Optimal control problems and some applications to inverse problems

Phan Xuan Thanh
(joint work with O. Steinbach, Dinh Nho Hao, D. Lesnic and Bui Viet Huong)

School of Applied Mathematics and Informatics
Hanoi University of Science and Technology

19/08/2014

Outline

(1) Optimal control problems
(2) Inverse problems
(3) Numerical experiments

Outline

(1) Optimal control problems

(2) Inverse problems

(3) Numerical experiments

Optimal control problems

Consider the optimal control problem to minimize the cost functional

$$
J(u, z)=\frac{1}{2}\|u-\bar{u}\|_{\mathcal{V}}^{2}+\frac{\alpha}{2}\|z\|_{\mathcal{U}}^{2}
$$

subject to

$$
u=\mathcal{H} z+u_{p}
$$

and to pointwise control constraints

$$
z \in \mathcal{U}_{a d}=\left\{w \in \mathcal{U}: z_{1} \leq w \leq z_{2}\right\} .
$$

Optimal control problems

Consider the optimal control problem to minimize the cost functional

$$
J(u, z)=\frac{1}{2}\|u-\bar{u}\|_{\mathcal{V}}^{2}+\frac{\alpha}{2}\|z\|_{\mathcal{U}}^{2}
$$

subject to

$$
u=\mathcal{H} z+u_{p}
$$

and to pointwise control constraints

$$
z \in \mathcal{U}_{a d}=\left\{w \in \mathcal{U}: z_{1} \leq w \leq z_{2}\right\} .
$$

Here \bar{u}, z_{1}, z_{2} are given, $\alpha \in \mathbb{R}_{+}, \mathcal{U}$ is a control space, and

$$
\|z\|_{\mathcal{U}}^{2}:=\langle A z, z\rangle_{L_{2}}, \quad A: \mathcal{U} \rightarrow \mathcal{U}^{\prime}
$$

Optimal control problems

Optimal control problems

- Using L_{2} as a control space OR the related energy space: variational formulation, regularity

Optimal control problems

- Using L_{2} as a control space OR the related energy space: variational formulation, regularity
- Optimality conditions, Unique solvability

Optimal control problems

- Using L_{2} as a control space OR the related energy space: variational formulation, regularity
- Optimality conditions, Unique solvability
- Numerical methods: FEMs/BEMs

Optimal control problems

- Using L_{2} as a control space OR the related energy space: variational formulation, regularity
- Optimality conditions, Unique solvability
- Numerical methods: FEMs/BEMs
- Error estimate, Convergence rate

Optimal control problems

- Using L_{2} as a control space OR the related energy space: variational formulation, regularity
- Optimality conditions, Unique solvability
- Numerical methods: FEMs/BEMs
- Error estimate, Convergence rate
- Numerical experiments

Optimal control problems

- Using L_{2} as a control space OR the related energy space: variational formulation, regularity
- Optimality conditions, Unique solvability
- Numerical methods: FEMs/BEMs
- Error estimate, Convergence rate
- Numerical experiments
- Inverse and ill-posed problems: Conjugate gradient methods

Boundary control problems

Parabolic boundary control problem

Let

$$
Q=\Omega \times(0, T), \quad \Sigma=\Gamma \times(0, T), \quad T>0 .
$$

The solution operator: $u(x, T)=\mathcal{H} z+u_{p}=u_{z}+u_{p}$,

$$
\frac{\partial}{\partial t} u_{z}(x, t)-\Delta u_{z}(x, t)=0 \text { in } Q, u_{z}(x, t)=z(x, t) \text { on } \Sigma, u_{z}(x, 0)=0 \text { on } \Omega,
$$

and A is the hypersingular heat boundary integral operator, $A=D$.

Boundary control problems

Parabolic boundary control problem

Let

$$
Q=\Omega \times(0, T), \quad \Sigma=\Gamma \times(0, T), \quad T>0 .
$$

The solution operator: $u(x, T)=\mathcal{H} z+u_{p}=u_{z}+u_{p}$,

$$
\frac{\partial}{\partial t} u_{z}(x, t)-\Delta u_{z}(x, t)=0 \text { in } Q, u_{z}(x, t)=z(x, t) \text { on } \Sigma, u_{z}(x, 0)=0 \text { on } \Omega,
$$

and A is the hypersingular heat boundary integral operator, $A=D$.

$$
J(u, z)=\frac{1}{2} \int_{\Omega}[u(x, T)-\bar{u}(x)]^{2} d x+\frac{\alpha}{2}\langle D z, z\rangle_{\Sigma} \rightarrow \min .
$$

Boundary control problems

Parabolic boundary control problem

Let

$$
Q=\Omega \times(0, T), \quad \Sigma=\Gamma \times(0, T), \quad T>0 .
$$

The solution operator: $u(x, T)=\mathcal{H} z+u_{p}=u_{z}+u_{p}$,

$$
\frac{\partial}{\partial t} u_{z}(x, t)-\Delta u_{z}(x, t)=0 \text { in } Q, u_{z}(x, t)=z(x, t) \text { on } \Sigma, u_{z}(x, 0)=0 \text { on } \Omega,
$$

and A is the hypersingular heat boundary integral operator, $A=D$.

$$
J(u, z)=\frac{1}{2} \int_{\Omega}[u(x, T)-\bar{u}(x)]^{2} d x+\frac{\alpha}{2}\langle D z, z\rangle_{\Sigma} \rightarrow \min .
$$

The control space

$$
\mathcal{U}=H^{\frac{1}{2}, \frac{1}{4}}(\Sigma) \quad \text { vs. } \quad \mathcal{U}=L_{2}(\Sigma)
$$

Boundary control problems

Parabolic boundary control problem

Let

$$
Q=\Omega \times(0, T), \quad \Sigma=\Gamma \times(0, T), \quad T>0 .
$$

The solution operator: $u(x, T)=\mathcal{H} z+u_{p}=u_{z}+u_{p}$,

$$
\frac{\partial}{\partial t} u_{z}(x, t)-\Delta u_{z}(x, t)=0 \text { in } Q, u_{z}(x, t)=z(x, t) \text { on } \Sigma, u_{z}(x, 0)=0 \text { on } \Omega,
$$

and A is the hypersingular heat boundary integral operator, $A=D$.

$$
J(u, z)=\frac{1}{2} \int_{\Omega}[u(x, T)-\bar{u}(x)]^{2} d x+\frac{\alpha}{2}\langle D z, z\rangle_{\Sigma} \rightarrow \min .
$$

The control space

$$
\mathcal{U}=H^{\frac{1}{2}, \frac{1}{4}}(\Sigma) \quad \text { vs. } \quad \mathcal{U}=L_{2}(\Sigma)
$$

Kunisch and Vexler [2007]; Rösch [2004]; Rösch and Wachsmuth [2011]; Winther [1978]; Arada and Raymond [2002]; ...

