j .

ii. If mi,j = 1, then for p = 1, 2, . . . , k do:

A. Let

»
x′

y′

–
be fp

»
x
y

–
, where fp is the pth affine transformation

whose parameters (a through f) are stored in the pth row of IFS-
DATA.

B. Let i′, j′ be the matrix position corresponding to

»
x′

y′

–
.

C. Let ai′,j′ = 1.

(c) Let M = A.

3. Display the matrix M on the computer screen.

bad news is, when n = 200, the matrices M and A contain 40,000 entries each.
Each iteration of the algorithm looks at all these entries and can take quite a lot of
time even on a fast machine.

If you decide to implement this algorithm, here are some suggestions. First, you
need not start M as a matrix filled entirely with 1’s. You might choose to have only
the boundary entries set equal to 1, or fill in about 10% of the entries at random
with 1’s. This will speed things up quite a bit in most cases. Second, you might like
to display the current state of the matrix M each time through the main loop. The
program can then ask the user whether or not to continue on to the next iteration.
Third, you might want to test if A = M each time through the main loop; if it
does, your fractal has converged, and no further iterations will change the image.
Finally, if your computer has color, you might want to think about how you can
use color to better illustrate how the algorithm operates.

5.5.2 Dancing on fractals

The following experiment is fun. You absolutely must try it! Get a large sheet of
paper, a marker, a ruler, and a die (singular of dice). Mark three points A, B,
and C at the corners of a large triangle on your paper (more or less an equilateral
triangle, but it doesn’t matter). Position your marker at A. This is your current
point.

Now roll the die and do the following depending on your roll:

• If you roll a 1 or a 2, find the point halfway from where you are now to A.

204 CHAPTER 5. FRACTALS

This is your new current point; draw a dot there.

• If you roll a 3 or a 4, find the point halfway from where you are now to B.
This is your new current point; draw a dot there.

• If you roll a 5 or a 6, find the point halfway from where you are now to C.
This is your new current point; draw a dot there.

Repeat the steps above a few hundred times. What do you expect to see? What
do you see?

Do it!! If you’re a sloppy person like me (and you’d end up getting marker all
over the floor), do your drawing with a computer program. There’s a ready-to-run
Matlab program called dance.m in the accompanying software. A listing for this
program is given in §B.2 on page 266.

In any case, I absolutely insist you try this. Don’t read another word (I’ll wait).

Please do it now.

Did you do it? Yes, good. (No, well do it!)
You should see Sierpiński’s triangle. Neat! Now, why?
Let’s say you put the points A, B, and C at the following locations:

A =
[

0
0

]
, B =

[
1
0

]
, and C =

[
1
2
1

]
.

First, let’s work out what “jump halfway to A” (or B or C) means analytically.

Suppose we are at a point
[

x
y

]
. “Jump halfway to A” means find the point(

A +
[

x
y

])
/2, but since A =

[
0
0

]
, this simply means

[
x
y

]
7→
[

1
2 0
0 1

2

] [
x
y

]
.

Next, consider “jump halfway to B.” This means
[

x
y

]
becomes

([
x
y

]
+ B

)
/2,

and since B =
[

1
0

]
, we compute

[
x
y

]
7→
[

1
2 0
0 1

2

] [
x
y

]
+
[

1
2
0

]
.

Finally, “jump halfway to C” with C =
[

1
2
1

]
works out to be

[
x
y

]
7→
[

1
2 0
0 1

2

] [
x
y

]
+
[

1
4
1
2

]
.

Aha! These are the three affine transformations f1, f2, f3 in the IFS for Sierpiński’s
triangle (see Table 5.1 on page 197). The “choose a corner at random and jump
halfway there” instruction can be rephrased, “choose among f1, f2, or f3 at random
and apply that transformation.”

Now, let’s see why this procedure draws the fractal. In Figure 5.14 (on page 195)
we broke Sierpiński’s triangle up into three sections: A, B, and C (it was no accident
we used these names for the three corners above). Applying f1 to any point of

5.5. ALGORITHMS FOR DRAWING FRACTALS 205

AA

AC

AB

CAA CAB

CAC

CBA CBB

CBC

CCA CCB

CCC

BAA BAB

BAC

BCA BCB

BCC

BBAA BBAB

BBAC

BBBA BBBB

BBBC

BBCA BBCB

BBCC

CBBBB… =

BCCCC…

Figure 5.21: The ABC labeling system for Sierpiński’s triangle.

Sierpiński’s triangle, S, puts us into region A, applying f2 puts us into B, and
applying f3 puts us into C.

We can refine our labeling method, just as we refined the L and R labels for A symbolic addressing
system for Sierpiński’s
triangle.

Cantor’s set. We can divide each of the three triangles A, B, and C into three
subtriangles each, resulting in nine regions: AA, AB, AC, BA, BB, BC, CA, CB,
and CC. Each of these we can break down again into a total of 27 little triangles
named AAA through CCC; see Figure 5.21. Now, for each infinite sequence of the
letters A, B, and C, such as ABACCAB · · · we have a nested sequence of compact
sets:

A ⊃ AB ⊃ ABA ⊃ ABAC ⊃ ABACC ⊃ · · · .

And, as with intervals, the intersection of a nested sequence of compact sets is
nonempty. The intersection of this chain of sets is a point of Sierpiński’s triangle.
Indeed, every point in Sierpiński’s triangle can be given a code name (address)
using this ABC labeling method.

Note that AAAAA · · · names the lower leftmost point of the triangle (the point
we had been calling simply A). The other corners are clearly BBBBB · · · and
CCCCC · · · . Some points in the triangle have two equivalent addresses. Notice in
the figure the point CBBBB · · · is the same as the point BCCCC · · · .

We want to know how to do calculations with the addresses? In particular, Understanding how the fi’s
work using the ABC
addresses.

206 CHAPTER 5. FRACTALS

given a point X specified by its address, what are f1(X), f2(X), and f3(X)?
To begin, what is f1(BB)? Since f1 shrinks the entire triangle into the A

section, we see that the BB section becomes the ABB section. Likewise, the BBCA
section gets shrunk to become the ABBCA section. So if we have a point X =
BBCACA · · · , then f1(X) = ABBCACA · · · . In other words, f1(X) prepends the
symbol A to the address of X. We check that f2 and f3 work in similar ways.
Since f2 compresses everything into the lower right section, f2(X) is computed by
prepending a B to X’s address. Likewise, as f3 packs everything into the upper
triangle, f3(X) prepends a C. Thus,

fi(X1X2X3X4 · · ·) =

AX1X2X3X4 · · · if i = 1,
BX1X2X3X4 · · · if i = 2, and
CX1X2X3X4 · · · if i = 3.

We can use this symbolic representation of the points in Sierpiński’s triangleUnderstanding the triangle
dance using the ABC
encoding.

and the action of the fi’s to understand how the triangle dance works. We begin at
the origin, i.e., at AAAA · · · and then randomly apply f1, f2, or f3. Equivalently,
we randomly put the symbol A, B, or C at the beginning of the current point.
We now see why the algorithm draws Sierpiński’s triangle. First, each step of the
algorithm produces another point in the triangle. Second, given a point in the
triangle, say X = ABAAC · · · , we note that there is a 1/243 = 1/35 chance that
the next four symbols we pick are (in order) C, A, A, B, A. In that case (which is
likely to happen, since we are plotting thousands of points) we arrive at a point Y
whose initial symbols are ABAAC. Now, Y might not be exactly the same as X,
but it is very close. Thus the successive points we plot dance about on Sierpiński’s
triangle and get near every element of it. In this way, the fractal is drawn on our
screen.

We hope it is clear now why our triangle dance draws out Sierpiński’s triangle.
Before we proceed to the more general case, we’d like to consider what would

happen if we began with a point (such as X =
[

1
1

]
) which is not in S. Now, X

and any fi(X) are not in S, so as we start drawing, we’ll be making a mess, i.e.,
we’ll be plotting points not in S. However, after several iterations, the points we
plot are close to, and for all practical purposes in, S. The reason is the contraction
mapping theorem. Let’s think about the one point set {X}. This is a compact set,
so we know that after several iterations of F = f1 ∪ f2 ∪ f3, the result, F k({X})
will look very much like the Sierpiński triangle S. The technical meaning is that
the point of F k({X}) which is furthest from S is, in fact, very close to S. In other
words, all points of F k({X}) are very near S. What are the points of F k({X})?
They are exactly the points of the form

fi1 ◦ fi2 ◦ fi3 ◦ · · · ◦ fik
(X)

where i1, i2, . . . , ik ∈ {1, 2, 3}. Now in the random dance, we choose the fi’s at
random. What our analysis shows is that no matter how we choose the fi’s the
resulting point is (after a few dozen iterations) incredibly close to being in S.
Indeed, the computer’s arithmetic (and its screen’s resolution) is not precise enough
to tell the difference!

Thus if we do our random triangle dance starting at any point but not plotting
the first dozen points or so, the result will be the same: we draw Sierpiński’s
triangle. And. . .

5.5.3 A randomized algorithm

. . . this works in general! (This section is inexorably linked to the previous.)Extending the triangle dance
method to draw other
fractals.

Suppose we have an IFS: F = f1 ∪ f2 ∪ · · · ∪ fk, where each fi is a contraction
map (and therefore F is). We want to draw the fractal K which is the unique,

5.5. ALGORITHMS FOR DRAWING FRACTALS 207

Randomized Fractal Drawing Algorithm

Inputs:

• A 6 × k matrix IFSDATA containing a through f for each affine function in the
iterated function system, and

• NPTS, a positive integer (or ∞) indicating how many points to plot.

Procedure:

1. Let X =

»
0
0

–
(or any other staring value you prefer).

2. For i = 1, 2, . . . , NPTS + 50, do:

(a) Choose an integer j at random between 1 and k (inclusive). (See the discussion
below.)

(b) Let X = fj(X), where fj is the affine transformation from row j of IFSDATA.

(c) If i > 50, plot the point X on the screen.

attractive fixed point of F . One way to do this (and this was the deterministic
algorithm) is to compute F t(A) for some starting compact set A, such as the unit
square. Alternatively, we can begin our algorithm with a singleton set A = {X}
for some point X (such as the origin). After many iterations, we have F t({X}),
which is the set of all points of the form

fi1 ◦ fi2 ◦ fi3 ◦ · · · ◦ fit
(X),

where the ij ’s are in {1, 2, . . . , k}.
Now instead of plotting all kt such points, we can plot representative points,

i.e., choose points in the fractal at random. To do this, we pick the f ’s we apply
at random. This is exactly the rationale behind the Randomized Fractal Drawing
Algorithm shown on page 207.

Several comments are in order. First, this algorithm is much simpler (and
therefore easier to implement) than the deterministic fractal algorithm. Second, we
ignore the issue of how to “plot the point X on the screen.” This depends on your
computing environment. Third, we discard the first 50 iterations. Fifty is probably
more than necessary, but computing successive points is fast and cheap, so there’s
no harm done. Fourth (and most important), is a more careful discussion of step
2(a): “Choose an integer j at random between 1 and k (inclusive).”

Picking an integer at random

How do we pick an integer from the set {1, 2, . . . , k} at random? One interpretation Picking fi uniformly at
random may result in
non-uniform darkening of
the fractal image.

of this statement (and not the one you should use) is to choose each of the numbers
with equal probability (i.e., uniformly). We do this by using the computer’s random
number generator11 to create a (real) value between 0 and 1, say x. We then
multiply x by k and round up. This gives a random number in the set {1, . . . , k},
i.e., we compute dkxe. There is nothing wrong with this method per se, but if you
try it (and you should) you should notice something interesting.

If you run your program on the IFS for Sierpiński’s triangle (Table 5.1 on
page 197) all should be fine (indeed, you will be doing the triangle dance). How-
ever, if you try the fractal J from Figure 5.19 (page 200), you should notice that Uneven darkening.

11As we discussed in Chapter 1, the random numbers generated by the computer are actually
not random at all! Nonetheless, it is safe in this situation to trust the randomness of the numbers
the computer generates.

208 CHAPTER 5. FRACTALS

the picture’s density is uneven. One-third of the points you plot go into section C
in the lower right (see Figure 5.20 on page 200). This makes sense, since we use
transformation #3 one-third of the time on average. However, because this part
of the picture is smaller than the other parts, it darkens more quickly than, say,
section B, which covers four times as much area.

To correct this uneven drawing, we need to use transformation #2 more fre-
quently than #3. Indeed, we want to choose #2 four times as often as #3. The
general principle is, we choose a transformation proportional to the area it covers.
Now, in theory, the fractals have zero area, which seems to make this entire dis-
cussion vacuous. However, in reality, the computer image does cover area on the
screen. Thus if the fractal K we are drawing counts for one unit of area, how much
area does, say, the f1(K) portion cover? We are working with affine functions, so
f1 is of the form f1(x) = Ax+b. From linear algebra we know that transforming a
region by multiplying by a matrix A changes the region’s area by a factor of |det A|.

Now, if A =
[

a b
c d

]
, we simply want to choose this affine transformation with

probability proportional to |ad− bc|. Thus we should choose functions fi not withChoose the transformations
with probability
proportioanl to their
determinants . . .

uniform probability but, rather, with probability proportional to |aidi − bici|.
For example, consider the fractal in Figure 5.19 (page 200). The determinants

of the three transformations are

det
[

1
3 − 1

3
1
3

1
3

]
= −2

9
, det

[
2
3 0
0 2

3

]
=

4
9
, and det

[
1
3 0
0 1

3

]
=

1
9
.

Now 2
9 + 4

9 + 1
9 = 7

9 , so we should choose transformation #1 with probability 2
7 ,

transformation #2 with probability 4
7 , and transformation #3 with probability 1

7 .
In this way, all sections will darken at the same rate, giving a nice picture.

This is good, but suppose one of the affine transformations has a matrix with. . . but give transformations
with zero determinant a
break.

zero determinant? Our rule says that we should never apply this transformation,
and this would change the IFS. So let’s break our rule in this case; after all, on a
computer screen a line does cover some area. We can fix a minimum probability
(say, 2% or whatever you choose) with which a transformation must be chosen.

Problems for §5.5

�1. On the real line, plot a point at 0. Now flip a coin. If you get heads, jump 2
3

of the way to 0 and if you get tails, jump 2
3 of the way to 1 and plot a new

point. Repeat this procedure several times. What do you get? Explain.

�2. Suppose f1, f2, f3 : R2 → R2 are contraction maps, and let F = f1 ∪ f2 ∪ f3.
We know that F has an attractor (stable fixed point) K ∈ H2.
Since f1, f2, and f3 are pointwise contraction maps, we know that they have
fixed points x1,x2,x3 ∈ R2 (respectively).
Explain why x1,x2,x3 ∈ K.

�3. In the randomized fractal drawing algorithm we suggest not plotting the first
50 points for fear that these points are not in (or close to) the fractal we are
drawing.
Suppose the contractivities of the affine transformations are s1, s2, . . . , sk (all
less than 1, of course). Suppose further that the distance from the initial
point to the fractal is 1.
Provide a formula which bounds the distance between the 50th point generated
and the fractal.
Is the number 50 reasonable most of the time?
Find contractivities s1, . . . , sk for which 50 points may not be sufficient to
guarantee that the points you are plotting are essentially in the fractal. In-
stead of ignoring the first 50 points, suppose you skip the first 500 points. Is
this sufficient for the contractivities you found?

5.6. FRACTAL DIMENSION 209

Figure 5.22: Common geometric objects have whole-number dimensions. The finite
set of points has dimension zero, the curve is one-dimensional, the filled ellipse is
two-dimensional, and the solid cube is three-dimensional.

5.6 Fractal dimension

Sierpiński’s triangle is fatter than a curve but skinnier than a disk (a circle with
its interior). In this section we make this rather vague, intuitive statement precise.
One of the reasons fractals are called fractals is that they have fractional dimension.

There are certain objects whose dimension you can understand intuitively. For
example, a curve, even if it twists and winds through space, is a one-dimensional
object. A filled-in ellipse and the surface of a sphere are two-dimensional objects.
A solid cube and a ball (a sphere and its interior) are three-dimensional objects. A
finite collection of points is a zero-dimensional set. See Figure 5.22.

We now turn to understanding what it means for an object to have dimension
1
2 or any other number!

5.6.1 Covering with balls

We use the common word ball as a technical term. A ball is defined to be a set of Balls.

points within a given distance of a fixed point. Specifically, let

B(x, r) = {y : d(x,y) ≤ r},

i.e., the set of all points y at a distance r or less from x. In three-dimensional space
(R3) a ball is a sphere together with its interior. In the plane (R2) a ball is the
same thing as a disk, i.e., a circle (centered at x with radius r) together with its
interior. Finally, on the line (R1) a ball is simply a closed interval [x − r, x + r],
where x is the midpoint.

The central idea in calculating the dimension of an object K is covering K N(K, r).

with balls of a given radius. This means we seek a collection of balls so that K is
contained in their union. And we want to do it with as few balls as possible! Define
N(K, r) to be the minimum number of balls of radius r needed to cover K.

For example, let K be the curve (drawn several times) of Figure 5.23. The top Covering a curve:
N(K, r) ∝ 1/r.part of the figure shows that we can cover the curve with two balls of radius 1, so

N(K, 1) = 2. Next, we see that when we cover K with balls of radius 1
2 we need

5, so N(K, 1
2) = 5. In the next portion, we see that N(K, 1

4) = 10, and finally,
N(K, 1

8) = 20. As we halve the radius of the balls, the number we need (more or
less) doubles. This makes sense, since a ball of radius r covers about 2r of the length
of the curve. The smaller the balls, the more accurate this estimation technique
becomes. Thus we can write that N(K, r) ∝ r−1.