Optimality conditions

The reduced cost functional

$$
\begin{aligned}
\widetilde{J}(z) & =\frac{1}{2}\left\langle\mathcal{H} z+u_{p}-\bar{u}, \mathcal{H} z+u_{p}-\bar{u}\right\rangle_{L_{2}(\Omega)}+\frac{\alpha}{2}\langle D z, z\rangle_{\Sigma} \\
& =\frac{1}{2}\left\langle\mathcal{H}^{*} \mathcal{H} z, z\right\rangle_{\Sigma}+\left\langle\mathcal{H}^{*}\left(u_{p}-\bar{u}\right), z\right\rangle_{\Sigma}+\frac{1}{2}\left\|u_{p}-\bar{u}\right\|_{L_{2}(\Omega)}^{2}+\frac{\alpha}{2}\langle D z, z\rangle_{\Sigma} .
\end{aligned}
$$

Optimality condition

$$
\left\langle\mathcal{T}_{\alpha} z, w-z\right\rangle_{\Sigma} \geq\langle g, w-z\rangle_{\Sigma} \quad \text { for all } w \in \mathcal{U}_{a d}
$$

where

$$
\mathcal{T}_{\alpha}:=\alpha D+\mathcal{H}^{*} \mathcal{H}: H^{\frac{1}{2}, \frac{1}{4}}(\Sigma) \rightarrow H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma), \quad g:=\mathcal{H}^{*}\left(\bar{u}-u_{p}\right) \in H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma) .
$$

Optimality conditions

The reduced cost functional

$$
\begin{aligned}
\widetilde{J}(z) & =\frac{1}{2}\left\langle\mathcal{H} z+u_{p}-\bar{u}, \mathcal{H} z+u_{p}-\bar{u}\right\rangle_{L_{2}(\Omega)}+\frac{\alpha}{2}\langle D z, z\rangle_{\Sigma} \\
& =\frac{1}{2}\left\langle\mathcal{H}^{*} \mathcal{H} z, z\right\rangle_{\Sigma}+\left\langle\mathcal{H}^{*}\left(u_{p}-\bar{u}\right), z\right\rangle_{\Sigma}+\frac{1}{2}\left\|u_{p}-\bar{u}\right\|_{L_{2}(\Omega)}^{2}+\frac{\alpha}{2}\langle D z, z\rangle_{\Sigma}
\end{aligned}
$$

Optimality condition

$$
\left\langle\mathcal{T}_{\alpha} z, w-z\right\rangle_{\Sigma} \geq\langle g, w-z\rangle_{\Sigma} \quad \text { for all } w \in \mathcal{U}_{a d},
$$

where

$$
\mathcal{T}_{\alpha}:=\alpha D+\mathcal{H}^{*} \mathcal{H}: H^{\frac{1}{2}, \frac{1}{4}}(\Sigma) \rightarrow H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma), \quad g:=\mathcal{H}^{*}\left(\bar{u}-u_{p}\right) \in H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma) .
$$

Next,

- Boundary integral representations of \mathcal{T}_{α} and g.
- Boundary element approximations.
- Error estimates.

Optimality conditions

The primal heat boundary value problem

$$
\begin{cases}\partial_{t} u(x, t)-\Delta u(x, t)=0 & \text { in } Q, \\ u(x, t)=z(x, t) & \text { on } \Sigma, \\ u(x, 0)=u_{0}(x) & \text { on } \Omega .\end{cases}
$$

The adjoint heat boundary value problem

$$
\begin{cases}-\partial_{t} p(x, t)-\Delta p(x, t)=0 & \text { in } Q \\ p(x, t)=0 & \text { on } \Sigma \\ p(x, T)=u(x, T)-\bar{u}(x) & \text { on } \Omega\end{cases}
$$

The optimality condition

$$
\left\langle\alpha \widetilde{D} z-\frac{\partial}{\partial n} p, w-z\right\rangle_{\Sigma} \geq 0 \quad \text { for all } w \in \mathcal{U}_{a d}
$$

where

$$
\widetilde{D}:=\frac{1}{2}\left(D+\kappa_{T} D \kappa_{T}\right), \quad \kappa_{T} v(x, t):=v(x, T-t) .
$$

Optimality conditions

The primal heat boundary value problem

$$
\begin{cases}\partial_{t} u(x, t)-\Delta u(x, t)=0 & \text { in } Q, \\ u(x, t)=z(x, t) & \text { on } \Sigma, \\ u(x, 0)=u_{0}(x) & \text { on } \Omega .\end{cases}
$$

The adjoint heat boundary value problem

$$
\begin{cases}-\partial_{t} p(x, t)-\Delta p(x, t)=0 & \text { in } Q, \\ p(x, t)=0 & \text { on } \Sigma, \\ p(x, T)=u(x, T)-\bar{u}(x) & \text { on } \Omega\end{cases}
$$

The optimality condition

$$
\left\langle\alpha \widetilde{D} z-\frac{\partial}{\partial n} p, w-z\right\rangle_{\Sigma} \geq 0 \quad \text { for all } w \in \mathcal{U}_{a d}
$$

The variational inequality reads to find $z \in \mathcal{U}_{a d}$ such that

$$
\left\langle\mathcal{T}_{\alpha} z-g, w-z\right\rangle_{\Sigma} \geq 0 \quad \text { for all } w \in \mathcal{U}_{a d} .
$$

Boundary integral equations

The state equation

$$
\partial_{t} u(x, t)-\Delta u(x, t)=0 \quad \text { in } Q, \quad u(x, t)=z(x, t) \quad \text { on } \Sigma, \quad u(x, 0)=u_{0}(x) .
$$

Boundary integral equation

$$
(V \omega)(x, t)=\left(\frac{1}{2} I+K\right) z(x, t)-\left(M_{0} u_{0}\right)(x, t) \quad \text { for }(x, t) \in \Sigma
$$

to find the unknown Neumann data $\omega:=\frac{\partial}{\partial n} u$, where for $(x, t) \in \Sigma$,

$$
(V \omega)(x, t)=\int_{0}^{t} \int_{\Gamma} \mathcal{E}(x-y, t-\tau) \omega(y, \tau) d s_{y} d \tau
$$

and

$$
(K z)(x, t)=\int_{0}^{t} \int_{\Gamma} \frac{\partial}{\partial n_{y}} \mathcal{E}(x-y, t-\tau) z(y, \tau) d s_{y} d \tau
$$

Note that

$$
V: H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma) \rightarrow H^{\frac{1}{2}, \frac{1}{4}}(\Sigma), \quad \text { and } H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma) \text {-elliptic. }
$$

Variational inequalities

Optimality condition

$$
\left\langle\alpha \widetilde{D} z-\frac{\partial}{\partial n} p, w-z\right\rangle_{\Sigma} \geq 0 \quad \text { for all } w \in \mathcal{U}_{a d} .
$$

The variational inequality reads to find $z \in \mathcal{U}_{a d}$ such that

$$
\left\langle\mathcal{T}_{\alpha} z, w-z\right\rangle_{\Sigma} \geq\langle g, w-z\rangle_{\Sigma} \quad \text { for all } w \in \mathcal{U}_{a d}
$$

where

$$
\begin{aligned}
\mathcal{T}_{\alpha}=\alpha \widetilde{D}+\kappa_{T} D_{1}-\kappa_{T} K_{1}^{\prime} V^{-1}\left(\frac{1}{2} I+K\right) & -\kappa_{T}\left(\frac{1}{2} I+K^{\prime}\right) V^{-1} K_{1} \\
& +\kappa_{T}\left(\frac{1}{2} I+K^{\prime}\right) V^{-1} V_{1} V^{-1}\left(\frac{1}{2} I+K\right)
\end{aligned}
$$

Theorem

The composed boundary integral operator \mathcal{T}_{α} is self-adjoint, bounded and $H^{\frac{1}{2}, \frac{1}{4}}(\Sigma)$-elliptic, i.e.,

$$
\left\langle\mathcal{T}_{\alpha} z, z\right\rangle_{\Sigma} \geq c_{1}^{\mathcal{T}_{\alpha}}\|z\|_{H^{\frac{1}{2}, \frac{1}{4}(\Sigma)}}^{2} \quad \text { for all } z \in H^{\frac{1}{2}, \frac{1}{4}}(\Sigma) \text {. }
$$

Discretization of variational inequalities

Let

$$
Q_{h}^{1,0}(\Sigma)=S_{h_{x}}^{1}(\Gamma) \otimes T_{h_{t}}^{0}(0, T)
$$

For continuous functions z_{1} and z_{2}, define the discrete convex set
$\mathcal{U}_{h}:=\left\{w_{h} \in Q_{h}^{1,0}(\Sigma): z_{1}\left(x_{i}, t_{j}\right) \leq w_{h}\left(x_{i}, t_{j}\right) \leq z_{2}\left(x_{i}, t_{j}\right) \quad\right.$ for all nodes $\left.\left(x_{i}, t_{j}\right) \in \Sigma\right\}$.
Then the Galerkin discretization of the variational inequality is to find $z_{h} \in \mathcal{U}_{h}$ such that

$$
\begin{equation*}
\left\langle\mathcal{T}_{\alpha} z_{h}, w_{h}-z_{h}\right\rangle_{\Sigma} \geq\left\langle g, w_{h}-z_{h}\right\rangle_{\Sigma} \quad \text { for all } w_{h} \in \mathcal{U}_{h} . \tag{1}
\end{equation*}
$$

Discretization of variational inequalities

Let

$$
Q_{h}^{1,0}(\Sigma)=S_{h_{x}}^{1}(\Gamma) \otimes T_{h_{t}}^{0}(0, T)
$$

For continuous functions z_{1} and z_{2}, define the discrete convex set
$\mathcal{U}_{h}:=\left\{w_{h} \in Q_{h}^{1,0}(\Sigma): z_{1}\left(x_{i}, t_{j}\right) \leq w_{h}\left(x_{i}, t_{j}\right) \leq z_{2}\left(x_{i}, t_{j}\right) \quad\right.$ for all nodes $\left.\left(x_{i}, t_{j}\right) \in \Sigma\right\}$.
Then the Galerkin discretization of the variational inequality is to find $z_{h} \in \mathcal{U}_{h}$ such that

$$
\begin{equation*}
\left\langle\mathcal{T}_{\alpha} z_{h}, w_{h}-z_{h}\right\rangle_{\Sigma} \geq\left\langle g, w_{h}-z_{h}\right\rangle_{\Sigma} \quad \text { for all } w_{h} \in \mathcal{U}_{h} \tag{1}
\end{equation*}
$$

The perturbed variational inequality is to find $\widetilde{z}_{h} \in \mathcal{U}_{h}$ such that

$$
\begin{equation*}
\left\langle\widetilde{\mathcal{T}}_{\alpha} \widetilde{z}_{h}, w_{h}-\widetilde{z}_{h}\right\rangle_{\Sigma} \geq\left\langle\widetilde{g}, w_{h}-\widetilde{z}_{h}\right\rangle_{\Sigma} \quad \text { for all } w_{h} \in \mathcal{U}_{h} \tag{2}
\end{equation*}
$$

where $\widetilde{\mathcal{T}}_{\alpha}$ and \widetilde{g} are appropriate approximations of \mathcal{T}_{α} and g, respectively.