Now, suppose we want to cover a square (with interior) with balls. How many Covering a square:
N(K, r) ∝ 1/r2.

210 CHAPTER 5. FRACTALS

r = 1

r = 1/2

r = 1/4

r = 1/8

Figure 5.23: Covering a curve with balls of smaller and smaller radius.

r

r

Figure 5.24: A square of side length r can be covered by a single ball of radius r.
Likewise, a cube of side length 1 can be covered by a ball of radius 1. However, see
problem 9 on page 223.

balls of radius r does it take to cover a (filled-in) square of side length 1? I haven’t
the vaguest idea! However, we can estimate. A ball of radius r covers an area of
πr2, so we need at least 1/(πr2) balls. We certainly need more, since we can’t cover
the area of the square with 100% efficiency. On the other hand, we can break up
the unit square into 1

r ×
1
r little squares (assuming 1

r is a whole number, but if
not, we won’t be too far off). Each of these little squares of side length r can be
covered by a single ball12 of radius r; see Figure 5.24. Thus we can certainly cover
the square with at most 1/r2 balls. Summarizing, we know

1
π

r−2 ≤ N(K, r) ≤ r−2

or more succinctly, N(K, r) ∝ r−2.

Let K be a finite collection of points. What is N(K, r)? Naturally, this numberCovering a finite collection
of points: N(K, r) ∝ 1. depends on K and on r, but once r is quite small (less than half the distance

between any two of the points), then N(K, r) is constant (it’s exactly the number
of points in K).

12This doesn’t work in higher dimensions; see problem 9 on page 223.

5.6. FRACTAL DIMENSION 211

Set K Dimension K N(K, r) ∝
Finite set of points 0 r−0

Curve 1 r−1

Filled square 2 r−2

Solid cube 3 r−3

Table 5.3: Common geometric objects, their dimensions, and the number of balls
needed to cover them.

We write this as N(K, r) ∝ 1 (i.e., N(K, r) is proportional to a constant) and,
we can write “1” in a rather bizarre fashion: r−0. Thus for a finite collection of
points, we have N(K, r) ∝ r−0.

As a last example, let’s jump to R3 and consider how many balls of radius r we Covering a cube:
N(K, r) ∝ 1/r3.need to cover the unit cube (a solid cube with side length 1). Since the volume of a

sphere is 4
3πr3, we know that N(K, r) ≥ 3/(4πr3). By chopping the unit cube into

1/r3 subcubes of side length r, we find that N(K, r) ≤ 1/r3. Thus N(K, r) ∝ r−3.

We have considered four examples of compact sets: a finite collection of points, Summary of examples.

a curve, a square (filled), and a cube (solid). Table 5.3 summarizes these results. I
hope the pattern is clear: For an object K of dimension d, we have N(K, r) ∝ r−d.
We can use this pattern to make a definition.

5.6.2 Definition of dimension

Recall that N(K, r) is the minimum number of balls of radius r needed to cover a
compact set K. We observed that N(K, r) ∝ r−d for some objects whose dimension
we know. Our next aim is to convert this intuition into a good theoretical definition
of dimension and then to convert our theoretical definition into a form that can be
used in practice.

First, let’s make the “is proportional to” sign (∝) a bit more specific. Given
functions f and g of a real number r, when we write f(r) ∝ g(r) we roughly mean

f(r) = g(r)× (less significant terms involving r) .

To make this rigorous, we take logs13 of both sides of the equation to get

log f(r) = log g(r) + log (lower order terms) .

Now, what do we mean by lower order terms? We mean terms that are very much
smaller than f(r) or g(r). So let us divide both sides by log g(r) to get

log f(r)
log g(r)

= 1 +
log (lower order terms)

log g(r)
.

Since the lower order terms are very much smaller than g(r), the term after “1+”
must be small.

Thus we formalize the notation f(r) ∝ g(r) to mean Formalizing ∝.

lim
r↓0

log f(r)
log g(r)

= 1.

For example, earlier we noted that if K is a filled square, then

1
π

r−2 ≤ N(K, r) ≤ r−2.

13The base of the logarithm is unimportant. We get the same eventual answer regardless of
which logarithm we use. But if you prefer, then the natural choice is the natural log: base e. See
problem 10 on page 223.

212 CHAPTER 5. FRACTALS

Taking logs and dividing by log
(
r−2
)

= −2 log r, which is positive if r is small, we
have

log(1/π)
−2 log r

+ 1 ≤ log N(K, r)
−2 log r

≤ 1.

Therefore, as r ↓ 0 we have
log N(K, r)
log (r−2)

→ 1,

verifying that N(K, r) ∝ r−2.

We can use the logarithm trick to extract the 2 from r−2. Observe that when
N(K, r) ∝ r−2, then

log N(K, r)
(− log r)

→ 2 as r ↓ 0.

We now are ready to present the definition of dimension. (The − log r in the
denominator can also be written as log(1/r). Since r is a small number—nearly
zero—we know that log(1/r) is positive.

Let K be a compact set. The dimension14 of K is defined to beThe formal definition of
dimension.

dim K = lim
r↓0

log N(K, r)
log(1/r)

.

It is a bit slippery to define something in terms of a limit because the limit
might not exist. In such cases, we say the dimension of K is undefined. However,
for fractals arising as the attractors of iterated function systems of contractive affine
maps, the limit always exists.

5.6.3 Simplifying the definition

Now that we have a definition of dimension, let’s apply it to various fractals such as
Cantor’s set or Sierpiński’s triangle and compute their dimensions. The difficulty
is, the number N(K, r) is very hard to compute. Fortunately, we can make some
simplifications which do not alter the meaning of the definition but make it easier
to apply and compute.

Let K be a square of side length 1. To compute the dimension of K we want toSquare boxes instead of
balls: N2. know N(K, r), but as we discussed above, we don’t know how to get this number

exactly. However, we don’t need to know this number exactly; our approximations
are good enough to confirm dim K = 2. We used a trick: Instead of covering by
balls, we covered by squares. Let’s see that this trick is actually a technique15 we
can use in other situations.

We define N2(K, r) to be the minimum number of axis-parallel square boxes of
side length r we need to cover K. By square box we mean a square together with its
interior; thus square box is to square as disk is to circle. By axis-parallel we mean
that the bottom sides of the squares are all parallel to the x-axis of the plane.

There are two nice things about N2(K, r): First, it is often easier to compute
than N(K, r). Second, we can replace N with N2 in the definition of dimension.
The key to seeing why is the following:

N(K, r) ≤ N2(K, r) ≤ 4N(K, r). (5.3)

In words, these inequalities say:

• If we can cover K with n = N2(K, r) boxes, then we can cover K with n or
fewer disks.

14There is more than one way to define the dimension of a compact set. The definition we
use is known as the Kolmogorov definition. Another definition, which we do not consider, is the
Hausdorff-Besicovitch dimension.

15In mathematics, a technique is a trick that works more than once.

5.6. FRACTAL DIMENSION 213

r

r r

Figure 5.25: Why N(K, r) ≤ N2(K, r) ≤ 4N(K, r).

• If we can cover K with n = N(K, r) disks, then we can cover K with 4n or
fewer boxes.

To see why these statements are true, look at Figure 5.25. For the first claim, look
at the left portion of the figure. If we can cover K with n boxes of side length r,
simply replace each box with a disk of radius r concentric with the box. This gives
a cover of K by n disks, but perhaps we can do better. So N(K, r) ≤ n = N2(K, r).

For the second claim, suppose we cover K with n = N(K, r) disks of radius r;
then we can replace each disk with four square boxes, as shown in the right-hand
portion of Figure 5.25. This gives a cover of K by 4n boxes, but perhaps we can
do better. Thus N2(K, r) ≤ 4n = 4N(K, r), and we have verified the two claims
justifying inequality (5.3).

Now, we take logs of all terms in inequality (5.3) and divide by log(1/r) to get

log N(K, r)
log(1/r)

≤ log N2(K, r)
log(1/r)

≤ log 4 + log N(K, r)
log(1/r)

.

Finally, we let r ↓ 0. Notice that the outer terms both tend to dim K, and therefore
the term sandwiched between them also converges to dim K.

In conclusion, we have an equivalent definition of dimension whether we use
N(K, r) (cover by balls) or N2(K, r) (cover by axis-parallel square boxes):

dim K = lim
r↓0

log N(K, r)
log(1/r)

= lim
r↓0

log N2(K, r)
log(1/r)

.

Whether we use square boxes or disks, computation of N(K, r) (or N2(K, r)) Choose a convenient
subsequence.can get nasty if the number r doesn’t fit the geometry of the situation. For example,

if r = 1
2 , it is easy to see that we need exactly three boxes to cover Sierpiński’s

triangle, S. Likewise, N2(S, 1
4) = 9. However, N2(S, 1

5) is not so easy to compute.
In short, it’s typically very hard to get a formula for N2(K, r) which works for all
values of r.

This brings us to our next simplification. If the dimension of K is defined, then
we know log N2(K, r)/ log(1/r)→ dim K as r ↓ 0. What’s more, for any sequence
of numbers r1 > r2 > r3 > · · · which tends to zero the sequence

log N2(K, r1)
log(1/r1)

,
log N2(K, r2)

log(1/r2)
,

log N2(K, r3)
log(1/r3)

, . . .

also converges to dim K.
Let’s see how this works with Sierpiński’s triangle, S. We noted that N2(S, 1

2) =

214 CHAPTER 5. FRACTALS

3 and N2(S, 1
4) = 9. Continuing in this fashion, we have

N2(S,
1
2
) = 3,

N2(S,
1
4
) = 9,

N2(S,
1
8
) = 27,

N2(S,
1
16

) = 81,

...

N2(S,
1
2k

) = 3k.

So instead of worrying about N2(S, r) for all values of r, we instead use only a
convenient sequence of values of r, namely 1

2 , 1
4 , 1

8 , · · · . This is a decreasing sequence
which tends to 0. Thus

dim S = lim
r↓0

log N2(S, r)
log(1/r)

= lim
k→∞

log N2

(
S, 2−k

)
log (1/2−k)

(k = 1, 2, 3, . . .)

= lim
k→∞

log 3k

log 2k

= lim
k→∞

k log 3
k log 2

=
log 3
log 2

= log2 3 ≈ 1.585.

Let’s use these same ideas to compute the fractal dimension of Cantor’s set,
C. It is clear that N2(C, 1

3) = 2: the two intervals (one-dimensional boxes) of side
length 1

3 we need are L and R. Next, N2(C, 1
9) = 4 (the four boxes are LL, LR, RL,

and RR). Continuing in this fashion, we have N2(C, 1
27) = 8 and N2(C, 1

81) = 16.
In general,

N2

(
C,

1
3k

)
= 2k.

With the preceding formula we compute the dimension of C using the convenient
sequence 1

3 , 1
9 , 1

27 , . . . as follows

dim C = lim
r↓0

log N2(C, r)
log(1/r)

= lim
k→∞

log N2(C, 3−k)
log(1/3−k)

= lim
k→∞

log 2k

log 3k

= lim
k→∞

k log 2
k log 3

=
log 2
log 3

= log3 2 ≈ 0.6309.

Now let’s try a more difficult example. Consider the fractal T depicted in
Figure 5.26. This fractal sits just inside the unit square. We now want to count
the number of square boxes of side length r we need to cover T . We choose the
numbers r to be convenient.

5.6. FRACTAL DIMENSION 215

#1

#3

#4

#5

#2

Function a b c d e f

#1 0.5 0 0 0.5 0 0
#2 0.5 0 0 0.5 0.5 0.5
#3 0.25 0 0 0.25 0 0.75
#4 0.25 0 0 0.25 0.25 0.5
#5 0.25 0 0 0.25 0.5 0.25

Figure 5.26: A fractal T and its associated IFS.

Figure 5.27: The fractal T (from Figure 5.26) overlaid with an 8× 8 grid.

216 CHAPTER 5. FRACTALS

To assist us in this process, we show a larger picture of T in Figure 5.27 in which
we have overlaid T with a grid. From the figure we directly count:

N2(T, 1) = 1,

N2(T,
1
2
) = 4,

N2(T,
1
4
) = 11,

N2(T,
1
8
) = 34, and

N2(T,
1
16

) = 101.

(To get the last one, mentally subdivide each 1
8 ×

1
8 square into fourths and count

very carefully.)
Do you see the pattern? It’s not obvious until you observe that

11 = 2× 4 + 3× 1,

34 = 2× 11 + 3× 4, and
101 = 2× 34 + 3× 11.

If we believe this pattern, we predict that

N2(T,
1
32

) = 2× 101 + 3× 34 = 274.

If you have a large computer screen you might like to make a large drawing of this
fractal, overlay a 32× 32 grid, and count.

Let’s explain why the pattern we observe is correct. To assist our reasoning, we
introduce a simpler notation. For this problem only, let

x(k) = N2(T, 2−k).

So far, we know x(0) = 1, x(1) = 4, x(2) = 11, x(3) = 34, and x(4) = 101. Our
guess is that

x(k + 2) = 2x(k + 1) + 3x(k). (5.4)

Now look again at Figure 5.26. Notice that within T there are two half-size and
three quarter-size copies of T , and in equation (5.4) we also have a 2 and a 3. This
is not a coincidence! Let’s understand why we need 101 boxes of side length 1

16 to
cover T . To cover sections #1 and #2 with 1

16 boxes is exactly the same as covering
the entire image with 1

8 boxes, because sections #1 and #2 are half-size copies. To
cover sections #3, #4, and #5 with 1

16 boxes is exactly the same as covering the
entire image with 1

4 boxes because each of these sections is a quarter-sized copy.
Thus, in total, we need 2 × N2(K, 1

8) + 3 × N2(K, 1
4) boxes of side length 1

16 to
cover K.

This idea is not special to boxes of side length 1
16 . In general, to cover sec-

tions #1 and #2 with boxes of side length 1/2k+2 is the same as covering the entire
fractal with boxes of side length 1/2k+1. And to cover sections #3, #4, and #5 is
the same as covering the entire image with boxes of side length 1/2k. Thus

N2(K, 1/2k+2) = 2N2(K, 1/2k+1) + 3N2(K, 1/2k)
⇒ x(k + 2) = 2x(k + 1) + 3x(k),

verifying equation (5.4).
The next step is to get some idea of how big x(k) is as k grows. To assist us,

put y(k) = x(k + 1). Then equation (5.4) can be rewritten asWe are using the
reduction-of-order technique
from problem 13 on page 25. x(k + 1) = y(k),

y(k + 1) = x(k + 2) = 2x(k + 1) + 3x(k) = 3x(k) + 2y(k),

5.6. FRACTAL DIMENSION 217

or in matrix notation, [
x(k + 1)
y(k + 1)

]
=
[

0 1
3 2

] [
x(k)
y(k)

]
.

Aha! This is a two-dimensional linear discrete time dynamical system. Now we can
work out an exact formula for x(k) and/or y(k) using the methods of Chapter 2.

Let A be the matrix
[

0 1
3 2

]
. The eigenvalues of A are −1 and 3, so we know

that x(k) = a3k + b(−1)k for some constants a and b. Since x(0) = a + b = 1 and
x(1) = 3a− b = 4, we work out that a = 5

4 and b = − 1
4 . Hence

N2

(
T,

1
2k

)
=

5
4
· 3k − 1

4
· (−1)k.

Therefore, for k large, N2(T, 1/2k) ≈ 5
43k. We are now ready to compute the

dimension of this fractal. Subsituting into the definition, we compute

dim T = lim
r↓0

log N(K, r)
log(1/r)

= lim
k→∞

log N2(K, 1/2k)
log(2k)

= lim
k→∞

log
(

5
4 · 3

k − 1
4 · (−1)k

)
log(2k)

= lim
k→∞

log 5
4 + k log 3
k log 2

=
log 3
log 2

≈ 1.5850.

That was a lot of work. In the next section we will see how to compute the dimension
of this fractal less painfully.

The boxes we used in computing the dimension of T (the fractal in Figure 5.26) Counting grid boxes: N ′
2.

were nicely lined up in a grid. I think this is the best way to cover J with boxes of
side length 1

4 , 1
8 , 1

16 , etc., but I am not 100% sure. Nonetheless, we can have 100%
confidence in our dimension computation. Here’s why.

We know that in the definition of dimension we may use either N or N2 and ob-
tain the same result. The axis-parallel square boxes we use in computing N2(K, r)
just have to have side length r and be parallel to the x-axis. Otherwise, they are
free to float about the plane. Once you find a good covering of K by these boxes,
you may still worry that you have not found the very best (minimum size) cover.
It would be a lot easier to simply draw some graph paper over the image and use
the boxes that touch the fractal. Not only is it easier, it’s correct!

To make “draw graph paper over the fractal” more precise, we introduce the
idea of a grid box. Let n be a positive integer. A grid box of side length 1/n is
defined to be a square box of side length 1/n whose corners’ coordinates are rational
numbers with n in the denominator. In other words, they are a set of the form{

(x, y) :
i

n
≤ x ≤ i + 1

n
,

j

n
≤ y ≤ j + 1

n

}
,

where i and j are integers.
Let N ′

2(K, 1/n) be the number of grid boxes of side length 1/n which intersect
the fractal K. Reread the previous sentence! We did not say “. . . the minimum
number of. . . ”! The question is, Can we use N ′

2 in place of N2 (or N) in the
definition of dimension? The answer is yes. To see why, we claim the following
inequality:

N2(K, 1/n) ≤ N ′
2(K, 1/n) ≤ 4N2(K, 1/n). (5.5)

218 CHAPTER 5. FRACTALS

a box from an
optimal covering

grid boxes

Figure 5.28: Replacing free-floating boxes with grid boxes.

The first inequality is easy: If the fractal K is covered by N ′
2(K, 1/n) grid boxes,

then the best covering with any boxes of side length 1/n is no larger.
To see the second part, consider a best possible cover of K by boxes of side

length 1/n. Replace each of these N2(K, 1/n) boxes by four grid boxes as shown
in Figure 5.28. This gives a cover of K by 4N2(K, 1/n) grid boxes. It might be the
case that the fractal doesn’t touch all these grid boxes—no matter, inequality (5.5)
is correct.

Now we take logs across inequality (5.5) and divide by log(1/ 1
n) = log n to get

log N2(K, 1/n)
log n

≤ log N ′
2(K, 1/n)
log n

≤ log 4 + log N2(K, 1/n)
log n

and then we let n→∞ to find

dim K ≤ lim
n→∞

log N ′
2(K, 1/n)
log n

≤ dim K.

Therefore, we may use N ′
2 in place of either N2 or N in the definition of fractal

dimension.

5.6.4 Just-touching similitudes and dimension

The dimension of the fractal T in Figure 5.26 (page 215) was difficult to compute.
The structure of that fractal, however, is rather special and allows us to find its
dimension in a simpler manner. The IFS of which T is the attractor consists of
just-touching similitudes. Let’s explore what they are.

Similitudes

An affine transformation of the plane is a function of the formSimilitudes: translations,
rotations, reflections, and
dilations.

h

[
x
y

]
=
[

a b
c d

] [
x
y

]
+
[

e
f

]
.

Now, if A is a compact set, then h(A) is another compact set which looks like A.
The transformation from A to h(A) might rotate, reflect, squash, and skew the set
A, as in Figure 5.29. The salient feature of affine transformations is that straight
lines remain straight. Angles between lines, however, can change. See §A.1.6 on
page 251.

A similitude is a rather special type of affine transformation: It preserves angles.
A similitude is any combination of the following actions:

• a translation: move points by a fixed vector, i.e.,

h

[
x
y

]
=
[

x
y

]
+
[

e
f

]
,

or

5.6. FRACTAL DIMENSION 219

A h(A)

Figure 5.29: A typical affine transformation distorts the shape of sets.

A

tr
an

sl
at

io
n

reflectionro
tation

dilation

dilation

dilation

dilation

dilation

Figure 5.30: The four basic similitudes: dilation, translation, rotation, and reflec-
tion. Notice that the shape of A is the same as that of h(A).

• a rotation: rotate points around the origin through an angle θ, i.e.,

h

[
x
y

]
=
[

cos θ − sin θ
sin θ cos θ

] [
x
y

]
,

or

• a reflection: reflect points through a line, as in

h

[
x
y

]
=
[
−1 0

0 1

] [
x
y

]
=
[
−x

y

]
,

or

• a dilation: multiply the coordinates of all points by a constant, i.e.,

h

[
x
y

]
=
[

c 0
0 c

] [
x
y

]
=
[

cx
cy

]
.

These basic actions are illustrated in Figure 5.30. When h is a similitude, then
A and h(A) have the same shape but not necessarily the same size. Observe that
angles are not distorted by similitudes.

Now, a similitude can be a contraction mapping provided it includes a dilation

which shrinks objects, i.e., it includes an action of the form
[

x
y

]
7→
[

cx
cy

]
with

|c| < 1. Indeed, in a similitude all distances are treated alike, i.e., d[h(x), h(y)] =
cd(x,y), where c is a constant that doesn’t depend on x or y. We call c the dilation
factor for the similitude, and a similitude is a contraction map if and only if its
dilation factor is less than 1.

Observe that the five affine transformation in T ’s IFS (refer to Figure 5.26 on
page 215) are all similitudes. Their dilation factors are 1

2 , 1
2 , 1

4 , 1
4 , and 1

4 .

220 CHAPTER 5. FRACTALS

#1

#3

#2

#4

Function a b c d e f

#1 0.5 0 0 0.5 0 0
#2 0.5 0 0 0.5 0.25 0.25
#3 0.5 0 0 0.5 0.5 0.5
#4 0.5 0 0 0.5 0.5 0

Figure 5.31: Notice that the four half-size copies of this fractal are not just-touching.

Just-touching

The other feature of the five similitudes, f1 through f5, defining T (Figure 5.26 on
page 215) is that they are just-touching. The precise meaning of just-touching is
that the intersection fi(T)∩ fj(T) is of smaller dimension than T . This is not very
helpful, since we want to use the idea of just-touching in computing dimension.

Fortunately, there’s an easier way to tell if the images f1(T) through f5(T) are
just-touching. Draw a box around each of f1(T) through f5(T). If these boxes
do not overlap—if they meet only along their boundaries or not at all—then the
regions are just-touching. This is the case for the fractal T . We see in Figure 5.26
the five regions #1 through #5 which verify that the IFS has the just-touching
property.

There are other examples of just-touching IFSs in this chapter: Cantor’s set,
Sierpiński’s triangle, the top of Koch’s snowflake in Figure 5.15 (page 196), the
X-shaped fractal of Figure 5.16 (page 198), the fractal W of Figure 5.17 (page 199),
and the fractal J of Figure 5.19 (page 200). However, consider the fractal in Fig-
ure 5.31. The image contains four half-size copies of the original, but these four
copies are not just-touching.

A formula for just-touching similitudes

Of the just-touching IFSs we have seen in this chapter (listed in the preceding
paragraph), all except W consist completely of similitudes. We now give a simple
formula for the dimension of any fractal K which is the attractor of an iterated
function system of just-touching similitudes.

Suppose F = f1∪f2∪· · ·∪fk is an IFS of just-touching similitudes with dilation
factors c1, c2, . . . , ck, respectively. Let K be its attractor and let d = dim K. ThenSolve this equation for d to

find the dimension of a
fractal generated by
just-touching similitudes.

cd
1 + cd

2 + · · ·+ cd
k = 1. (5.6)

Equation (5.6) is a beautiful relation between the dilation factors and the di-
mension, but is often hard to solve for d. Before we explain why equation (5.6)
works, let’s look at some examples.

5.6. FRACTAL DIMENSION 221

Consider the fractal X in Figure 5.16. Its IFS consists of five similitudes all
with dilation factor 1

3 . We therefore know that its dimension, d, satisfies(
1
3

)d

+
(

1
3

)d

+
(

1
3

)d

+
(

1
3

)d

+
(

1
3

)d

= 1,

or 5
(

1
3

)d = 1. We can solve this equation for d as follows:

5
(

1
3

)d

= 1(
1
3

)d

=
1
5

log
(

1
3

)d

= log
1
5

−d log 3 = − log 5

.
.
.dim X = d =

log 5
log 3

≈ 1.4650.

Let’s do a more complicated example: the fractal T of Figure 5.26 on page 215).
The IFS for T consists of five just-touching similitudes. Their dilation factors are
1
2 , 1

2 , 1
4 , 1

4 , and 1
4 . Thus by equation (5.6), d = dim T satisfies(

1
2

)d

+
(

1
2

)d

+
(

1
4

)d

+
(

1
4

)d

+
(

1
4

)d

= 1. (5.7)

This equation looks difficult to solve for d, but a trick makes it tractable. Let
x = 2d. So

(
1
2

)d = 1/x, and
(

1
4

)d = 1/x2. Now equation (5.7) simplifies to

2
x

+
3
x2

= 1 ⇒ 2x + 3 = x2 ⇒ x2 − 2x− 3 = 0.

The roots of x2 − 2x− 3 = 0 are x = 3 and x = −1. Since x = 2d, it is impossible
for x to be negative, so we know x = 3. Thus 2d = 3 and therefore d = log2 3.

A formal proof of equation (5.6) has many dirty details. However, the main Why the just-touching
formula works.idea is quite accessible. Let’s see what’s at the heart of equation (5.6).

Let K be the attractor of F = f1 ∪ · · · ∪ fk, where the fi’s are just-touching
similitudes, and the dilation factor of fi is ci. To compute dim K we would like to
know N(K, r), the minimum number of balls of radius r which cover K.

Now, K is the attractive fixed point of F , so

K = F (K) = f1(K) ∪ f2(K) ∪ · · · ∪ fk(K).

Thus
N(K, r) ≈ N(f1(K), r) + N(f2(K), r) + · · ·+ N(fk(K), r). (5.8)

We do not have = because a ball which covers part of f1(K) may also cover part
of f2(K). We do have ≈ because this ball sharing can net us only a very modest
savings. The reason is, the regions fi(K) are just-touching and have no significant
overlap. (In a formal proof, we would need to make this precise.)

Next, we recall that fi(K) is a shrunken copy of K. Indeed, fi(K) is simply
a ci-scale miniature. So the number of balls of radius r we need to cover fi(K) is
exactly the same as the number of balls of radius r/ci we need to cover all of K.
In equation form,

N(fi(K), r) = N(K, r/ci) (5.9)

(and this time we do mean exactly equals).

222 CHAPTER 5. FRACTALS

#1

#2

#3

#4

Function a b c d e f

#1 0.5 0 0 −0.5 0 0.5
#2 −0.5 0 0 −0.5 1 1
#3 0.333 0 0 0.333 0.667 0
#4 0.25 0 0 0.25 0.25 0.5

Figure 5.32: A fractal L and its associated IFS.

Now, if K has dimension d, this means that N(K, r) ≈ ar−d for some constant
a. Using this relation in equation (5.9), we have

N(fi(K), r) ≈ a

(
r

ci

)−d

,

which we substitute into equation (5.8) to get

ar−d ≈ a

(
r

c1

)−d

+ a

(
r

c2

)−d

+ · · ·+ a

(
r

ck

)−d

.

As r ↓ 0 the approximations become better and better, and if we divide the pre-
ceding equation through by ar−d, we finally obtain our goal [equation (5.6)]:

1 = cd
1 + cd

2 + · · ·+ cd
k.

A final example: Let L be the fractal depicted in Figure 5.32. Observe that LWhen we can’t solve
equation (5.6). is the attractor of an IFS of four just-touching similitudes with dilation factors 1

2 ,
1
2 , 1

3 , and 1
4 . Thus dim L = d satisfies(

1
2

)d

+
(

1
2

)d

+
(

1
3

)d

+
(

1
4

)d

= 1.

I don’t know how to solve this equation for d, so we’ll need to be content with a
numerical solution. Happily, this is available by computer. Using Mathematica we
type and the computer responds:

FindRoot[(1/2)^d+(1/2)^d+(1/3)^d+(1/4)^d==1,{d,1}]

{d -> 1.52844}

Hence dim L ≈ 1.52844.

Problems for §5.6

�1. What is the dimension of the fractal of problem 2 on page 179 (see Figure 5.6).

5.7. EXAMPLIFICATION: FRACTALS IN NATURE 223

�2. Let Ct be the fractal defined in problem 3 on page 201. What is its dimension?

�3. Find a fractal with dimension exactly 1
2 .

�4. Let K be a compact subset of the plane. Show that in the definition of fractal
dimension of K we can replace N(K, r) with N∆(K, r): the minimum number
of equilateral triangles of side length r and with bottom side parallel to the x-
axis needed to cover K. (In this problem, triangle means the triangle together
with its interior.)

�5. Let F be a compact set in the plane with fractal dimension d. Suppose we
rescale F by doubling its size (in both dimensions). Find, in terms of d, the
fractal dimension of the rescaled version of F .

�6. What is the fractal dimension of the Koch snowflake?

�7. Suppose K1 and K2 are compact sets with fractal dimensions d1 and d2

respectively. What is the fractal dimension of K1 ∪K2? What can you say
about the fractal dimension of K1 ∩K2?

�8. Suppose K1,K2,K3, . . . and K are compact subsets of the plane and d(Ki,K)→
0 as i→∞.

Suppose further that dimKi = di and dim K = d.

Is it true that
lim

i→∞
di = d?

�9. A square of side length 1 can be covered by a single disk of radius 1. The
same is true in R3: a cube of side length 1 fits inside a ball of radius 1.

The same is also true in R4, but false in R5. Prove both of these assertions.
Namely,

(a) Prove that a ball of radius 1 centered at the origin in R4 includes all
points of the form

(
± 1

2 ,± 1
2 ,± 1

2 ,± 1
2

)
: the corners of a hypercube of side

length 1.

(b) Prove that a ball of radius 1 centered at the origin in R5 does not contain
any of the points

(
± 1

2 ,± 1
2 ,± 1

2 ,± 1
2 ,± 1

2

)
.

�10. The definition of the dimension of a set K is

lim
r↓0

log N(K, r)
log(1/r)

.

Explain why the result we get does not depend on the base of the logarithm.

Hint: If a, b, x, y are positive numbers, show that

loga x

loga y
=

logb x

logb y
.

5.7 Examplification: Fractals in nature

From the moment you awaken in the morning until you nod off to sleep at night,
it is hard not to see fractals. We know how to compute the fractal dimension
of mathematical fractals. In this section we discuss how to compute the fractal
dimension of real-world fractals and discuss how knowing the fractal dimension can
be useful.

224 CHAPTER 5. FRACTALS

Figure 5.33: Overlaying a fractal image with different grids.

Box size Number of boxes
r × r N ′

2(F, r)

1× 1 938
2× 2 408
3× 3 250
4× 4 177
5× 5 135
6× 6 109
7× 7 90
8× 8 77
9× 9 67

10× 10 59
12× 12 47
14× 14 39
16× 16 33
18× 18 29
20× 20 25

Table 5.4: Box-counting data from a hypothetical fractal image, F .

5.7.1 Dimension of physical fractals

The key to computing the dimension of real-world fractals is the box-counting
method (see page 217). Here is what we need to do.

Draw a fractal F on very fine graph paper (or greatly magnify the image and
plot it on ordinary graph paper). For example, see the left portion of Figure 5.33.
Count how many 1 × 1 boxes touch the boundary of the image. Next, group the
boxes in pairs (ignore every other vertical and horizontal line) so the graph paper is
twice as coarse as before (right side of the figure). Count the number of 2×2 boxes
which touch the boundary of the image. Continue in this fashion, counting how
many 3× 3 boxes touch the boundary, how many 4× 4 boxes, and so on. Compile
the data into a table, such as Table 5.4.

We expect the number of r× r boxes touched by the fractal to be proportional
to r−d, where d is the dimension. In symbols,

N ′
2(F, r) ≈ Cr−d,

5.7. EXAMPLIFICATION: FRACTALS IN NATURE 225

10
0

10
1

10
2

10
1

10
2

10
3

Figure 5.34: Log-log plot of r versus N ′
2(F, r) using the data from Table 5.4.

where C is a constant. Taking logarithms, we have

log N ′
2(F, r) ≈ −d log r + log C.

This says that log N ′
2(F, r) should behave like an affine function of log r. Thus if

we plot log N ′
2(F, r) versus log r, we expect to see a straight line with slope of −d.

A convenient way to do this is to plot N ′
2(F, r) versus r on log-log graph paper.

We have done this in Figure 5.34 using the data from Table 5.4. The slope of the
line in the graph is computed as follows:

∆ log N ′
2(F, r)

∆ r
=

log 25− log 938
log 20− log 1

≈ 1.3979− 2.9722
1.3010− 0

≈ −1.21;

therefore, the dimension of the hypothetical fractal image is roughly 1.2.

The data in Table 5.4 are contrived, and the resulting graph (Figure 5.34) is
too perfect, so let’s look at some real data.

A photograph of a fractal image is scanned into a computer and stored as a
matrix. The matrix can be thought of as graph paper upon which the image is
drawn, and each entry in the matrix is a pixel, i.e., a box of the graph paper. We
then count the number of boxes (of various sizes) which touch the boundary of the
image and assemble the data into a table; see Table 5.5. (These data come from the
analysis of a fractal which is similar to the image in Color Plate 1; the fractal curve
is the boundary between different colors, say, light and dark blue.) Then we plot
the log of the number of boxes versus the log of the box size; see Figure 5.35. The
dots in the figure represent the data in Table 5.5. The line drawn is a reasonable
approximation of the data by a straight line; 16 the slope of that line is about −1.67,
so the fractal dimension of the image is approximately 5

3 .

5.7.2 Estimating surface area

Many objects (such as automobiles) have smooth surfaces. Others, such as clouds
or sandpaper, have textured surfaces which are better described by fractals. A
pretty example of a physical system with fractal surfaces is shown in Color Plate 1.
This photograph shows one fluid being injected at moderate speed into a surround-
ing fluid. What is the surface area of the boundary between regions of different The surface area is of

interest because the rate at
which material in the jet and
in the surrounding medium
mix is proportional to the
surface area.

16The line was computed using linear regression, a technique for finding a line which best fits
approximately linear data.

226 CHAPTER 5. FRACTALS

Box Log of box
Size Number Size Number

2 8110 0.3010 3.9090
3 5272 0.4771 3.7220
4 3589 0.6021 3.5550
5 2812 0.6990 3.4490
6 2188 0.7782 3.3400
7 1698 0.8451 3.2299
8 1396 0.9031 3.1449

10 1117 1.0000 3.0481
11 940 1.0414 2.9731
12 817 1.0792 2.9122
13 670 1.1139 2.8261
14 605 1.1461 2.7818
16 521 1.2041 2.7168
17 450 1.2304 2.6532
19 381 1.2788 2.5809
21 329 1.3222 2.5172
23 275 1.3617 2.4393
26 238 1.4150 2.3766
28 188 1.4472 2.2742
31 164 1.4914 2.2148
34 140 1.5315 2.1461
37 119 1.5682 2.0755
41 103 1.6128 2.0128
45 86 1.6532 1.9345
50 74 1.6990 1.8692
55 62 1.7404 1.7924
60 57 1.7782 1.7559
66 49 1.8195 1.6902
73 41 1.8633 1.6128
80 35 1.9031 1.5441
88 28 1.9445 1.4472
97 21 1.9868 1.3222

107 21 2.0294 1.3222
117 17 2.0682 1.2304
129 13 2.1106 1.1139
142 11 2.1523 1.0414
156 11 2.1931 1.0414
172 9 2.2355 0.9542
189 6 2.2765 0.7782
208 6 2.3181 0.7782
229 4 2.3598 0.6021
252 4 2.4014 0.6021
277 2 2.4425 0.3010

Table 5.5: Box-counting data from a real-world fractal, such as the one in Color
Plate 1. (Data courtesy Professor K. R. Sreenivasan, Yale University.)

concentrations (different colors in Color Plate 1) of the injected liquid? One way
to estimate this area is to approximate the shape of the jet stream with a cone.
This is a rather poor approximation because it ignores the intricate folding of this
surface. However, using the box-counting method, we can make a much better
approximation of the surface area of the turbulent jet stream.