Abstract error estimates

Theorem

Let $z_{h} \in \mathcal{U}_{h}$ and $\widetilde{z}_{h} \in \mathcal{U}_{h}$ be the unique solutions of the variational inequalities (1) and (2), respectively. Let $\widetilde{\mathcal{T}}_{\alpha}$ be a bounded and $Q_{h}^{1,0}(\Sigma)$-elliptic approximation of \mathcal{T}_{α}. Then there holds the error estimate

$$
\left\|z-\widetilde{z}_{h}\right\|_{H^{\frac{1}{2}, \frac{1}{4}}(\Sigma)} \leq c_{1}\left\|z-z_{h}\right\|_{H^{\frac{1}{2}, \frac{1}{4}}(\Sigma)}+c_{2}\left\|\left(\mathcal{T}_{\alpha}-\widetilde{\mathcal{T}}_{\alpha}\right) z\right\|_{H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma)}+c_{3}\|g-\widetilde{g}\|_{H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma)} .
$$

Abstract error estimates

Theorem

Let $z_{h} \in \mathcal{U}_{h}$ and $\widetilde{z}_{h} \in \mathcal{U}_{h}$ be the unique solutions of the variational inequalities (1) and (2), respectively. Let $\widetilde{\mathcal{T}}_{\alpha}$ be a bounded and $Q_{h}^{1,0}(\Sigma)$-elliptic approximation of \mathcal{T}_{α}. Then there holds the error estimate

$$
\left\|z-\widetilde{z}_{h}\right\|_{H^{\frac{1}{2}, \frac{1}{4}}(\Sigma)} \leq c_{1}\left\|z-z_{h}\right\|_{H^{\frac{1}{2}, \frac{1}{4}}(\Sigma)}+c_{2}\left\|\left(\mathcal{T}_{\alpha}-\widetilde{\mathcal{T}}_{\alpha}\right) z\right\|_{H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma)}+c_{3}\|g-\widetilde{g}\|_{H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma)} .
$$

Theorem

Let $z_{h} \in \mathcal{U}_{h}$ be the unique solution of the variational inequality (1). Then there holds the error estimate

$$
\left\|z-z_{h}\right\|_{H^{\frac{1}{2}, \frac{1}{4}}(\Sigma)} \leq c\left(h_{x}^{s-\frac{1}{2}}+h_{t}^{\frac{1}{2}\left(s-\frac{1}{2}\right)}\right)\|z\|_{H^{5}, \frac{5}{2}}(\Sigma)
$$

when assuming $z, z_{1}, z_{2} \in H^{s, \frac{s}{2}}(\Sigma)$ and $\mathcal{T}_{\alpha} z-g \in H^{s-1, \frac{s-1}{2}}(\Sigma), s \in\left[\frac{1}{2}, 2\right]$.

Error estimates

The discrete variational inequality is to find $\widetilde{\underline{z}} \in \mathbb{R}^{M} \leftrightarrow \widetilde{z}_{h} \in \mathcal{U}_{h}$ such that

$$
\left(\widetilde{\mathcal{T}}_{\alpha, h}, \underline{\widetilde{z}}, \underline{w}-\underline{\widetilde{z}}\right) \geq(\underline{\widetilde{g}}, \underline{w}-\underline{\tilde{z}}) \quad \text { for all } \underline{w} \in \mathbb{R}^{M} \leftrightarrow w_{h} \in \mathcal{U}_{h},
$$

where $\widetilde{\mathcal{T}}_{\alpha, h} \in \mathbb{R}^{M \times M}$ is a symmetric and positive definite matrix, i.e.,

$$
\left(\widetilde{\mathcal{T}}_{\alpha, h} \underline{z}, \underline{z}\right) \geq c\left\|z_{h}\right\|_{H^{1 / 2}(\Sigma)}^{2} \quad \text { for all } \underline{z} \in \mathbb{R}^{M} \leftrightarrow z_{h} \in Q_{h}^{1,0}(\Sigma) .
$$

Error estimates

The discrete variational inequality is to find $\underline{\widetilde{\underline{z}}} \in \mathbb{R}^{M} \leftrightarrow \widetilde{z}_{h} \in \mathcal{U}_{h}$ such that

$$
\left(\widetilde{\mathcal{T}}_{\alpha, h}, \underline{\widetilde{z}}, \underline{w}-\underline{\widetilde{z}}\right) \geq(\underline{\tilde{g}}, \underline{w}-\underline{\tilde{z}}) \quad \text { for all } \underline{w} \in \mathbb{R}^{M} \leftrightarrow w_{h} \in \mathcal{U}_{h}
$$

where $\widetilde{\mathcal{T}}_{\alpha, h} \in \mathbb{R}^{M \times M}$ is a symmetric and positive definite matrix, i.e.,

$$
\left(\widetilde{\mathcal{T}}_{\alpha, h} \underline{z}, \underline{z}\right) \geq c\left\|z_{h}\right\|_{H^{1 / 2}(\Sigma)}^{2} \quad \text { for all } \underline{z} \in \mathbb{R}^{M} \leftrightarrow z_{h} \in Q_{h}^{1,0}(\Sigma)
$$

Theorem

There hold the error estimates

$$
\left\|z-\widetilde{z}_{h}\right\|_{H^{\frac{1}{2}, \frac{1}{4}(\Sigma)}} \leq c\left(z, \bar{u}, u_{0}\right) h_{x}^{s+\frac{1}{2}}
$$

and

$$
\left\|z-\widetilde{z}_{h}\right\|_{L_{2}(\Sigma)} \leq c\left(z, \bar{u}, u_{0}\right) h_{x}^{s+1}
$$

when assuming $z \in H^{s+1, \frac{s+1}{2}}(\Sigma)$ for some $s \in[0,1]$.

Numerical results

We consider the parabolic Dirichlet boundary control problem for the domain $\Omega=B_{0.5}(O)$. The data are chosen as

$$
\bar{u}(x)=\left(x_{1}^{2}+x_{2}^{2}\right) \log \left(x_{1}^{2}+x_{2}^{2}\right)+4 x_{1} x_{2}, \quad u_{0}(x)=0, \quad \alpha=0.1, \quad T=0.5
$$

and the box control constraints $-1 \leq z \leq 0.11$.