When we compute the fractal dimension of a physical fractal F we cannot takeDon’t take the definition of
fractal dimension to its
illogical extreme.

the definition too literally. If we take r extremely small, then N ′
2(F, r) counts the

number of atoms in the fractal. Since this is a finite number, N ′
2(F, r) becomes

more or less constant as r enters the atomic scale, suggesting that the dimension
of F is 0.

Typically, one does not have to drop to the atomic scale for the fractal nature
of physical objects to vanish. For example, the liquid jet’s (as in Color Plate 1)
fractal nature vanishes on a scale around 1 mm; the surface of the turbulence is
fairly smooth if we look at only a square millimeter (or smaller) portion of the
surface.

Thus there is a cutoff in fractal dimension (which we denote by rmin) belowThe cutoff threshold.

which the fractal nature of the physical object disappears. For the jet in Color
Plate 1, rmin ≈ 1 mm. This means that the formula N ′

2(F, r) ≈ Cr−d works down
to only rmin, and below that point the approximation breaks down.

5.7. EXAMPLIFICATION: FRACTALS IN NATURE 227

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5.35: Log-log plot of box size versus box counts from the data in Table 5.5.

r
m

in
b
o
x
 s

iz
e

number of boxes

Figure 5.36: For box size r below rmin, the relation N ′
2(F, r) ≈ Cr−d deteriorates.

For a graphic illustration of the cutoff phenomenon see Figure 5.36. For values of
r above rmin, the log-log plot is steeper than below. At scales below rmin the image
is smooth and therefore of lower dimension than at the fractal scale. (Although the
data for Figure 5.36 are contrived, the same phenomenon can be seen in the real
data presented in Figure 5.35.)

Let us consider the inner regions of a turbulent jet stream. Experiments show A surface of constant
concentration inside a
turbulent jet stream has
fractal dimension around 8

3
.

that surfaces of constant concentration have fractal dimension17around 8
3 , and the

17The dimension is computed as follows. A cross-sectional photograph of the jet is taken by
illuminating the liquid with a plane of light. The fractal boundary surface becomes a fractal
boundary curve whose dimension is 5

3
(see the data in Table 5.5, which are plotted in Figure 5.35).

The fractal dimension of the surface is 1+ 5
3

= 8
3
. This is just like slicing a smooth two-dimensional

surface and getting a 2− 1 = 1-dimensional smooth curve.

228 CHAPTER 5. FRACTALS

fractal behavior breaks down at rmin ≈ 1mm. We can use this information to
estimate the surface area.

To begin, recall that N ′
2(F, r) ≈ Cr−d for r ≥ rmin. It is reasonable to es-

timate N ′
2(F, r) for a large value of r (say, around rmax = 10 cm = 100mm)

by direct observation of the jet. Since N ′
2(F, rmax) ≈ Cr

−8/3
max , we can solve for

C ≈ r
8/3
maxN ′

2(F, rmax).
Once we have estimated C, we can estimate

N ′
2(F, rmin) ≈ Cr

−8/3
min ≈ N ′

2(F, rmax)
(

rmax

rmin

)8/3

.

Finally, since the surface is reasonably smooth on the scale of rmin, a box of side
length rmin accounts for approximately r2

min of the surface area. Thus the surface
area is roughly N ′

2(F, rmin)r2
min, or

surface area ≈ N ′
2(F, rmax)r8/3

maxr
−2/3
min .

In conclusion, because the surfaces of many objects appear to be fractals on
all but the smallest scales (where they are smooth), we can estimate their surface
areas by knowing the fractal dimension and then performing a quick box count on
a coarse scale.

5.7.3 Image analysis

Consider the aerial photograph in the upper portion of Figure 5.37. In this picture
we can see runways, roads, grass, trees, a bridge, buildings, and so on. You can rec-
ognize these structures because you have a brain which can interpret these images.
Let’s see how we can use fractal dimension to help a machine interpret a scene.18

Methods akin to the ones described here are being developed to read mammograms
and to detect cancerous tissue [21].

The first step is to convert a picture into a surface. To do this, we first noticeConverting a picture into a
surface. that a picture is actually a large rectangular array of numbers. Each point in the

picture has a corresponding gray-scale value between 0 (black) and 255 (white). To
render the photograph, we put a dot of the appropriate shade of gray at each point
in the photo. Alternatively, we could raise each point above the plane of the photo
by an amount proportional to its gray-scale value; see Figure 5.38 which shows the
“gray-scale surface” formed from a small portion of the photograph in the lower
left where a cluster of trees has a fairly straight boundary with a patch of grass.

Notice that toward the front of the diagram the surface is crinkly, while to the
rear the surface is smoother. Indeed, the fractal dimension of the surface near the
front (tree tops) is about 2.6, whereas the dimension of the portion in back (grass)
is around 2.3.

In the lower portion of Figure 5.37 we present an image derived from the original
photograph by estimating the fractal dimension at each point in the photograph.
Points of lower fractal dimension (near 2) are dark, and points of higher fractal
dimension (near 3) are light. Notice that the river comes up quite dark in the
image because its surface is fairly flat and smooth. The roads, runways, and bridge
in the photograph (which are also quite flat) emerge as dark double bands in the
dimension image (the double-banding is an artifact of how the fractal dimension
was computed).

18There are much more sophisticated methods for analyzing image data. The fractal dimension
method we discuss here is useful because although it cannot resolve fine details, it may be used
as a preprocess for more sophisticated (but slower) methods. If we know the fractal dimension of
the kind of object we seek, then a first pass with this method can greatly narrow the scope of a
search with the more time consuming methods.

5.7. EXAMPLIFICATION: FRACTALS IN NATURE 229

Figure 5.37: An aerial photograph (above) and an image representing the fractal
dimension at each point in the scene (lower). Points of lower fractal dimension are
darker. (Images courtesy Naval Surface Warfare Center, Dahlgren, Virginia.)

230 CHAPTER 5. FRACTALS

0
10

20
30

40
50

60

0

20

40

60
50

100

150

200

250

300

Figure 5.38: A portion of the photograph of Figure 5.37 rendered as a surface.

Problems for §5.7

�1. When computing the dimension of a physical fractal, you should apply box
counting to only the boundary of the object. For example, if you were to
compute the dimension of George Washington’s hair (see Figure 5.33) you
should count only the boxes that are part empty and part covered by the
head. Why? What would happen if you computed the dimension using all
the boxes touched by the head?

�2. The formula we derived for surface area (at the end of §5.7.3) depended on
the dimension of the fractal being 8

3 . Rederive this formula for an arbitrary
fractal of dimension d with d between 2 and 3.

Suppose the physical fractal is flat (lives in plane) and you wish to estimate
its perimeter. Derive a formula for the perimeter based on the dimension d
and the cut off threshold rmin.

Chapter 6

Complex Dynamical Systems

In most of our work we have been using real numbers. The occasional complex
numbers which arose when we were finding eigenvalues (in Chapter 2) were quickly
whisked away to become sine and cosine terms.

We now invite the return of complex numbers to our study of dynamical systems. Since we are working with
complex numbers, you might
like to review §A.2.

We explore discrete time dynamical system in one complex variable. In other words,
we ask, What happens when we iterate a function f(x) where x may be a complex
number?

6.1 Julia sets

6.1.1 Definition and examples

In §4.2.3 we introduced the family of functions fa(x) = x2 +a. In §4.2.5 we studied
the set of values B for which iterations of fa (with a = −2.64) remains bounded.
Let’s consider what happens for other values of a, not just a = −2.64.

Let us define Ba to be the set of all values x for which the iterates fk
a (x) stay

bounded, and let Ua be the set of x for which fk
a (x) explodes. In symbols,

Ba =
{
x : |fk

a (x)| 6→ ∞ as k →∞
}

, and

Ua =
{
x : |fk

a (x)| → ∞ as k →∞
}

.

Note that Ba and Ua are complementary sets. The boundary between these sets is
denoted Ja. The set Ja is called the Julia set of the function fa, and the set Ba is Julia set.

called the filled-in Julia set of fa.
For example, when a = −2.64 we see (§4.2.5) that most numbers x are in Ua,

and what remains in Ba forms a set with the same structure as Cantor’s set.
Let’s do another example: Let a = − 3

4 . There isn’t much special about this
value, except that it’s between −2 and 1

4 . The fixed points of f−3/4(x) are − 1
2 and The significance of the range

−2 ≤ a ≤ 1
4

is explained
later—see, for example,
Figure 6.13 on page 239.

3
2 . Notice that if −1.5 ≤ x ≤ 1.5, then fa(x) is also between ±1.5; this is most
clearly seen in the plot of fa shown in Figure 6.1. (We actually see that if x is
between ±1.5, then fa(x) ∈ [−0.75, 1.5] ⊂ [−1.5, 1.5].) However, if |x| > 1.5, then
observe that fk

a (x) → ∞ as k → ∞. Again, we can see this most clearly from the
figure. Thus we see that Ba = [−1.5, 1.5], and Ua = (−∞,−1.5) ∪ (1.5,∞). The
boundary between these is the two-point set Ja = {−1.5, 1.5}.

That’s all correct but not what we intended. Our intention is not to work just
with real numbers (R) but to work with complex values (C) as well. The function
f−3/4(x) = x2− 3

4 is also a function of a complex number. For example, if x = 1+2i,
then f−3/4(x) = (1+2i)2− 3

4 = (−3+4i)− 3
4 = −3.75+4i. All we have determined

thus far is the real part of the sets Ba, Ua, and Ja. We want to know the full story.
Since the real part of Ba is very simple (an interval centered at the origin), we

231

232 CHAPTER 6. COMPLEX DYNAMICAL SYSTEMS

-2 -1 1 2

-1

1

2

3

Figure 6.1: Plot of the function f(x) = x2 − 3
4 . If |x| ≤ 1.5, then fk(x) stays

bounded. If |x| > 1.5, then fk(x) goes to infinity.

Figure 6.2: Filled-in Julia set Ba for a = − 3
4 .

might suppose that the full Ba is equally simple, say, a circle of radius 1.5 about
the origin. This is a good guess, but the set Ba is not a circle. We’re in for a
delightful surprise.

We can make a picture of the set Ba as follows. Every complex number zA geometric view of Julia
sets. corresponds to a point in the plane. We can plot a point for every element of Ba

and thereby produce a two-dimensional depiction of Ba. This is exactly what we
have done in Figure 6.2. The set B−3/4 is symmetrical with respect to both the
real (x) and the imaginary (y) axes. It runs from −1.5 to 1.5 on the real axis and
roughly1 between ±0.9 on the imaginary.

1Actually, we can work out exactly how far up and down the y-axis B−3/4 runs. Let z = iy

(where y is real). Then f−3/4(z) = −y2 − 3
4
, which is real (and negative). So iy ∈ B−3/4 if

and only if −y2 − 3
4
∈ B−3/4. For this to happen, we need | − y2 − 3

4
| ≤ 3

2
, i.e., y2 ≤ 3

4
, or

|y| ≤
p

3/4 ≈ 0.866.

6.1. JULIA SETS 233

Figure 6.3: A close-up of one of the bumps on the main section of B−3/4.

Figure 6.4: The filled-in Julia set B−i/2.

Notice that B−3/4 is a rather bumpy set. These bumps don’t go away as we
look closer. In Figure 6.3 we greatly magnify the bump attached to the upper right
part of the main section of B−3/4. Notice that we see the same structure as we do
in the whole. The set is a fractal!

What do other Ba sets look like?
For example, we can take a to be a pure imaginary number such as −i/2, as in

Figure 6.4. The filled-in Julia set B−i/2 looks like an island.
We can take a to be a complex number such as −0.85 + 0.18i. The result is the

image in Figure 6.5. The set Ba looks like dancing flames. The image sits between
(roughly) ±1.7 on the real axis and ±0.9 on the imaginary.

Let’s take a closer look at the region where the main flame is holding hands with Julia sets look the same at
all levels of magnification.the somewhat smaller flame on the right. We zoom in on this portion in Figure 6.6.

This close-up view runs from about 0.46 to 0.67 on the real axis and from −0.17
to −0.02 on the imaginary. Again, we see that the two tips of the flames are just
touching in the center of the picture, and so we zoom in even closer. Figure 6.7 is
an extreme close-up of the middle of Figure 6.6. Notice that we don’t see anything

234 CHAPTER 6. COMPLEX DYNAMICAL SYSTEMS

Figure 6.5: The filled-in Julia set B−0.85+0.18i.

Figure 6.6: Close-up of B−0.85+0.18i.

Figure 6.7: An extreme close-up of B−0.85+0.18i.

6.1. JULIA SETS 235

Figure 6.8: B−1.24+0.15i.

Figure 6.9: B−0.16+0.74i.

new! Now, this extreme close-up runs from 0.55 to 0.56 on the real axis and from
−0.09 to −0.08 on the imaginary, and is about seven times bigger than the previous
close-up. Indeed, if you were to examine a 100× magnification of this same portion,
you would see the same structure over and over again. The Julia sets are fractals!

The Julia sets can have many wonderful shapes. Further examples are given in
Figures 6.8 through 6.11.

6.1.2 Escape-time algorithm

How do we compute pictures of Julia sets (such as Figures 6.2 through 6.11)? The
method is fairly straightforward.

We fix a complex number a and ask, Is a given complex number z in Ba? To
answer this, we pick a big number k and check if |fk(z)| is large. The issue is, what
do big and large mean in the previous sentence?

First, let’s tackle large. We say |fk(z)| is large if |fk(z)| is larger than both 2 and Large means bigger than 2.

|a|. Typically (but not always) we have |a| ≤ 2, so we simply require |fk(z)| > 2.
Now your reaction probably is, “2 isn’t very large!”, so let us justify this choice.
We claim that if |z| > 2 and |z| ≥ a, then fk(z) explodes as k →∞ (we prove this
in a moment). If as we iterate f starting at z we ever reach a point whose absolute
value is bigger than 2 (and at least |a|), then we are 100% sure that |fk(z)| → ∞.
Now let’s see why this works. Suppose |z| > 2 (and |z| ≥ |a|). Since |z| > 2, we

236 CHAPTER 6. COMPLEX DYNAMICAL SYSTEMS

Figure 6.10: B0.375+0.333i.

Figure 6.11: B−0.117−0.856i. The inset on the right shows a close-up of a portion
which appears disconnected in the main image.

know that |z| ≥ 2 + ε for some fixed positive number ε. We now compute

|fa(z)| = |z2 + a| by definition of fa

≥ |z2| − |a| since |z2 + a|+ | − a| ≥ |z2| (triangle ineq.)
≥ |z2| − |z| since |z| ≥ |a|
= |z| (|z| − 1) factoring
≥ |z| (1 + ε) since |z| ≥ 2 + ε.

It now follows by repeated use of this reasoning that

|fk
a (z)| ≥ |z|(1 + ε)k →∞,

and therefore z ∈ Ua.
Thus to test if z ∈ Ba, we compute fk

a (z) for k = 1, 2, 3, . . ., and if we ever have
|fk

a (z)| > max{2, |a|}, then we know that z ∈ Ua. There is a problem with this
test. Suppose z ∈ Ba: How many iterations k of fa should we compute before we
are bored and decide that z /∈ Ua? This is a harder question to answer. The answer
depends on which you, the person making the computation, value more: speed or
accuracy.

6.1. JULIA SETS 237

Escape-Time Algorithm for Julia Sets

Inputs:

• The complex number a for fa(z) = z2 + a.

• The four numbers xmin, xmax, ymin, ymax representing the region of the complex plane
in which you are doing your computations. The lower-left corner is at xmin + ymini,
and the upper-right corner is at xmax + ymaxi.

• A positive integer MAXITS. This is the maximum number of iterations of fa you
compute before you assume the point in question is in Ba.

Procedure:

1. For all values of z = x + yi with xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax do the
following steps:

(a) Let z∗ = z (a temporary copy).

(b) Let k = 0 (iteration counter).

(c) While |z∗| ≤ 2 and |z∗| ≤ |a| and k < MAXITS do the following steps:

i. Let z∗ = fa(z∗) = (z∗)2 + a (compute the next iterate).

ii. Let k = k + 1 (increment the step counter).

(d) IF |z∗| ≤ 2 and |z∗| ≤ |a| (i.e., if you have fully iterated without breaking out
of bounds)

THEN plot the point z (i.e., (x, y)) on the screen.

If speed is very important, then a modest value of k (such as 20) gives acceptable Speed versus accuracy.

results. There will be some points which you will misidentify (you will think they
are in Ba, but are they are really in Ua), but you will get a large percentage correct.

If accuracy is very important, then a large value of k (such as 1000) gives good
results. You will make far fewer mistakes, but your computer will crank away much
longer, and the pictures will take more time to produce.

Related to this issue is the magnification/resolution you are trying to achieve. Magnification versus
resolution.If you simply want a coarse overview picture, then a small number of iterations suf-

fices. On the other hand, if you are trying to produce a zoomed-in, high-resolution
image, then a large value of k is important.

We assemble these ideas into an algorithm for computing Julia set images
(page 237). In step 1 we say “For all values of z = x + yi. . . .” This should
not be taken too literally. If the width of the screen is 200 pixels, then we want to
take 200 values of x evenly spaced between xmin and xmax. To prevent distortion,
the shape of the plotting rectangle should be in proportion to the dimensions of the
region (xmax − xmin by ymax − ymin).

In step 1(d) we say “plot the point”; exactly how this is done depends on the
computer system you are using.

Adding color

There is a natural and aesthetically pleasing way to add color to your plots of Julia
sets. When you compute the iterations fk(z), record the first number k for which
fk(z) is out of bounds, i.e., has large absolute value. That number k is called Remember: large means

bigger than 2.the escape-time of the point z. Now, if z ∈ Ba we never have |fk(z)| large, so its
escape-time is infinite (or, effectively, MAXITS).

We now want to plot a point on the screen for all points z in the rectangular
region (xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax). For points in Ba (those whose
escape-time we compute to be MAXITS) we plot a black dot. For all other points

238 CHAPTER 6. COMPLEX DYNAMICAL SYSTEMS

Figure 6.12: The filled-in Julia set Bf for f(z) = −0.3z3 + 0.6z2 − 0.4.

z (those z in Ua) we plot a color point depending on z’s escape-time. For example,
we could follow the usual spectrum from red to violet. When k = 0, we plot a red
point, and as k increases to MAXITS − 1, we plot various colors of the rainbow
through to violet. On a gray-scale monitor, we can assign various shades of gray
to the possible escape-times. Try experimenting with applying different colors to
different escape-times to create beautiful pictures. See Color Plate 2 for an example.

6.1.3 Other Julia sets

There is no reason the functions fa(x) = x2 + a must be used in the definitionUsing functions besides
fa(x) = x2 + a. of Julia sets or in the escape-time algorithm. For any function f : C → C we can

define Bf to be the set of complex numbers z which remain bounded when iterating
f , Uf to be the set of those z for which fk(z) tends to infinity, and Jf to be the
boundary between these regions.

For example, we might let f(z) = −0.3z3 + 0.6z2 − 0.4. The resulting filled-in
Julia set, Bf , is shown in Figure 6.12.

Besides polynomial functions f , you can also try the sine, cosine, and exp func-
tions (see §A.2 to see how these are defined for complex numbers).

Problems for §6.1

�1. What is the filled-in Julia set B0? Hint: You do not need a computer.

�2. Consider the set B−6. Show that 2 ∈ B−6. Find several other values in B−6.

�3. Find some points in B−1+3i.

6.2 The Mandelbrot set

6.2.1 Definition and various views

If you create a variety of Julia sets (either using your own program, or using one ofRecall that fa(z) = z2 + a.

the many commercial and/or public-domain packages available), you may note that
for some values of a the set Ba is fractal dust (as we saw in the case a = −2.64),
and for some values of a the set Ba is a connected region. There is a simple way
to decide which situation you are in: Iterate fa starting at 0. If fk

a (0) remains
bounded, then the set Ba will be connected, but if |fk

a (0)| → ∞, then Ba will be
fractal dust. The justification of this fact is beyond the scope of this text.

6.2. THE MANDELBROT SET 239

-2 -1 1 2

-2

-1

1

2

3

Figure 6.13: When a is between −2 and 1
4 , and |x| ≤ (1 +

√
1− 4a)/2, then

|fa(x)| ≤ (1 +
√

1− 4a)/2 as well.

This leads to a natural question, For which values a does fk
a (0) remain bounded

and for which values of a does it explode? The Mandelbrot set, denoted by M , is
the set of values a for which fk

a (0) remains bounded, i.e.,

M =
{
a ∈ C : |fk

a (0)| 6→ ∞
}

.

Thus our question can be restated: Which numbers are in M ? Let’s start on
the real line. When −2 ≤ a ≤ 1

4 , then fa(x) = x2 + a has a fixed point at
1
2 (1 +

√
1− 4a). Now, if |x| ≤ 1

2 (1 +
√

1− 4a), graphical analysis shows that
|f(x)| ≤ 1

2 (1 +
√

1− 4a) as well; see Figure 6.13. Thus we certainly have fk
a (0)

bounded whenever −2 ≤ a ≤ 1
4 .

Now, if a > 1
4 , we know that fa(x) has no (real) fixed point and that for

any x (including x = 0) we have fk
a (x) → ∞. If a < −2, then |f(0)| = |a| >

1
2 (1 +

√
1− 4a), and subsequent iterations of fa explode; see Figure 6.14.

These computations show that for real a we have fk
a (0) bounded exactly for

those a ∈
[
−2, 1

4

]
=M∩R.

Now what about complex values of a? Again, it might be reasonable to expect
thatM has a simple appearance. Instead, we are startled to see thatM looks like
the image in Figure 6.15. This is an amazing set. Let’s explore various parts of it.

The antenna sticking out to the left runs along the real (x) axis to −2. There
appears to be a little blip toward the left end of the antenna. In Figure 6.16 we
magnify this portion only to find another little copy of M itself. (The antenna
seems to have disappeared; this is an artifact of the software and the resolution of
the image.)

Toward the top of the image in Figure 6.15 are some loose dots. In Figure 6.17
we zoom in on the topmost and see a small version M . The indentation on the
heart-shaped portion on the right is at 1

4 . In Figure 6.18 we extremely magnify a
portion of M in this region.

Next let’s point our microscope at the region between the heart-shaped portion
on the right and the largest circular portion in the middle. Figure 6.19 showsM ’s

240 CHAPTER 6. COMPLEX DYNAMICAL SYSTEMS

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

4

Figure 6.14: When a > 1
4 (upper) or a < −2 (lower), we see that fk

a (0) explodes.

6.2. THE MANDELBROT SET 241

Figure 6.15: The Mandelbrot setM .

Figure 6.16: The ‘blip’ in M’s ‘antenna’ (near a = −1.75) looks like a small copy
ofM .

Figure 6.17: Close-up near the top ofM (around a = −0.158 + 1.03i).

242 CHAPTER 6. COMPLEX DYNAMICAL SYSTEMS

Figure 6.18: A portion ofM near a = 0.29 + 0.016i.

Figure 6.19: A portion ofM near a = −0.748 + 0.0725i.

beautiful curlicues in this region.

6.2.2 Escape-time algorithm

There is clearly a lot to explore. It is worth your while to obtain commercial
or public-domain software for drawing the Mandelbrot set, or else to write your
own computer program. The idea is the same as the escape-time algorithm for
computing Julia sets. First, we note that if |a| > 2, then a /∈M. To see why, note
that fa(0) = a, and now we are iterating fa at a point (a) whose absolute value is
at least |a| and greater than 2. Thus by the reasoning of §6.1.2 we conclude that
|fk

a (0)| → ∞. If for some k we have |fk
a (0)| > 2, then we know that a /∈M. On the

other hand, if |fk
a (0)| ≤ 2 for a large value of k, it is reasonable to suppose that a ∈

M. We again have the speed/accuracy trade off. For coarse, quick pictures, you can
iterate f a modest number of times, but for high-resolution/magnification images,
a large number of iterations should be performed. The escape-time algorithm for
computing images of the Mandelbrot set is presented on page 243. Note that this
algorithm is virtually identical with the algorithm for computing Julia sets. If

6.3. EXAMPLIFICATION: NEWTON’S METHOD REVISITED 243

Escape-Time Algorithm for the Mandelbrot Set

Inputs:

• The four numbers xmin, xmax, ymin, ymax representing the region of the complex plane
in which you are doing your computations. The lower-left corner is at xmin + ymini,
and the upper-right corner is at xmax + ymaxi.

• A positive integer MAXITS. This is the maximum number of iterations of fa (start-
ing at 0) you compute before you assume the point in question is in M .

Procedure:

1. For all values of a = x + yi with xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax do the
following steps:

(a) Let z∗ = 0 (a temporary copy).

(b) Let k = 0 (iteration counter).

(c) While |z∗| ≤ 2 and k < MAXITS, do the following steps:

i. Let z∗ = fa(z∗) = (z∗)2 + a (compute the next iterate).

ii. Let k = k + 1 (increment the step counter).

(d) IF |z∗| ≤ 2 (i.e., if you have fully iterated without breaking out of bounds)

THEN plot the point z (i.e., (x, y)) on the screen.

we assign colors to points in the plane based on their escape time, we can create
beautiful pictures; see Color Plate 3.

Problems for §6.2

�1. Notice thatM is symmetric about the x-axis. Explain why.

6.3 Examplification: Newton’s method revisited

In §1.2.9 on page 19 we discussed Newton’s method for solving equations of the form Solving for a complex root
using Newton’s method.g(x) = 0. In §3.4 on page 106 we analyzed this method and saw that roots of the

equation g(x) = 0 are stable fixed points of the Newton step f(x) = x−g(x)/g′(x).
Let’s take one more look at Newton’s method.

Suppose we wish to solve the equation x3 − 1 = 0 (i.e., g(x) = 0, where g(x) =
x3− 1). Now, of course, we know that x = 1 is a root of this equation, but it is not
the only root. The polynomial x3 − 1 factors:

x3 − 1 = (x− 1)(x2 + x + 1),

so the other two roots are the solutions to the quadratic equation x2 + x + 1 = 0,
namely,

(
−1± i

√
3
)
/2 ≈ −0.5± 0.866i. The locations of these roots are shown in

Figure 6.20. Notice that they are evenly spaced around the unit circle.
The question is, Can Newton’s method find these complex roots? The answer To find complex roots, start

with a complex guess.is: Yes! We just have to give an appropriate complex starting guess.
When g(x) = x3−1, we want to iterate f(x) = x−(x3−1)/(3x2). Now, suppose

we start with x = i/2. We compute f(i/2), f2(i/2), f3(i/2), etc. Here’s what we
get (computer output):

0 + 0.5000i

-1.3333 + 0.3333i

-0.7332 + 0.3053i

244 CHAPTER 6. COMPLEX DYNAMICAL SYSTEMS

1

1

2
1 + i 3()

1

2
1 − i 3()

Figure 6.20: The three roots of the equation z3 − 1 = 0. Notice they are evenly
spaced around the unit circle.

-0.1165 + 0.5786i

-0.9601 + 0.7560i

-0.5877 + 0.7210i

-0.4695 + 0.8580i

-0.5009 + 0.8655i

-0.5000 + 0.8660i

We see that fk(i/2) is converging to the root −0.5 + 0.866i. This makes sense:
Of the three roots of z3 − 1 = 0, the one closest to 0.5i is −0.5 + 0.866i.

We can ask, Given a point z in the complex plane, to which root of z3 − 1 = 0,

1,
−1 + i

√
3

2
, or

−1− i
√

3
2

,

does Newton’s method converge? A good guess is, To whichever root is closest.Newton’s method does not
necessarily find the nearest
root.

This guess is reasonable but, unfortunately, wrong. For example, suppose we start
at 0.4i instead of 0.5i. This new starting value is closest to −0.5+0.866i, but when
we use Newton’s method we get

0 + 0.4000i

-2.0833 + 0.2667i

-1.3158 + 0.1968i

-0.6971 + 0.1863i

0.0901 + 0.4436i

-1.4376 - 0.3390i

-0.8217 - 0.2943i

-0.2097 - 0.4740i

-0.9744 - 1.2342i

-0.6809 - 0.9539i

-0.5328 - 0.8655i

-0.5005 - 0.8651i

-0.5000 - 0.8660i

We see that Newton’s method is converging to −0.5− 0.866i, the root farthest
from 0.4i. To make matters worse, if we start at x = i/3, we get

0 + 0.3333i

-3.0000 + 0.2222i

6.4. EXAMPLIFICATION: COMPLEX BASES 245

-1.9636 + 0.1536i

-1.2242 + 0.1157i

-0.5996 + 0.1185i

0.4257 + 0.4185i

0.2998 - 0.6564i

-0.2194 + 0.0462i

5.9240 + 2.7052i

3.9545 + 1.7975i

2.6479 + 1.1850i

1.7917 + 0.7605i

1.2556 + 0.4437i

0.9833 + 0.1777i

0.9683 + 0.0016i

1.0010 - 0.0001i

1.0000 - 0.0000i

Thus starting at i/3 leads to the root 1. What is going on here?
To gain perspective we need to draw a picture. For each complex number

z = x + iy (with x and y between, say, ±2) we iterate the Newton step f(z) =
z − (z3 − 1)/(3z2). We color each point in the plane depending on to which of the
three roots (1, −0.5 + 0.866i, or −0.5 − 0.866i) the method converges. The result
is in Color Plate 4.

One of the interesting features of the diagram is the boundaries between the
three regions. One can show that every boundary point is actually next to all three
regions!

Problems for §6.3

�1. We use Newton’s method to solve the equation z3 − 1 = 0. If our starting
guess is z = 0, the method does not work. Why?

Find other starting guesses for which Newton’s method fails to solve the
equation z3 − 1 = 0.

�2. Consider the equation x2 − 3 = 0. We want to solve this equation using
Newton’s method. Suppose we begin at x = i. What happens? What
happens if we begin at x = 1.01i? Explain using the language of Chapter 4.
What happens if we begin at x = i

√
3?

6.4 Examplification: Complex bases

6.4.1 Place value revisited

Recall that when we studied Cantor’s set it was natural to work in ternary (base 3).
Every number in Cantor’s set can be expressed in the form 0.ddd · · ·3, where the
d’s are 0 or 2. Our goal is to extend this idea to complex number bases.

To begin, notice that if we divide all the number in Cantor’s set by 2, the
resulting numbers are exactly those which can be expressed in the form 0.ddd · · ·3,
where the d’s are either 0 or 1. Geometrically, we are simply looking at a half-size
copy of Cantor’s set.

Now we are ready to switch the number base. Instead of working in base 3, we
can work in base b, where b is any number—real or complex.2

Let C(b) denote the set of all numbers we can express in the form 0.ddd · · ·b, Definition of C(b).

where the d’s are 0’s or 1’s. This makes sense when b is 3 or 10, but what does it
mean when b = 2 + i? Let’s be a bit more careful. Base 10 is most familiar, so we
start there. Let x = 0.d1d2d3d4 · · ·10. What does this mean? It means

x =
d1

10
+

d2

102
+

d3

103
+

d4

104
+ · · · ,

2Well, not quite any number. We’ll want |b| > 1, as we will explain later.

246 CHAPTER 6. COMPLEX DYNAMICAL SYSTEMS

or in fancier notation,

x =
∞∑

k=0

dk10−k.

Now, let’s work in a generic base b, where b is any number (real or complex).
Suppose d1, d2, d3, . . . is a sequence of 0’s and 1’s, then by x = 0.d1d2d3 · · ·b we
mean

x =
∞∑

k=0

dk

bk
.

For example, let’s take b = 1 + i and let x = 0.10101010 · · ·b. What number is this
in conventional notation? We rewrite this as

x =
1
b

+
1
b3

+
1
b5

+ · · · ,

which is a geometric series with ratio 1/b2. Now

|b2| = |(1 + i)2| = |2i| = 2 > 1,

so |1/b2| < 1; hence the sequence defining x converges. Finally, we can sum this
series and we have

x =
1/b

1− 1/b2
=

1
5
− 3

5
i.

Recall that C(b) denotes the set of all numbers we can express in the form 0.d1d2d3 · · ·b
where the d’s are 0’s and 1’s. Thus we have shown that 1

5 −
3
5 i ∈ C(1 + i).

Now, for some values of b the set C(b) is undefined; let’s illustrate this with an
example. Take b = 1

2 . Then

0.11111 · · ·1/2 = 2 + 4 + 8 + 16 + 32 + · · · ,

which is ∞ (or undefined).
The question becomes, Does 0.d1d2d3 · · ·b always converge for any sequence of

0’s and 1’s? We can take the absolute values of the terms and we get∣∣∣∣d1

b

∣∣∣∣+ ∣∣∣∣d2

b2

∣∣∣∣+ ∣∣∣∣d3

b3

∣∣∣∣+ ∣∣∣∣d3

b4

∣∣∣∣+ · · · .
This is bounded by taking all the d’s equal to 1, i.e.,∣∣∣∣1b

∣∣∣∣+ ∣∣∣∣ 1
b2

∣∣∣∣+ ∣∣∣∣ 1
b3

∣∣∣∣+ ∣∣∣∣ 1
b4

∣∣∣∣+ · · · ,
and this is a geometric series. The latter series converges provided |1/b| < 1, orWhen |b| > 1, then C(b) is

defined. equivalently |b| > 1. Thus if |b| > 1, then we know that C(b) is defined.
What do the sets C(b) look like? We can plot all the points

0. 0 · · · 0︸ ︷︷ ︸
12

b through 0. 1 · · · 1︸ ︷︷ ︸
12

b

This is a total of 212 ≈ 4000 points (you can do more). Each of these values is a
complex number, and so we can plot them in the plane. Two examples are shown
in Figure 6.21. The figure shows C(1.1i) and C(−0.5 + 0.9i).

6.4.2 IFSs revisited

The pretty pictures in Figure 6.21 are fractals; let’s understand them as attractors
of iterated function systems.

Let b be a complex number with |b| > 1. Now, let’s consider the following pair
of functions

g1(z) = z/b and g2(z) = (z + 1)/b.

6.4. EXAMPLIFICATION: COMPLEX BASES 247

Figure 6.21: Images of the sets C(1.1i) and C(−0.5 + 0.9i).