M	N	$\left\\|\widetilde{z}_{h}-z_{\text {ref }}\right\\|_{L_{2}(\Sigma)}$	eoc	$\left\\|\widetilde{z}_{h}-z_{\text {ref }}\right\\|_{H^{\frac{1}{2}}, \frac{1}{4}(\Sigma)}$	eoc
32	4	0.154249	-	1.050200	-
64	16	0.054260	1.51	0.561425	0.90
128	64	0.012887	2.07	0.212840	1.40
256	256	0.003018	2.09	0.071736	1.57
expected				2.00	

Table: The results of the parabolic Dirichlet boundary control problem.

Numerical results

The final optimal solution $u(\cdot, T)$ and the target function \bar{u}

Figure: Comparison of the final optimal solution (left) and the target function (right).

Thanh Phan Xuan and O. Steinbach. Boundary element methods for parabolic boundary control problems. J. Integral Eqn. Appl,, 26 No. 1: 53-90 (2014).

Outline

(1) Optimal control problems

(2) Inverse problems

(3) Numerical experiments

The heat transfer coefficients

Inverse Problem I. Find a pair of functions $\{u(x, t), \sigma(\xi)\}$ such that

$$
\begin{aligned}
& u_{t}-\Delta u=g \quad \text { in } Q, \\
& u(x, 0)=a(x), \quad x \in \bar{\Omega}, \\
& \frac{\partial u}{\partial n}+\sigma(\xi) u=b(\xi, t), \quad(\xi, t) \in \Sigma, \\
& \ell_{1}(u)=\chi_{1}(\xi), \quad \xi \in \Gamma .
\end{aligned}
$$

The heat transfer coefficients

Inverse Problem I. Find a pair of functions $\{u(x, t), \sigma(\xi)\}$ such that

$$
\begin{aligned}
& u_{t}-\Delta u=g \quad \text { in } Q, \\
& u(x, 0)=a(x), \quad x \in \bar{\Omega}, \\
& \frac{\partial u}{\partial n}+\sigma(\xi) u=b(\xi, t), \quad(\xi, t) \in \Sigma, \\
& \ell_{1}(u)=\chi_{1}(\xi), \quad \xi \in \Gamma .
\end{aligned}
$$

The observation operator ℓ_{1} has one of the following forms:

$$
\ell_{1}(u)=u\left(\xi, T_{1}\right), \quad \xi \in \Gamma,
$$

where T_{1} is a fixed known time in $(0, T]$, or

$$
\ell_{1}(u)=\int_{0}^{T} \omega(t) u(\xi, t) d t, \quad \xi \in \Gamma,
$$

with ω being a given function in $L^{1}(0, T)$.

The heat transfer coefficients

Inverse Problem II. Find a pair of functions $\{u(x, t), \sigma(t)\}$ such that

$$
\begin{aligned}
& u_{t}-\Delta u=g \quad \text { in } Q, \\
& u(x, 0)=a(x), \quad x \in \bar{\Omega}, \\
& \frac{\partial u}{\partial n}+\sigma(t) u=b(\xi, t), \quad(\xi, t) \in \Sigma \mid, \\
& \ell_{2}(u)=\chi_{2}(t), \quad t \in[0, T] .
\end{aligned}
$$

The heat transfer coefficients

Inverse Problem II. Find a pair of functions $\{u(x, t), \sigma(t)\}$ such that

$$
\begin{aligned}
& u_{t}-\Delta u=g \quad \text { in } Q, \\
& u(x, 0)=a(x), \quad x \in \bar{\Omega}, \\
& \frac{\partial u}{\partial n}+\sigma(t) u=b(\xi, t), \quad(\xi, t) \in \Sigma \mid, \\
& \ell_{2}(u)=\chi_{2}(t), \quad t \in[0, T] .
\end{aligned}
$$

The observation operator $\ell_{2}(u)$ has one of the following forms:

$$
\ell_{2}(u)=u\left(\xi_{0}, t\right), \quad t \in[0, T]
$$

where ξ_{0} is fixed known point in Γ, or

$$
\ell_{2}(u)=\int_{\Gamma} \nu(\xi) u(\xi, t) d \xi, \quad t \in[0, T],
$$

with $\nu(\xi)$ being a given function in $L^{1}(\Gamma)$.

The heat transfer coefficients

With the assumptions that Ω is simply-connected and its boundary $\Gamma \in C^{1+\beta}$ with $\beta>0, g \in C^{\beta, 0}(\bar{Q}), a \in C^{1}(\bar{\Omega}), b \in C(\bar{\Sigma})$, Kostin and Prilepko [1996] proved the following results.

The heat transfer coefficients

With the assumptions that Ω is simply-connected and its boundary $\Gamma \in C^{1+\beta}$ with $\beta>0, g \in C^{\beta, 0}(\bar{Q}), a \in C^{1}(\bar{\Omega}), b \in C(\bar{\Sigma})$, Kostin and Prilepko [1996] proved the following results.

Theorem

Suppose that $a=0$ in $\Omega, 0 \leq g(x, t)$ in $Q, 0 \leq b(\xi, t)$ on $S, 0<\chi_{1}(\xi)$ on Γ, and the functions g and b are monotonically non-decreasing with respect to t. Then the solution $(u(x, t), \sigma(\xi)) \in C^{2,1}(Q) \times C(\Gamma)$ with $\sigma(\xi) \geq 0$ on Γ, to the inverse problem I is unique.

The heat transfer coefficients

With the assumptions that Ω is simply-connected and its boundary $\Gamma \in C^{1+\beta}$ with $\beta>0, g \in C^{\beta, 0}(\bar{Q}), a \in C^{1}(\bar{\Omega}), b \in C(\bar{\Sigma})$, Kostin and Prilepko [1996] proved the following results.

Theorem

Suppose that a $=0$ in $\Omega, 0 \leq g(x, t)$ in $Q, 0 \leq b(\xi, t)$ on $S, 0<\chi_{1}(\xi)$ on Γ, and the functions g and b are monotonically non-decreasing with respect to t. Then the solution $(u(x, t), \sigma(\xi)) \in C^{2,1}(Q) \times C(\Gamma)$ with $\sigma(\xi) \geq 0$ on Γ, to the inverse problem I is unique.

Theorem

If $\left|\chi_{2}(t)\right|>0$ on $[0, T]$, then the solution $(u(x, t), \sigma(t)) \in C^{2,1}(Q) \times C[0, T]$ to the inverse problem II is unique.

The heat transfer coefficients

- Nonlinear and ill posed

The heat transfer coefficients

- Nonlinear and ill posed
- Least-squares penalized variational formulations

The heat transfer coefficients

- Nonlinear and ill posed
- Least-squares penalized variational formulations
- Nonlinear conjugate gradient method combined with a boundary element direct solver

The heat transfer coefficients

- Nonlinear and ill posed
- Least-squares penalized variational formulations
- Nonlinear conjugate gradient method combined with a boundary element direct solver
- Numerical results

Direct problem

Consider the direct problem

$$
\begin{align*}
& u_{t}-\Delta u=g \quad \text { in } Q \tag{3}\\
& u(x, 0)=a(x), \quad x \in \Omega \tag{4}\\
& \frac{\partial u}{\partial n}+\sigma(\xi, t) u=b(\xi, t), \quad(\xi, t) \in \Sigma \tag{5}
\end{align*}
$$

with

$$
\begin{equation*}
g \in L^{2}(Q), a \in L^{2}(\Omega), \sigma \in L^{\infty}(\Sigma), \sigma \geq 0, b \in L^{2}(\Sigma) \tag{6}
\end{equation*}
$$

Direct problem

Consider the direct problem

$$
\begin{align*}
& u_{t}-\Delta u=g \quad \text { in } Q \tag{3}\\
& u(x, 0)=a(x), \quad x \in \Omega \tag{4}\\
& \frac{\partial u}{\partial n}+\sigma(\xi, t) u=b(\xi, t), \quad(\xi, t) \in \Sigma \tag{5}
\end{align*}
$$

with

$$
\begin{equation*}
g \in L^{2}(Q), a \in L^{2}(\Omega), \sigma \in L^{\infty}(\Sigma), \sigma \geq 0, b \in L^{2}(\Sigma) \tag{6}
\end{equation*}
$$

Define

$$
W(0, T)=\left\{u: u \in L^{2}\left(0, T ; H^{1}(\Omega)\right), u_{t} \in L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{\prime}\right)\right\}
$$

equipped with the norm

$$
\|u\|_{W(0, T)}^{2}=\|u\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)}^{2}+\left\|u_{t}\right\|_{L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{\prime}\right)}^{2} .
$$

Direct problem

Definition

A function $u \in W(0, T)$ is called a weak solution to the direct problem (3)-(5), if

$$
\begin{equation*}
\int_{Q}\left(u_{t} \eta+\nabla u \cdot \nabla \eta\right) d x d t+\int_{\Sigma} \sigma u \eta d \xi d t=\int_{Q} g \eta d x d t+\int_{\Sigma} b \eta d \xi d t \tag{7}
\end{equation*}
$$

for all $\eta \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$, and $u(\cdot, 0)=a$.

Direct problem

Definition

A function $u \in W(0, T)$ is called a weak solution to the direct problem (3)-(5), if

$$
\begin{equation*}
\int_{Q}\left(u_{t} \eta+\nabla u \cdot \nabla \eta\right) d x d t+\int_{\Sigma} \sigma u \eta d \xi d t=\int_{Q} g \eta d x d t+\int_{\Sigma} b \eta d \xi d t \tag{7}
\end{equation*}
$$

for all $\eta \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$, and $u(\cdot, 0)=a$.

Theorem

If conditions (6) are satisfied, then there exists a unique weak solution in $W(0, T)$ of the direct problem (3)-(5). Moreover, there exists a constant $c_{d}>0$ independent of g, b and a such that

$$
\|u\|_{W(0, T)} \leq c_{d}\left(\|g\|_{L^{2}(Q)}+\|b\|_{L^{2}(\Sigma)}+\|a\|_{L^{2}(\Omega)}\right) .
$$

Direct problem

Definition

A function $u \in W(0, T)$ is called a weak solution to the direct problem (3)-(5), if

$$
\begin{equation*}
\int_{Q}\left(u_{t} \eta+\nabla u \cdot \nabla \eta\right) d x d t+\int_{\Sigma} \sigma u \eta d \xi d t=\int_{Q} g \eta d x d t+\int_{\Sigma} b \eta d \xi d t \tag{7}
\end{equation*}
$$

for all $\eta \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$, and $u(\cdot, 0)=a$.

Theorem

If conditions (6) are satisfied, then there exists a unique weak solution in $W(0, T)$ of the direct problem (3)-(5). Moreover, there exists a constant $c_{d}>0$ independent of g, b and a such that

$$
\|u\|_{W(0, T)} \leq c_{d}\left(\|g\|_{L^{2}(Q)}+\|b\|_{L^{2}(\Sigma)}+\|a\|_{L^{2}(\Omega)}\right) .
$$

Boundary integral equation methods, Lax-Milgram theorem.

Variational method for the inverse problem I

Define the admissible set

$$
\mathcal{A}=\left\{\sigma \in L^{\infty}(\Gamma): 0 \leq \bar{\sigma}_{1} \leq \sigma(\xi) \leq \bar{\sigma}_{2} \text { for almost every } \xi \in \Gamma\right\}
$$

with $\bar{\sigma}_{1}, \bar{\sigma}_{2}$ being given constants.

Variational method for the inverse problem I

Define the admissible set

$$
\mathcal{A}=\left\{\sigma \in L^{\infty}(\Gamma): 0 \leq \bar{\sigma}_{1} \leq \sigma(\xi) \leq \bar{\sigma}_{2} \text { for almost every } \xi \in \Gamma\right\}
$$

with $\bar{\sigma}_{1}, \bar{\sigma}_{2}$ being given constants.
Suppose that χ_{1} is approximately given by $\chi_{1 \epsilon}$ such that

$$
\left\|\chi_{1}-\chi_{1 \epsilon}\right\|_{L^{2}(\Gamma)} \leq \epsilon
$$

with $\epsilon \geq 0$ being a given level of noise.