Since |b| > 1 one can prove (in this case one is you—see problem 1 on page 248)
that g1 and g2 are contraction maps. We can then ask, What compact set is the
attractor of g1∪g2? It should be no surprise that the answer is exactly C(b). Here’s
why.

First, it helps to understand how g1 and g2 act on numbers in C(b). Let x = Understanding how g1 and
g2 act symbolically.0.d1d2d3 · · ·b, where the d’s are 0’s and 1’s. First we compute g1(x). Since g1(x) =

x/d, we simply slide the digits of x one place to the right and fill in a 0 in the first
place. The action of g2(x) is similar; we can write g2(x) as x/d+1/d, which means
we slide the digits of x one place to the right, and then fill in a 1 as the new first
digit. Symbolically, we have

g1(0.d1d2d3 · · ·b) = 0.0d1d2d3 · · ·b , and
g2(0.d1d2d3 · · ·b) = 0.1d1d2d3 · · ·b .

Now we ask, What is (g1∪g2)(C(b))? (What do you want the answer to be?) Since
C(b) is the set {0.d1d2d3 · · ·b : di = 0, 1}, we see that

g1(C(b)) = {0.0d1d2d3 · · ·b : di = 0, 1}, and
g2(C(b)) = {0.1d1d2d3 · · ·b : di = 0, 1}

and therefore (g1 ∪ g2)(C(b)) = g1(C(b)) ∪ g2(C(b)) = C(b). Thus C(b) is (by the
contraction mapping theorem) the unique stable fixed point of g1 ∪ g2.

Now, g1 and g2 are not—at first glance—functions of the form[
x
y

]
7→
[

a b
c d

] [
x
y

]
+
[

e
f

]
.

248 CHAPTER 6. COMPLEX DYNAMICAL SYSTEMS

However, we can think of a complex number z = x + yi as a point in the plane

written as a vector
[

x
y

]
. Suppose that b = c + di. Then

1
b

=
c

c2 + d2
− d

c2 + d2
i = c′ + d′i.

Thus

g1(z) = g1(x + yi) = (c′ + d′i)(x + yi) = (c′x− d′y) + (d′x + c′y)i,

so we can rewrite g1 as

g1

[
x
y

]
=
[

c′ −d′

d′ c′

] [
x
y

]
.

In a similar way, g2(z) = (z + 1)/b can be written as

g2

[
x
y

]
=
[

c′ −d′

d′ c′

] [
x
y

]
+
[

c′

d′

]
.

The conclusion is that sets C(b) are special cases of the fractals we examined in
the previous chapter: attractors of iterated function systems of contractive affine
transformations of the plane.

Problems for §6.4

�1. Suppose b is a complex number with |b| > 1. Prove that the functions

g1(z) = z/b and g2(z) = (z + 1)/b

are contraction maps with contractivity |1/b|.
Are the functions g1 and g2 similitudes? Prove or give a counterexample.

�2.* Suppose b is a complex number with |b| > 1. Prove that C(b) is a compact
set.

�3. Let b be a real number with b > 2. What is the dimension of C(b)?

�4. Let b be a real number with 1 < b ≤ 2. Describe (exactly) the set C(b).

�5. Let b be a real number with b > 1. For some values of b, the members of
C(b) can be expressed in more than one way (as a sum of powers of b) and for
some values of b the members of C(b) have a unique 0,1 base b representation.
Determine which values of b have each of these behaviors. Examine your
results in light of the previous two problems.

�6. What is the dimension of C(3i)?

Appendix A

Background Material

In this book we use ideas from linear algebra, complex numbers, and calculus. In
this section we briefly recall some of the ideas from those subjects for your easy
reference. We also discuss some of the rudiments of differential equations.

We are deliberately terse; see other texts for a more complete treatment.

A.1 Linear algebra

A.1.1 Much ado about 0

Be careful when you see the numeral 0; it has at least three different meanings in
this book. It can stand for

• the ordinary number 0, or

• a vector of all zeros, in which case we write it in boldface

0 =

0
0
...
0

 , or

• a matrix for all zeros, in which case we again write it in boldface

0 =

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

So when you see 0 or 0, don’t think nothing of it. Consider which kind of zero it
is!

A.1.2 Linear independence

Let X be a finite set of vectors, i.e.,

X = {x1,x2, . . . ,xm} ⊂ Rn.

A linear combination of vectors in X is any vector of the form

c1x1 + c2x2 + · · ·+ cmxm, (A.1)

249

250 APPENDIX A. BACKGROUND MATERIAL

where the c’s are scalars (i.e., numbers). The set of all linear combinations of the
vectors in X is called their span. The vectors in X are said to span Rn (or, simply,
to span) if every vector in Rn is a linear combination of vectors in X.

The vectors in X are called linearly dependent if the zero vector, 0, is a nontrivialLinear (in)dependence.

linear combination of the x’s; this means that there is a linear combination in which
the coefficients (the c’s in equation (A.1)) are not all zero. [Note: “not all zero” is
very different from “all not zero”.]

The vectors in X are called linearly independent provided they are not linearly
dependent. Less cryptically, they are called linearly independent if the only way to
make 0 as a linear combination of the x’s is to take all coefficients equal to 0.

A.1.3 Eigenvalues/vectors

Let A be a square matrix. A nonzero vector x is called an eigenvector of A provided

Ax = λx (A.2)

for some scalar λ. In other words, Ax must be a scalar multiple of x. The number
λ is called an eigenvalue of A, and x is its associated eigenvector.

The characteristic polynomial of A is det(xI − A), where x is a variable. The
roots of the characteristic polynomial are exactly the eigenvalues of A.

Some roots of the characteristic equation may be complex. Such complex roots
are eigenvalues, but their associated eigenvectors have complex entries. Further, if
A is a real matrix with a complex eigenvalue z = a + bi, then the conjugate of z,
z = a− bi, is also an eigenvalue with its own distinct associated eigenvector.

A.1.4 Diagonalization

Let A be an n× n matrix. Suppose that A has n linearly independent eigenvectorsDiagonalizable if and only if
the eigenvectors are linearly
independent.

s1, s2, . . . , sn with associated eigenvalues λ1, λ2, . . . , λn. (Thus Asi = λisi.)
Collect the n eigenvectors of A as the columns of a matrix S (i.e., the ith column

of S is si). Collect the n eigenvalues as a diagonal matrix Λ (i.e., the ii entry of Λ
is λi). Then observe that

AS = SΛ. (A.3)

Since the columns of S are linearly independent, we know that S is invertible. Thus
we can rewrite equation (A.3) as

Λ = S−1AS or A = SΛS−1.

This says that A is similar to a diagonal matrix.1

It is necessary and sufficient that there be n linearly independent eigenvectorsNo repeated eigenvalues
implies diagonalizable. for a matrix to be diagonalizable. If the n eigenvalues of an n × n matrix are

all distinct (no repeated roots of the characteristic equation), then the associated
eigenvectors must be linearly independent, and hence the matrix diagonalizes. This
condition (distinct eigenvalues) is sufficient for diagonalization but not necessary;
some matrices with repeated eigenvalues are diagonalizable.

Not all matrices are diagonalizable; for example
[

2 1
0 2

]
is not similar to a

diagonal matrix.
If A is a real symmetric (i.e., A = AT) matrix, then the eigenvalues of A areSymmetric matrices

diagonalize. all real, and A has linearly independent eigenvectors. Further, we can choose the
n eigenvectors to be all of length 1 and pairwise orthogonal.

1Square matrices A and B are called similar provided A = MBM−1 for some invertible matrix
M .

A.1. LINEAR ALGEBRA 251

A.1.5 Jordan canonical form*

Not all square matrices can be diagonalized, that is, not all are similar to a diagonal
matrix.

If a square matrix is not diagonalizable, it is similar (by Schur’s theorem) to an
upper triangular matrix. Further, it is similar to an upper triangular matrix of a A square matrix is called

upper triangular if all entries
below the diagonal are 0.

rather particular form.
A Jordan block is a square matrix of the form

Jn,λ =

λ 1 0 0 . . . 0 0
0 λ 1 0 . . . 0 0
0 0 λ 1 . . . 0 0
0 0 0 λ . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . λ 1
0 0 0 0 . . . 0 λ

.

In words, Jn,λ is an n × n matrix whose diagonal entries are all λ, whose entries
just above the diagonal are 1, and all of whose other entries are 0.

A matrix is said to be in Jordan canonical form if it can be decomposed into
diagonal blocks, each of which is a Jordan block. For example, the following matrix
is in Jordan canonical form:

M =

2 1 0 0 0 0 0
0 2 1 0 0 0 0
0 0 2 1 0 0 0
0 0 0 2 0 0 0
0 0 0 0 4 1 0
0 0 0 0 0 4 1
0 0 0 0 0 0 4

.

The diagonal blocks are J4,2 and J3,4.
Every square matrix is similar to a matrix in Jordan canonical form; this simi-

larity is unique up to rearrangement of the blocks.

A.1.6 Basic linear transformations of the plane

A linear transformation from R2 to itself is a function f : R2 → R2 with the
following properties:

f(x + y) = f(x) + f(y), and
f(ax) = af(x),

where x,y are vectors (elements of R2), and a is a scalar (number). Equivalently,

we can express f as f(x) = Ax, where A is a 2× 2 matrix,
[

a b
c d

]
.

We can think of a linear transformation as a motion which takes a point x and
moves it to the point f(x) = Ax. There are some basic linear transformations which
we can combine to make any linear transformation we desire. Here we describe these
basic transformations. They are also illustrated in Figure A.1.

• Identity. The identity transformation is simply f(x) = Ix, where I =[
1 0
0 1

]
is the identity matrix. It leaves all points unmoved. See part (a) in

Figure A.1.

• Axis rescaling. This is the transformation f(x) = Ax, where A =
[

a 0
0 b

]
.

The effect is to rescale the x-axis by a factor of a and the y-axis by a factor

of b. In Figure A.1 part (b) we use A =
[

1
2 0
0 2

]
.

252 APPENDIX A. BACKGROUND MATERIAL

(a) (b)

(c) (d)

(e) (f)

Hello Hello

Hello

H
el
lo

Hello H
e
ll
o

Figure A.1: Basic linear transformations of the plane: (a) identity, (b) axis rescal-
ing, (c) rotation, (d) reflection, (e) and (f) shearing.

The identity transformation is a special case of axis rescaling where we take
both a and b equal to 1.

If just one of a or b is zero, we collapse the entire plane into the y- or x-axis,
respectively. If both a and b are zero, everything collapses into the origin, 0.

• Rotation. In this transformation, points are moved through an angle θ about

the origin. We have A =
[

cos θ − sin θ
sin θ cos θ

]
. In part (c) of Figure A.1 we

illustrate a rotation with θ = π/6 (30◦).

• Reflection. Let ` be a line through the origin. Let x and y be points on
opposite sides of ` so that the line ` is the perpendicular bisector of the line
segment joining x and y. A reflection though ` is the linear transformation
which exchanges these two points (and leaves points on the line ` unmoved).
See Figure A.1 part (d), where we illustrate a reflection through a line ` which
makes a 30◦ angle with the horizontal.

An axis rescaling with a = −1 and b = 1 (i.e., A =
[
−1 0

0 1

]
) is a re-

flection through the y-axis. (Likewise, when a = 1 and b = −1, we have a

A.2. COMPLEX NUMBERS 253

x

y

a

b

θ

a+bi

r

Figure A.2: A geometric view of the complex number a + bi.

reflection through the x-axis.) All reflections can be created by combining a
reflection through the x-axis with a rotation. Every rotation can be created
by combining two reflections.

• Shearing (or skewing). Imagine a rectangle constructed from rigid poles and
flexible joints at the corners. This rectangle is anchored to the x-axis, i.e.,
the bottom side is held fixed. How can this device move? We can slide the
opposite horizontal side of this rectangle, transforming the rectangle into a
parallelogram. This type of motion is known as a shear and is illustrated in
Figure A.1 part (e). A shear is a linear transformation of the form f(x) = Ax,

where A =
[

1 a
0 1

]
; in (e) we take a = −1. Likewise, A =

[
1 0
b 1

]
is also

a shear; see part (f) of Figure A.1, where we take b = 1.

Any linear transformation of the plane can be constructed using a combination
of these basic linear transformations.

A.2 Complex numbers

A complex number is a number z of the form a+bi, where a and b are real numbers
and i =

√
−1.

Although z = a + bi is the traditional way to write a complex number, it is also
very useful to write complex numbers in polar notation, which we now describe.

Each complex number a + bi can be associated with a point in the plane (a, b).
The absolute value of a+ bi is the distance of the point (a, b) from the origin. Thus
|a + bi| =

√
a2 + b2.

We can also specify the angle (also called the argument) of the complex number
a + bi as follows. Draw a line segment from the point (a, b) to the origin. The
angle this segment makes (measured in the usual counterclockwise fashion) with
the positive x-axis is the angle θ of the complex number z. See Figure A.2. Observe
that

a = r cos θ, and b = r sin θ,

and therefore b/a = tan θ, or θ = arctan(b/a).
If we wish to express z = a + bi succinctly in terms of r and θ, we use Euler’s Euler’s formula.

wonderful formula:
eiθ = cos θ + i sin θ. (A.4)

254 APPENDIX A. BACKGROUND MATERIAL

Here is a justification of Euler’s formula. We use the power series representations
for sin, cos, and ex:

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · ,

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · · .

Now we substitute iθ for x in the series for ex to get

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+ · · ·

= 1 + iθ − θ2

2!
− i

θ3

3!
+

θ4

4!
+ i

θ5

5!
− θ6

6!
− i

θ7

7!
+ · · ·

=
(

1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

)
+ i

(
θ − θ3

3!
+

θ5

5!
− θ7

7!
+ · · ·

)
= cos θ + i sin θ.

Thus if a complex number a + bi has absolute value r and argument θ, then

a + bi = reiθ.

Euler’s formula [equation (A.4)] is useful in writing the sine and cosine functionsSin and cos in terms of exp.

in terms of the ex function. Since eiθ = cos θ + i sin θ, it follows that e−iθ =
cos(−θ) + i sin(−θ) = cos θ − i sin θ. In short

eiθ = cos θ + i sin θ, and
e−iθ = cos θ − i sin θ.

If we add these two equations, we can solve for cos θ; if we subtract them, we can
solve for sin θ. Doing this, we get

cos θ =
eiθ + e−iθ

2
, and

sin θ =
eiθ − e−iθ

2i
.

Writing z = a + bi in the form reiθ is useful for computing zk. Observe then
that

zk =
(
reiθ

)k
= rkeikθ. (A.5)

Thus |zk| = |z|k.

A.3 Calculus

A.3.1 Intermediate and mean value theorems

Let f : R→ R be a continuous function. Let a and b be two real numbers. Suppose
y is a real number between f(a) and f(b). Then the intermediate value theorem
guarantees us that there is a number c between a and b for which f(c) = y. See
Figure A.3.

A.3. CALCULUS 255

y

a b

f(a)

f(b)

c

Figure A.3: Understanding the intermediate value theorem.

a b

f(a)

f(b)

c

Figure A.4: Understanding the mean value theorem.

Now, let f : R→ R be a differentiable function, and let a and b be two numbers.
The slope of the line segment from the point (a, f(a)) to the point (b, f(b)) is

∆y

∆x
=

f(b)− f(a)
b− a

.

The mean value theorem states that there is a number c between a and b for which

f ′(c) =
f(b)− f(a)

b− a
.

See Figure A.4.

A.3.2 Partial derivatives

Let f : R2 → R, i.e., f is a real-valued function of two variables, say, f(x, y).
The partial derivative of f with respect to x, denoted by ∂f/∂x, is computed by
imagining y is a constant and computing the derivative with respect to x. We define
∂f/∂y in a similar fashion. For example, if f(x, y) = x2 cos y, then

∂f

∂x
= 2x cos y and

∂f

∂y
= −x2 sin y. (A.6)

If x and y are, in turn, functions of some variable t, then f can be considered
as a function of just t. We find the derivative of f with respect to t via the formula

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

256 APPENDIX A. BACKGROUND MATERIAL

Continuing our previous example, if x(t) = et and y(t) = t2, then

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

= (2x cos y)(et) + (−x2 sin y)(2t)
= 2et(cos t2)et − e2t(sin t2)2t

= 2e2t cos t2 − 2te2t sin t2,

which you can check is the derivative of e2t cos t2.

A.4 Differential equations

A.4.1 Equations

An equation is a mathematical expression with an equal sign somewhere in the
middle. For example,

3x + 1 = 10

is an equation. It tells us the number on the left equals the number on the right.
Typically the equation (such as the preceding one) contains a letter representing

an unknown quantity. In this case x stands for a number. To solve this equation
means to find the number x which makes the equation true. In this easy example,
the answer is x = 3.

Here are two more examples of equations:

x2 = 4 and x + 2 = x.

The first has two different solutions (2 and −2), while the second doesn’t have any
solutions.

You are undoubtedly quite familiar with these kinds of algebraic equations.
They relate two numbers (the expression on the left and the expression on the
right) and have a variable (which stands for a number) whose value(s) you want to
determine. Sometimes there is just one answer. Other times, there may be several
answers or no answer at all.

A.4.2 What is a differential equation?

A differential equation is a bit different. The equation does not assert that two
numbers are the same; rather, it asserts that two functions are the same. And, in
addition to the usual mathematical operations (such as + and ×), the derivative
operation is used. Let’s look at an example:

f ′(t) = g(t) where g(t) = 2t + 1. (A.7)

In this equation we have two functions (the one on the left and the one on the
right). The one on the left is f ′(x); it is the derivative of some function f . We
don’t know what the function f is. It is the “variable” whose “value” we want to
find. The function on the right is g and we are told what g is; it is the function
g(t) = 2t + 1. The letter t is a place holder. It is useful for writing down the
functions, but it isn’t of interest to us.