Variational method for the inverse problem I

Define the admissible set

$$
\mathcal{A}=\left\{\sigma \in L^{\infty}(\Gamma): 0 \leq \bar{\sigma}_{1} \leq \sigma(\xi) \leq \bar{\sigma}_{2} \text { for almost every } \xi \in \Gamma\right\}
$$

with $\bar{\sigma}_{1}, \bar{\sigma}_{2}$ being given constants.
Suppose that χ_{1} is approximately given by $\chi_{1 \epsilon}$ such that

$$
\left\|\chi_{1}-\chi_{1 \epsilon}\right\|_{L^{2}(\Gamma)} \leq \epsilon
$$

with $\epsilon \geq 0$ being a given level of noise.
Minimize the functional

$$
\begin{aligned}
J_{\alpha}(\sigma) & =\frac{1}{2}\left\|\ell_{1}(u(\sigma))-\chi_{1 \epsilon}\right\|_{L^{2}(\Gamma)}^{2}+\frac{\alpha}{2}\|\sigma\|_{L^{2}(\Sigma)}^{2} \\
& =\frac{1}{2} \int_{\Gamma}\left(\int_{0}^{T} \omega(t) u(\xi, t ; \sigma) d t-\chi_{1 \epsilon}(\xi)\right)^{2} d \xi+\frac{\alpha}{2}\|\sigma\|_{L^{2}(\Sigma)}^{2}
\end{aligned}
$$

over the admissible set \mathcal{A}.

Variational method for the inverse problem I

Lemma

The mapping $\sigma \mapsto u(\sigma)$ is Lipschitz continuous from \mathcal{A} to $W(0, T)$, i.e., for any $\sigma, \sigma+\delta \sigma \in \mathcal{A}$, there holds

$$
\|u(\sigma+\delta \sigma)-u(\sigma)\|_{w(0, T)} \leq c\|\delta \sigma\|_{L^{\infty}(\Gamma)}
$$

Variational method for the inverse problem I

Lemma

The mapping $\sigma \mapsto u(\sigma)$ is Lipschitz continuous from \mathcal{A} to $W(0, T)$, i.e., for any $\sigma, \sigma+\delta \sigma \in \mathcal{A}$, there holds

$$
\|u(\sigma+\delta \sigma)-u(\sigma)\|_{w(0, T)} \leq c\|\delta \sigma\|_{L^{\infty}(\Gamma)} .
$$

Lemma

The mapping $\sigma \mapsto u(\sigma)$ from \mathcal{A} to $W(0, T)$ is Fréchet differentiable in the sense that for any $\delta \sigma \in L^{\infty}(\Gamma)$ such that $\sigma+\delta \sigma \in \mathcal{A}$ there exists a bounded linear operator \mathcal{U} from \mathcal{A} to $W(0, T)$ such that

$$
\lim _{\|\delta \sigma\|_{L \infty(\mathrm{r})} \rightarrow 0} \frac{\|u(\sigma+\delta \sigma)-u(\sigma)-\mathcal{U} \delta \sigma\|_{W(0, T)}}{\|\delta \sigma\|_{L^{\infty}(\Gamma)}}=0
$$

Variational method for the inverse problem I

The gradient of the functional J_{α}
We introduce the adjoint problem

$$
\begin{aligned}
-\psi_{t}-\Delta \psi & =0 \text { in } Q \\
\psi(x, T) & =0, \quad x \in \Omega \\
\frac{\partial \psi}{\partial n}+\sigma(\xi) \psi & =-\omega(t)\left(\int_{0}^{T} \omega(t) u(\xi, t ; \sigma) d t-\chi_{1 \epsilon}(\xi)\right), \quad(\xi, t) \in \Sigma
\end{aligned}
$$

Variational method for the inverse problem I

The gradient of the functional J_{α}
We introduce the adjoint problem

$$
\begin{aligned}
-\psi_{t}-\Delta \psi & =0 \text { in } Q \\
\psi(x, T) & =0, \quad x \in \Omega \\
\frac{\partial \psi}{\partial n}+\sigma(\xi) \psi & =-\omega(t)\left(\int_{0}^{T} \omega(t) u(\xi, t ; \sigma) d t-\chi_{1 \epsilon}(\xi)\right), \quad(\xi, t) \in \Sigma
\end{aligned}
$$

Theorem

The functional J_{α} is Fréchet differentiable and its gradient is

$$
J_{\alpha}^{\prime}(\sigma)=\int_{0}^{T} u(\xi, t ; \sigma) \psi(\xi, t) d t+\alpha \sigma(\xi) .
$$

Optimality system

The direct problem

$$
\begin{aligned}
& u_{t}-\Delta u=g \quad \text { in } Q \\
& u(x, 0)=a(x), \quad x \in \bar{\Omega}, \\
& \frac{\partial u}{\partial n}+\sigma(\xi) u=b(\xi, t), \quad(\xi, t) \in \Sigma .
\end{aligned}
$$

Optimality system

The direct problem

$$
\begin{aligned}
& u_{t}-\Delta u=g \quad \text { in } Q \\
& u(x, 0)=a(x), \quad x \in \bar{\Omega}, \\
& \frac{\partial u}{\partial n}+\sigma(\xi) u=b(\xi, t), \quad(\xi, t) \in \Sigma .
\end{aligned}
$$

The adjoint problem

$$
\begin{aligned}
-\psi_{t}-\Delta \psi & =0 \text { in } Q \\
\psi(x, T) & =0, \quad x \in \Omega \\
\frac{\partial \psi}{\partial n}+\sigma(\xi) \psi & =-\omega(t)\left(\int_{0}^{T} \omega(t) u(\xi, t ; \sigma) d t-\chi_{1 \epsilon}(\xi)\right), \quad(\xi, t) \in \Sigma
\end{aligned}
$$

Optimality system

The direct problem

$$
\begin{aligned}
& u_{t}-\Delta u=g \quad \text { in } Q \\
& u(x, 0)=a(x), \quad x \in \bar{\Omega}, \\
& \frac{\partial u}{\partial n}+\sigma(\xi) u=b(\xi, t), \quad(\xi, t) \in \Sigma .
\end{aligned}
$$

The adjoint problem

$$
\begin{aligned}
&-\psi_{t}-\Delta \psi=0 \text { in } Q \\
& \psi(x, T)=0, \quad x \in \Omega \\
& \frac{\partial \psi}{\partial n}+\sigma(\xi) \psi=-\omega(t)\left(\int_{0}^{T} \omega(t) u(\xi, t ; \sigma) d t-\chi_{1 \epsilon}(\xi)\right), \quad(\xi, t) \in \Sigma \\
& J_{\alpha}^{\prime}(\sigma)=\int_{0}^{T} u(\xi, t ; \sigma) \psi(\xi, t) d t+\alpha \sigma(\xi)
\end{aligned}
$$

Optimality system

Optimality system

- Nonlinear conjugate gradient methods

Optimality system

- Nonlinear conjugate gradient methods
- Boundary element methods

Optimality system

- Nonlinear conjugate gradient methods
- Boundary element methods
- Numerical experiments

Nonlinear conjugate gradient method

Nonlinear conjugate gradient method

(3) Choose an initial guess σ_{0}, and set $k=0$.