A solution to equation (A.7) is a function. Here are two possible solutions to
this differential equation:

f1(t) = t2 + t, and
f2(t) = sin t.

Which (if either) is a solution to equation (A.7)?

A.4. DIFFERENTIAL EQUATIONS 257

Let’s consider f1 first. The derivative of f1 is f ′1(t) = 2t + 1. Notice that f ′1(t)
is exactly g(t). So f1 is a solution to differential equation (A.7).

Now, consider f2. The derivative of f2 is f ′2(t) = cos t. Is the function cos t the
same as the function g(t)? The answer is, of course, no. These two functions are
different. Now, it is true that when t = 0 we have cos 0 = 1 = g(0), but that does
not mean that f ′2 and g are the same function. Function f2 is not a solution to
differential equation (A.7).

We know that f1 is a solution to differential equation (A.7). Notice that we said
a solution and not the solution. There are others. For example, let f3(t) = t2+t−5.
To see that f3 is also a solution, we take its derivative, f ′3(t) = 2t + 1, and notice
that f ′3 is the same function as g. So f3 is another solution to equation (A.7).

Are there other solutions? Yes. Consider f4(t) = t2+t+17 and f5(t) = t2+t−π.
These are also solutions to equation (A.7). Indeed, I am sure you realize that there
are infinitely many different solutions to differential equation (A.7). A convenient
way to write this whole family of solutions is

f(t) = t2 + t + C,

where C is a constant.
You might be worried and ask, Are there any more solutions to equation (A.7)?

The answer is no; let’s see why. We are told that f ′(t) = g(t); i.e., that f ′(t) and
g(t) are the same function. So if we integrate f ′(t) or if we integrate g(t) we get
the same answer: ∫

f ′(t) dt =
∫

g(t) dt.

Now, we know that g(t) = 2t + 1, so
∫

g(t) dt = t2 + t + C, where C is a constant.
Also, we know that

∫
f ′(t) dt = f(t)+C, where C is a (perhaps different) constant.

It follows then that f(t) = t2 + t + C.

A.4.3 Standard notation

Differential equation (A.7) is not written in standard form. There is nothing wrong
about how we wrote it; it’s just a bit verbose. Here is the same differential equation
but written in another form:

y′ = 2t + 1. (A.8)

There are two letters in equation (A.8): y and t. The letter y stands for the
function we want to find, and the letter t is a place holder. The equation says,
“The derivative of the unknown function y equals the function 2t + 1.”

The letter y is called the dependent variable, and the letter t is called the in-
dependent variable. The dependent variable is the function we are trying to find;
in equation (A.8) we know that the dependent variable is y because it has a prime
symbol (′) on it. The independent variable, t, is a place holder which is used to
express functions.

Let’s look at another example. Consider the following differential equation:

y′′ = y. (A.9)

What this equation is asking us to find is a function f that is exactly the same as
its own second derivative! The dependent variable is y, but what is the independent
variable? The answer is, it doesn’t matter. You may use any letter you wish (except
y, of course!). In this book, we like to use the letter t for the independent variable
(other books like to use x for the independent variable). The symbol t is just a
place holder—a “dummy” variable—used to specify functions.

What are the solutions to equation (A.9)? Here’s one solution: y = et (under-
stand that y stands for a function, and it would also be correct to say that y(t) = et

is a solution to (A.9)). To verify that y = et is a solution, we notice that y′ = et,
and y′′ = et, so y′′ = y as required.

258 APPENDIX A. BACKGROUND MATERIAL

What about y = et+4? Is that a solution? No. Notice that y′ = et and y′′ = et,
which is not the same as et + 4.

Here is another solution to equation (A.8): y = e−t. To see why, note that
y′ = −e−t, and y′′ = e−t, so y′′ = y.

Are there other solutions? Yes, here’s another: y = 2et + 3e−t. And another:
y = 1

2et − e−t. Indeed, the entire family of solutions is

y = c1e
t + c2e

−t,

where c1 and c2 are constants.

Sometimes we want to know a specific solution to a differential equation. InNailing down the constants.

order to do this—in order to select a specific function from an infinite family of
choices—we need more information. For example, for differential equation (A.9),
y′′ = y, we might also be told that

y(0) = 1 and y′(0) = 2.

We can use this additional information to select which function of the form y(t) =
c1e

t + c2e
−t we want.

We are told that y(0) = 1. Now, y(0) = c1e
0 + c2e

0, so we know that

c1 + c2 = 1. (A.10)

We are also told that y′(0) = 2. Since y(t) = c1e
t + c2e

−t, it follows that y′(t) =
c1e

t − c2e
−t. Thus y′(0) = c1e

0 − c2e
0, so we have

c1 − c2 = 2. (A.11)

We can solve equations (A.10) and (A.11) to find

c1 =
3
2

and c2 = −1
2
.

Thus the function we want is

y(t) =
3
2
et − 1

2
e−t.

How does one solve a differential equation? There are a variety of techniques,
but you do not need to know how to solve differential equations to use this book.
Indeed, it is easy to write a differential equation that is so complicated that no one
will know how to solve it. Indeed, one of the concerns of this book is understanding
how to handle differential equations that are too difficult to solve.

In Appendix B (see §B.1.1 and §B.1.2) we discuss how to use a computer to get
either exact (analytical) and/or approximate (numerical) solutions to differential
equations.

Appendix B

Computing

Mathematics advances through discovery and proof. Without proof, our observa- Discovery and proof.

tions are merely conjectural. We do not stress rigorous proofs in this book because
our aim is to invite readers into the world of dynamical systems.

Proofs, however, are the second step in the process.1 We first need to discover
the truths we hope to prove. And there is no better exploration tool for dynamical
systems than the computer.

In this appendix we first consider (§B.1) how to use the computer to solve
differential equations. We show how to find both analytic and numerical solutions.
In §B.2 we give programs to perform the triangle dance of §5.5.2. Finally, in §B.3
we discuss the software which accompanies this book.

B.1 Differential equations

A computer can be used to solve differential equations. There are two types of
solutions we can hope for. Computer algebra packages (such as Maple and Mathe-
matica) can find analytic solutions, i.e., formulas, in nearly standard mathematical
notation, for the functions which solve the differential equation.

Sometimes analytic solutions are beyond the grasp of computer or human dif-
ferential equation solvers. In this case, numerical methods can be useful. We show
(§B.1.2) how to use Maple, Matlab, and Mathematica to find numerical solutions
to differential equations.

B.1.1 Analytic solutions

Suppose we are given a differential equation, such as equation (A.8) (from page 257)
or equation (A.9). We repeat these equations here for your convenience:

y′ = 2t + 1 (A.8)

y′′ = y. (A.9)

In this section we show how to use Maple and Mathematica to solve these equations.

Maple

To solve these equations using Maple type, The Maple command
dsolve.

dsolve(diff(y(t),t) = 2*t+1, y(t));

1Please take the sequence “discovery first, proof second” with the proverbial grain of salt. In
research, I have had the experience of figuring out a proof and then spending a few hours trying
to figure out just what the theorem was that was proved.

259

260 APPENDIX B. COMPUTING

and the computer responds:

2
y(t) = t + t + _C1

The dsolve command tells the computer you want to solve a differential equation.
For more detail on how to use it, give the command

help(dsolve);

Here is how to solve equation (A.9) in Maple. Give the command

dsolve(diff(y(t),t$2) = y, y(t));

and the computer responds:

y(t) = _C1 exp(t) + _C2 exp(- t)

The diff(y(t),t$2) stands for the second derivative of y with respect to t.

Mathematica

Mathematica can also solve differential equations (A.8) and (A.9). To solve equa-The Mathematica command
DSolve. tion (A.8), type

DSolve[y’[t] == 2t+1, y[t], t]

and the computer responds:

2
{{y[t] -> t + t + C[1]}}

To solve equation (A.9), type

DSolve[y’’[t] == y[t], y[t], t]

and the computer replies:

C[1] t
{{y[t] -> ---- + E C[2]}}

t
E

In Mathematica, to get more information on how to solve differential equations,
give the command ?DSolve and press ENTER.

B.1.2 Numerical solutions

Consider the following differential equation:A differential equation that’s
too hard to solve.

y′ + y2 = t. (B.1)

This is a difficult equation to solve. Indeed, it stumps Mathematica. If we type

DSolve[y’[t] + y[t]^2 == t, y[t], t]

the computer responds (rather unhelpfully):

2
DSolve[y[t] + y’[t] == t, y[t], t]

Mathematica is telling us that it doesn’t know how to solve this differential equation
analytically and simply returns it to us unsolved.

This is very disappointing. However, let us try for a more modest goal. Suppose
we are given that y(0) = 1, and all we really want to know is y(1.2). It would seem
that without a formula for y(t) we are stuck. However, using numerical methods
we can still answer our question.

Here we show how to use numerical methods to compute y(t) and to plot its
graph.

B.1. DIFFERENTIAL EQUATIONS 261

0.5 1 1.5 2

0.8

0.9

1.1

1.2

Figure B.1: The graph of y(t) for the function y defined by equation (B.1). This
graph was produced by Mathematica.

Mathematica

In Mathematica we use the NDSolve command as follows: The Mathematica command
NDSolve.

ans = NDSolve[{y’[t] + y[t]^2 == t, y[0]==1}, y, {t,0,2}]

The NDSolve command takes three arguments. The first is a list of equations
(in braces); in this case the equations y′ + y2 = t and y(0) = 1 are entered as
y’[t] + y[t]^2 == t and y[0]==1. The second argument is the name of the
independent variable, y in this case. The third argument is a three-element list
giving the name of the dependent variable and the first and last values the variable
takes. We want to deal with y(t) over the range 0 ≤ t ≤ 2, so we give {t,0,2}
as the third argument to NDSolve. We begin the command with “ans =” so the
computer will save the result in a variable called ans.

After we give the NDSolve command, Mathematica responds:

{{y -> InterpolatingFunction[{0., 2.}, <>]}}

This is rather cryptic. Suffice it to say that a function approximating y(t) is saved
in ans. Now, how do we compute (say) y(1.2)? We give the command

y[1.2] /. ans

This means (roughly): Please compute y(1.2) subject to the transformation rules
in ans. The computer responds to this command with the answer we want:

{0.903008}

We also might like to plot a graph of the function y(t). To do so, we give the
command

Plot[y[t] /. ans, {t,0,2}]

and the computer plots the graph of y(t) over the range 0 ≤ t ≤ 2. The output of
this command is shown in Figure B.1.

Mathematica can also give numerical solutions to systems of differential equa- A more complicated example
for Mathematica.tions. Recall equation (1.16) on page 10:[

θ
ω

]′
=
[

ω
− sin θ

]
.

Suppose that this system starts with θ(0) = 3 and ω(0) = 0. We can compute the
trajectory of this system via the Mathematica commands

262 APPENDIX B. COMPUTING

ans2 = NDSolve[
{ theta’[t] == omega[t],
omega’[t] == -Sin[theta[t]],
omega[0] == 0,
theta[0] == 3},

{omega,theta},
{t,0,30}

];

Plot[{theta[t] /. ans2, omega[t] /. ans2} , {t,0,30}];

The first command (which begins ans2 = NDSolve[and ends a few lines later at
the close bracket–semicolon) uses NDSolve to find approximating functions for ω(t)
and θ(t). The result is saved in a variable called ans2.

The second command Plot[... tells the computer to plot the graphs of θ(t)
and ω(t) over the range 0 ≤ t ≤ 30. The result is very similar to Figure 1.5 on
page 11.

MATLAB

Now we show how to use Matlab to solve equations (B.1) and (1.16).The Matlab command
ode45. Recall that equation (B.1) is y′ + y2 = t. In order for Matlab to work with

this equation, we first need to solve for y′. This is easy: y′ = t− y2. Next, we need
to tell Matlab how to compute y′ given t and y. We do this by creating a file such
as the following:

function yprime = example(t,y)
%
% We use this function, together with ode45,
% to numerically solve differential equation (B.1):
%
% y’ + y^2 = t
%
yprime = t - y^2;

We save this file as example.m (the lines beginning with a percent sign % are com-
ments and may be omitted).

Next we have to tell Matlab what to do with this file. We use the ode45 com-
mand to compute the numerical values of y(t). In Matlab we give the command

[t,y] = ode45(’example’, 0, 2, 1);

Let’s examine this piece by piece. The ode45 command gives two results. The
“[t,y] =” saves the two outputs in the variables t and y, respectively. The first
argument to ode45 is the name of the file which computes the right-hand side of
the differential equation y′ = · · · . In this case the file is example.m; we don’t type
the .m, and we enclose the name of the file in single quotes.

The second and third arguments (0 and 2) are the initial and final values of t
we wish to consider.

The fourth argument, 1, is the initial value of y, i.e., y(0) = 1.
Finally, the command ends with a semicolon—this tells Matlab not to print

the values of t and y on the screen.
Now we would like to compute y(1.2) and to plot the graph of y(t) on the screen.

Here is how we do each of these tasks.
To interpolate the value of y(1.2) we use the Matlab function interp1. WeUsing the Matlab command

interp1, but poorly. type

interp1(t,y,1.2)

and the computer responds:

B.1. DIFFERENTIAL EQUATIONS 263

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.7

0.8

0.9

1

1.1

1.2

1.3

Figure B.2: The graph of y(t) for the function y defined by equation (B.1). This
graph was produced by Matlab.

0.9037

You might notice that this answer disagrees with the y(1.2) we computed using
Mathematica (where we found y(1.2) ≈ 0.903008). The inaccuracy is in how we
used interp1. When ode45 computes y, it does so only for a modest number
of values of t. To find y(t) for another value, we use interp1 to interpolate. The
default action of interp1 is to approximate the curve y(t) by a straight line between
the two values of t nearest 1.2. A better method of interpolation is to use cubic Using the Matlab command

interp1 for greater accuracy.splines. The interp1 command can use this method in place of linear interpolation.
To do so, we type

interp1(t,y,1.2,’spline’)

and the computer responds: 0.9030. This agrees with Mathematica’s answer to
the number of digits shown. (Internally, Matlab has interpolated y(1.2) to be
0.90300610924786, which is extremely close to the value found by Mathematica.)

Next, to plot a graph of y(t) we give the following command to Matlab:

plot(t,y)

and the result is shown in Figure B.2.

To compute the motion of the rigid pendulum of §1.2.3 we again use the Matlab
command ode45.

The first thing Matlab needs is a version of equation (1.16) it can understand.
As before, we do this by creating a file we call pendulum.m.
function xprime = pendulum(t,x)

%

% This function computes the right side

% of equation (1.16) for use with the ode45

% differential equation solver.

% the first component of the state vector x is theta

% and the second component is omega

theta = x(1);

omega = x(2);

thetaprime = omega;

omegaprime = -sin(theta);

% the result is placed in xprime with the first

% component of xprime being omega and the second

% component being sin(theta)

xprime = [thetaprime; omegaprime];

264 APPENDIX B. COMPUTING

Next, we need to give Matlab the ode45 command according to the following
syntax:

[t,x] = ode45(’pendulum’,tstart , tfinish , x0);

where tstart is the initial time (we use 0), tfinish is the ending time, and x0 is the
initial state vector. We can then call plot(t,x) to obtain a picture of how the
state variables (θ and ω) vary with time.

Let’s try this starting with x0 =
[

θ(0)
ω(0)

]
=
[

0.1
0

]
. The command we give is

[t,x] = ode45(’pendulum’,0,20,[0.1;0]);

We then give the command plot(t,x), and the result is shown in Figure 1.4 on
page 11.

For more information about the ode45 command, give Matlab the command
help ode45.

Maple

The dsolve in Maple, which produces analytic solutions to differential equations,The Maple command dsolve

with the numeric option. can also be used to compute numerical solutions. To solve equation (B.1) we give
the command

yy :=
dsolve({D(y)(t) + (y(t))^2 = t, y(0)=1}, y(t), numeric):

This defines yy to be a function which approximates the solution to equation (B.1).
To find y(1.2), we give Maple the command

yy(1.2);

and the computer responds:

1.200000000, .9030065770

Do it yourself

If you do not have access to Matlab, Mathematica, or the like, it is not difficult
to write your own program (in any common computer language such as Pascal or
Basic) to find numerical solutions to differential equations.

While the Euler method (§1.2.10 on page 20) is the simplest to understand and
to code, it is slow and inaccurate. Here we present the Runge-Kutta method, aThe Runge-Kutta method.

sample program (written in C), and the output.

The Runge-Kutta method is a simple-to-program, accurate method for comput-
ing numerical solutions to differential equations. As in Matlab, we need to put
the differential equation into standard form, namely

y′ = f(t, y).

For our example, equation (B.1), we write

y′ = t− y2.

We also need to know the value of y at a particular value of t. In our example, we
know that at t = 0 the value of y is 1.

The method computes y at increasing values of t. At each step, we increase t
by a small amount—called the step size—and we denote this quantity by h. The
smaller h is, the more accurate the results are, but more computations are required.

B.1. DIFFERENTIAL EQUATIONS 265

Given specific numbers for t and y(t), the method computes the values t + h
and y(t + h) as follows:

a ← f(t, y),
b ← f(t + h/2, y + ha/2),
c ← f(t + h/2, y + hb/2),
d ← f(t + h, y + hc),
t ← t + h,

y ← y + h(a + 2b + 2c + d)/6.

At the end of one pass through these calculations, t and y = y(t) have their new
values. The steps are repeated until the desired range of t has been covered.

Here we give a C language program which uses the Runge-Kutta method to
compute values of y(t) for differential equation (B.1).

#include <stdio.h>

#define STEPSIZE 0.05 /* "h" in the method */

#define TSTART 0. /* initial value for t */

#define TLAST 2. /* last value for t */

#define YSTART 1. /* initial value for y */

double f(t,y) /* a subroutine to compute the RHS */

double t,y; {

return(t - y*y);

}

printout(t,y) /* a subroutine to print out t and y */

double t,y; {

printf("%g\t%g\n",t,y);

}

main() { /* the main program starts here */

/* declare variables */

double t,y; /* t and y from algorithm */

double a,b,c,d; /* intermediate steps in RK */

double h; /* h = STEPSIZE */

/* initialize */

y = YSTART;

t = TSTART;

h = STEPSIZE;

printout(t,y);

while (t <= TLAST) { /* the main RK loop */

a = f(t,y);

b = f(t+h/2,y+h*a/2);

c = f(t+h/2,y+h*b/2);

d = f(t+h,y+h*c);

t = t + h;

y = y + h*(a+2*b+2*c+d)/6;

printout(t,y);

}

}

When compiled and run, this program produces the following output:

0 1

0.05 0.953592

0.1 0.913794

266 APPENDIX B. COMPUTING

0.15 0.879866

0.2 0.851191

..................

1.15 0.884177

1.2 0.903007 <-- the value we want

1.25 0.9226

1.3 0.942854

..................

1.9 1.20749

1.95 1.2295

2 1.25132

B.2 Triangle Dance

The following Matlab program performs the triangle dance from §5.5.2 on page 203.
Save the following instructions in a file called dance.m, and then give the command
dance to Matlab.

% Dancing on a triangle

% set up the graphics screen

axis(’square’);

axis([0 1 0 1]);

hold on;

% number of points to plot

% (increase for a better picture)

npoints = 500;

corners = [0 1 .5; 0 0 1]; % corners of the triangle

points = zeros(2,npoints); % points to plot

choice = fix(3*rand(1,npoints)+1); % random choices recorded

for k=2:npoints

points(:,k) = (points(:,k-1) + corners(:,choice(k-1)))/2;

end;

plot(points(1,:),points(2,:),’.’) % plot the figure

If you run the program several times (without clearing or closing the graphics
window), the diagram will be more filled in.

You can also use Mathematica to do the triangle dance. Give the following
commands to Mathematica and it will draw the result:

mat = {{.5,0},{0,.5}};
f1[vec_] := mat . vec
f2[vec_] := (mat . vec) + {.5,0}
f3[vec_] := (mat . vec) + {.25,.5}
flist = {f1,f2,f3};
dancer[npts_] := Block[{outlist,k},

outlist = Table[{0.,0.},{k,npts}];
For[k=1, k<npts, k++,
pick = Random[Integer,{1,3}];
outlist[[k+1]] = outlist[[k]] // (flist[[pick]])

];
outlist

]

B.3. ABOUT THE ACCOMPANYING SOFTWARE 267

pts = dancer[1000];
ListPlot[pts,AspectRatio->Automatic];

Alternatively, you can save this file as, say, dancer and then load it into Mathe-
matica by typing <<dancer and pressing ENTER.

B.3 About the accompanying software

The diskette available for this book includes a variety of Matlab programs which
enhance the utility of this book. Please read the file README for more specific
information.

Why MATLAB?

There is a proliferation of computer platforms: Macintosh, MS-Dos, Unix, etc.
To write programs which run in all environments is a headache. We chose to use
Matlab for the programs with this book for the following reasons. First, Matlab
is portable. The same “.m” file (which is a plain text file) should run the same on
any machine with Matlab. Second, Matlab is easy to learn. Students can start
using Matlab in much less time than other, more sophisticated packages. Likewise,
Matlab programs are fairly readable, and students should be able to modify them
to suit their needs. Finally, Matlab is useful for many other mathematics and
engineering courses (from linear algebra to signal processing), so it seems sensible
to stick with a tool that students know.

This said, other popular environments (such as Mathematica or Maple) can be
used for computer experimentation. In particular, spreadsheet software—such as
Excel—is nicely suited for working with discrete time dynamical systems. These
business packages produce nice graphs, too.

Obtaining the software

There are three ways to obtain the software which accompanies this book:

1. Fill out the postcard that comes with this book and mail it.

2. Via FTP from The MathWorks (the manufacturers of MATLAB). Use your
FTP software to connect to ftp.mathworks.com. Log in as anonymous giving
your e-mail address as your password. The software is in the /pub/books/scheinerman
directory. The files are contained in a set of subdirectories. You should repli-
cate the directory structure of the stored files on your own machine.

This software is also archived on brutus.mts.jhu.edu in the directory /pub/scheinerman/invitation/software.

3. Another way to access the software over the Internet is via the World Wide
Web. Connect your web browser (e.g., Mosaic) to

http://www.mts.jhu.edu/~ers/invite.html

and read the information there.

268 APPENDIX B. COMPUTING

Bibliography

[1] Abraham, Ralph H., and Christopher D. Shaw, Dynamics: The Geometry of
Behavior, Addison-Wesley (1992).

[2] Barnsley, Michael, Fractals Everywhere, Academic (1988).

[3] Beltrami, Edward, Mathematics for Dynamic Modeling, Academic (1987).

[4] Blanchard, Olivier Jean, and Stanley Fischer, Lectures on Macroeconomics,
MIT Press (1989).

[5] Boyce, William E., and Richard C. DiPrima, Elementary Differential Equa-
tions and Boundary Value Problems, Wiley (1977).

[6] Çambel, A.B., Applied Chaos Theory: A Paradigm for Complexity, Academic
Press (1993).

[7] Diaconis, Persi, Group Representations in Probability and Statistics, Institute
of Mathematical Sciences Lecture Notes Monograph Series, vol. 11 (1988).

[8] Devaney, Robert L., An Introduction to Chaotic Dynamical Systems, 2d ed.,
Addison-Wesley (1989).

[9] Devaney, Robert L., Chaos, Fractals and Dynamics: Computer Experiments
in Mathematics, Addison-Wesley (1990).

[10] Dornbusch, Rudiger, and Stanley Fischer, Macroeconomics, McGraw-Hill
(1981).

[11] Field, Michael, and Martin Golubitsky, Symmetry in Chaos, Oxford (1992).

[12] Gleick, J., Chaos: Making a New Science, Viking (1987).

[13] Hofbauer, Josef, and Karl Sigmund, The Theory of Evolution and Dynamical
Systems, Cambridge University Press (1984).

[14] Horton, W., et. al., eds., Recent Trends in Physics: Chaotic Dynamics and
Transport in Fluids and Plasmas, American Institute of Physics (1992).

[15] Jackson, E. Atlee, Perspectives of Nonlinear Dynamics, Cambridge University
Press (1989).

[16] Kaye, Brian, Chaos & Complexity: Discovering the Surprising Patterns of
Science and Technology, VCH Publishers (1993).

[17] Kapitaniak, Tomasz, Chaotic Oscillations in Mechanical Systems, Manchester
University Press (1991).

[18] Luenberger, David G., Introduction to Dynamic Systems: Theory, Models &
Applications, Wiley (1979).

[19] Moon, Francis C., Chaotic and Fractal Dynamics: An Introduction for Applied
Scientists and Engineers, Wiley (1992).

269

270 BIBLIOGRAPHY

[20] Parker, Thomas S., and Leon O. Chua, Practical Algorithms for Chaotic Sys-
tems, Springer-Verlag (1989).

[21] Priebe, C.E., et. al., The application of fractal analysis to mammorgraphic
tissue classifications, Cancer Letters 77 (1994), 183-189.

[22] Ruelle, David, Chaotic Evolution and Strange Attractors, Cambridge Univer-
sity Press (1989).

[23] Rugh, Wilson J., Linear System Theory, 2d ed., Prentice-Hall (1996).

[24] Sandefur, James T., Discrete Dynamical Systems: Theory and Applications,
Clarendon Press (1990).

[25] Shaw, Robert, The Dripping Faucet as a Model Chaotic System, Aerial Press
(1984).

[26] Strogatz, Steven, Nonlinear Dynamics and Chaos, Addison-Wesley (1994).

[27] Tsonis, Anastasios A., Chaos: From Theory to Applications, Plenum Press
(1992).

Index

[LR]LR-representation, 152, 155, 170, 172
[R]<, real part, 48

affine function, 12, 27, 182
angle (of a complex number), 253
argument, 253
attractor, 28, 33, 76, 197, 246

ball, 209
bank account, 1, 2, 12
bifurcation, 118, 127–129

diagram, 129, 130, 134
Hopf, 116
period-doubling, 129, 130
pitchfork, 129, 130
saddle node, 129
tangent, 129
transcritical, 135, 136

binomial coefficient, 62, 178
bounded, 173
box, 212

grid, 217
butterfly effect, 121

Cantor’s set, 169, 193, 194, 197, 214, 220,
231, 245

generalized, 175
chaos, 111, 118, 135, 147, 150, 157
characteristic polynomial, 250
closed, 173
Cobb-Douglas economic output function,

24
Collatz 3x + 1 problem, 6
compact, 174, 186
conjugate, 250
contraction map, 180, 182, 185, 190, 192,

220, 247
contraction mapping theorem, 180–182,

186, 188, 194, 195, 202, 206,
247

contractive, 180
contractivity, 180, 192
covering with balls, 209
cutoff threshold, 227

dependent variable, 257
diagonalizable, 250
diagonalization, 37
differential equation, 256
dilation factor, 220
dimension, 175, 209, 211, 212, 224
directed graph, 67

distance, 185
asymmetric, 186
Hausdorff, 186, 188

dovetail shuffle, 159

economic growth model, 12, 24, 78, 92
eigenvalue, 37, 40, 52, 64, 79, 87–89, 91,

94, 99, 100, 108, 109, 250
eigenvector, 64, 250
energy, 94, 95

in a spring, 95
kinetic, 95
potential, 95

equilibrium point, 73
escape-time, 237
escape-time algorithm, 235, 237, 242, 243
Euler’s formula, 253
Euler’s method, 10, 20, 25

Fibonacci numbers, 25
fixed point, 28, 40, 73, 74, 123

globally stable, 76
marginally stable, 76, 112
semistable, 112, 128
stable, 33, 76, 81, 83, 84, 88, 91,

102, 112, 181, 182, 186, 191,
247

unstable, 34, 76, 81, 84, 88, 91, 112
floor function, 202
fractal, 246
fractal algorithm

deterministic, 202, 203
random, 203, 206, 207

fractal dimension, 175, 209, 211
fractal dust, 175
FTP, 267

globally stable fixed point, 76
gradient, 100
gradient system, 100
graphical analysis, 29, 34
grid box, 217
GSR shuffle, 164

Hausdorff distance, 186, 188
Hooke’s law, 6, 95
Hopf bifurcation, 116, 118

IFS, 189, 197, 246
IFS code, 197
independent variable, 257
Intermediate Value Theorem, 254

271

272 INDEX

intermediate value theorem, 159
iterated function system, 189, 197, 246

Jacobian matrix, 85, 88, 91
Jordan block, 251
Jordan canonical form, 60, 251
Julia set, 231

filled-in, 231
generalized, 238

just-touching, 218, 220

Koch snowflake, 177, 195, 197, 220, 223

linear (in)dependence, 250
linear approximation, 10, 79
linear combination, 249
linear system, 27
logistic map, 158
Lorenz system, 118
Lyapunov function, 93, 96, 98, 115

of a gradient system, 102

Mandelbrot, 175
Mandelbrot set, 238
marginally stable fixed point, 76, 112
Markov chain, 66
mass-and-spring, 6, 24, 49, 93, 105, 121
matrix exponential, 37, 42, 43
Mean Value Theorem, 255
mean value theorem, 83, 154, 180, 189
metric space, 185, 186

complete, 185
metric, see distance, 169
microbes, 16
Monopoly, 66

neutral fixed point, 76
Newton’s law, 9
Newton’s method, 19, 25, 89, 106, 108,

243
multivariate, 108

numerical methods, 10, 19, 20, 119, 260

partial derivative, 255
pendulum, 9
perfect, 174
period, 113, 123
period-doubling bifurcation, 129, 130, 133
periodic, 111, 113
periodic point, 123, 126

stable, 127
unstable, 127

phase diagram, 18, 94
phase space, 112
pitchfork bifurcation, 129, 130, 133
Poincaré-Bendixson theorem, 112, 114,

115, 117
polar notation, 253
predator/prey, 17, 24
prime period, 123
probability vector, 69

random number generation, 23, 207

ratio test, 181
reduction of order, 25
riffle shuffle, 159
RLC circuit, 7, 49, 52
rotation matrix, 252
Runge-Kutta method, 264

saddle node bifurcation, 128, 129
Sarkovskii order, 145
Sarkovskii’s theorem, 137, 139, 145, 146,

157
self-similar, 175, 177
semistable fixed point, 112, 128
sensitive dependence on initial conditions,

119, 148, 157
separated, 173
separation of variables, 78
shear transformation, 253
shift map, 160
shift shuffle, 162
shuffle

GSR, 159, 164
riffle, 159
shift, 162

Sierpiński’s triangle, 177, 194, 197, 204,
213, 220

similar matrices, 250
similitude, 218
span, 250
spectral norm, 182, 183
spread sheet, 15
stable fixed point, 28, 33, 76, 81, 83, 84,

88, 91, 102, 112, 181, 182, 186,
191, 247

state space, 66
state vector, 1
stochastic matrix, 70
symbolic dynamics, 147, 155, 161, 205,

247

Talmud, 39
tangent bifurcation, 128, 129
ternary, 170, 172, 245
time

continuous, 3
discrete, 1

topology, 173
totally disconnected, 174
trace, 64
trajectory, 56, 76, 94, 113
transcritical bifurcation, 135, 136
transition probability, 66
transition rule, 66
triangle inequality, 185, 187, 236

union of functions, 191, 197
unstable fixed point, 34, 76, 81, 84, 88,

91, 112
upper triangular matrix, 251

van der Pol equation, 121
vector field, 56

INDEX 273

weird friction, 93
world wide web, xiv, 267

	Forward
	Preface
	Introduction
	What is a dynamical system?
	State vectors
	The next instant: discrete time
	The next instant: continuous time
	Summary
	Problems

	Examples
	Mass and spring
	RLC circuits
	Pendulum
	Your bank account
	Economic growth
	Pushing buttons on your calculator
	Microbes
	Predator and prey
	Newton's Method
	Euler's method
	``Random'' number generation
	Problems

	What we want; what we can get

	Linear Systems
	One dimension
	Discrete time
	Continuous time
	Summary
	Problems

	Two (and more) dimensions
	Discrete time
	Continuous time
	The nondiagonalizable case*
	Problems

	Examplification: Markov chains
	Introduction
	Markov chains as linear systems
	The long term
	Problems

	Nonlinear Systems 1: Fixed Points
	Fixed points
	What is a fixed point?
	Finding fixed points
	Stability
	Problems

	Linearization
	One dimension
	Two and more dimensions
	Problems

	Lyapunov functions
	Linearization can fail
	Energy
	Lyapunov's method
	Gradient systems
	Problems

	Examplification: Iterative methods for solving equations
	Problems

	Nonlinear Systems 2: Periodicity and Chaos
	Continuous time
	One dimension: no periodicity
	Two dimensions: the Poincaré-Bendixson theorem
	The Hopf bifurcation*
	Higher dimensions: the Lorenz system and chaos
	Problems

	Discrete time
	Periodicity
	Stability of periodic points
	Bifurcation
	Sarkovskii's theorem*
	Chaos and symbolic dynamics
	Problems

	Examplification: Riffle shuffles and the shift map
	Riffle shuffles
	The shift map
	Shifting and shuffling
	Shuffling again and again
	Problems

	Fractals
	Cantor's set
	Symbolic representation of Cantor's set
	Cantor's set in conventional notation
	The link between the two representations
	Topological properties of the Cantor set
	In what sense a fractal?
	Problems

	Biting out the middle in the plane
	Sierpinski's triangle
	Koch's snowflake
	Problems

	Contraction mapping theorems
	Contraction maps
	Contraction mapping theorem on the real line
	Contraction mapping in higher dimensions
	Contractive affine maps: the spectral norm*
	Other metric spaces
	Compact sets and Hausdorff distance
	Problems

	Iterated function systems
	From point maps to set maps
	The union of set maps
	Examples revisited
	IFSs defined
	Working backward
	Problems

	Algorithms for drawing fractals
	A deterministic algorithm
	Dancing on fractals
	A randomized algorithm
	Problems

	Fractal dimension
	Covering with balls
	Definition of dimension
	Simplifying the definition
	Just-touching similitudes and dimension
	Problems

	Examplification: Fractals in nature
	Dimension of physical fractals
	Estimating surface area
	Image analysis
	Problems

	Complex Dynamical Systems
	Julia sets
	Definition and examples
	Escape-time algorithm
	Other Julia sets
	Problems

	The Mandelbrot set
	Definition and various views
	Escape-time algorithm
	Problems

	Examplification: Newton's method revisited
	Problems

	Examplification: Complex bases
	Place value revisited
	IFSs revisited
	Problems

	Background Material
	Linear algebra
	Much ado about 0
	Linear independence
	Eigenvalues/vectors
	Diagonalization
	Jordan canonical form*
	Basic linear transformations of the plane

	Complex numbers
	Calculus
	Intermediate and mean value theorems
	Partial derivatives

	Differential equations
	Equations
	What is a differential equation?
	Standard notation

	Computing
	Differential equations
	Analytic solutions
	Numerical solutions

	Triangle Dance
	About the accompanying software

	Bibliography
	Index