Nonlinear conjugate gradient method

(3) Choose an initial guess σ_{0}, and set $k=0$.
(2) Find the solution $u\left(x, t ; \sigma_{0}\right)$ of the direct problem and the solution of the adjoint problem $\psi_{0}(x, t)$. Then compute $\quad r_{0}=-J_{\alpha}^{\prime}\left(\sigma_{0}\right), \quad d_{0}=r_{0}$.

Nonlinear conjugate gradient method

(1) Choose an initial guess σ_{0}, and set $k=0$.
(2) Find the solution $u\left(x, t ; \sigma_{0}\right)$ of the direct problem and the solution of the adjoint problem $\psi_{0}(x, t)$. Then compute $\quad r_{0}=-J_{\alpha}^{\prime}\left(\sigma_{0}\right), \quad d_{0}=r_{0}$.
(3) Line search $\gamma_{0}=\operatorname{argmin}_{\gamma \geq 0} J_{\alpha}\left(\sigma_{0}+\gamma d_{0}\right)$.

Nonlinear conjugate gradient method

(1) Choose an initial guess σ_{0}, and set $k=0$.
(2) Find the solution $u\left(x, t ; \sigma_{0}\right)$ of the direct problem and the solution of the adjoint problem $\psi_{0}(x, t)$. Then compute $\quad r_{0}=-J_{\alpha}^{\prime}\left(\sigma_{0}\right), \quad d_{0}=r_{0}$.
(3) Line search $\gamma_{0}=\operatorname{argmin}_{\gamma \geq 0} J_{\alpha}\left(\sigma_{0}+\gamma d_{0}\right)$.
(ㅅ) $\sigma_{1}=\sigma_{0}+\gamma_{0} d_{0}$

Nonlinear conjugate gradient method

(1) Choose an initial guess σ_{0}, and set $k=0$.
(2) Find the solution $u\left(x, t ; \sigma_{0}\right)$ of the direct problem and the solution of the adjoint problem $\psi_{0}(x, t)$. Then compute $\quad r_{0}=-J_{\alpha}^{\prime}\left(\sigma_{0}\right), \quad d_{0}=r_{0}$.
(3) Line search $\gamma_{0}=\operatorname{argmin}_{\gamma \geq 0} J_{\alpha}\left(\sigma_{0}+\gamma d_{0}\right)$.

- $\sigma_{1}=\sigma_{0}+\gamma_{0} d_{0}$
(0) $k=1$: Find $u\left(x, t ; \sigma_{k}\right)$ and $\psi_{k}(x, t)$, then compute

$$
\begin{gathered}
J_{\alpha}^{\prime}\left(\sigma_{k}\right)=\int_{0}^{T} u\left(x, t ; \sigma_{k}\right) \psi_{k}(x, t) d t+\alpha \sigma_{k} \\
r_{k}=-J_{\alpha}^{\prime}\left(\sigma_{k}\right), \quad d_{k}=r_{k}+\beta_{k} d_{k-1} \quad \text { where } \quad \beta_{k}=\frac{\left\|r_{k}\right\|^{2}}{\left\|r_{k-1}\right\|^{2}}
\end{gathered}
$$

Nonlinear conjugate gradient method

(1) Choose an initial guess σ_{0}, and set $k=0$.
(2) Find the solution $u\left(x, t ; \sigma_{0}\right)$ of the direct problem and the solution of the adjoint problem $\psi_{0}(x, t)$. Then compute $\quad r_{0}=-J_{\alpha}^{\prime}\left(\sigma_{0}\right), \quad d_{0}=r_{0}$.
(0) Line search $\gamma_{0}=\operatorname{argmin}_{\gamma \geq 0} J_{\alpha}\left(\sigma_{0}+\gamma d_{0}\right)$.
(-) $\sigma_{1}=\sigma_{0}+\gamma_{0} d_{0}$
($k=1$: Find $u\left(x, t ; \sigma_{k}\right)$ and $\psi_{k}(x, t)$, then compute

$$
\begin{gathered}
J_{\alpha}^{\prime}\left(\sigma_{k}\right)=\int_{0}^{T} u\left(x, t ; \sigma_{k}\right) \psi_{k}(x, t) d t+\alpha \sigma_{k} \\
r_{k}=-J_{\alpha}^{\prime}\left(\sigma_{k}\right), \quad d_{k}=r_{k}+\beta_{k} d_{k-1} \quad \text { where } \quad \beta_{k}=\frac{\left\|r_{k}\right\|^{2}}{\left\|r_{k-1}\right\|^{2}}
\end{gathered}
$$

(c) Line search $\gamma_{k}=\operatorname{argmin}_{\gamma \geq 0} J_{\alpha}\left(\sigma_{0}+\gamma d_{k}\right)$.

Nonlinear conjugate gradient method

(1) Choose an initial guess σ_{0}, and set $k=0$.
(2) Find the solution $u\left(x, t ; \sigma_{0}\right)$ of the direct problem and the solution of the adjoint problem $\psi_{0}(x, t)$. Then compute $\quad r_{0}=-J_{\alpha}^{\prime}\left(\sigma_{0}\right), \quad d_{0}=r_{0}$.
(0) Line search $\gamma_{0}=\operatorname{argmin}_{\gamma \geq 0} J_{\alpha}\left(\sigma_{0}+\gamma d_{0}\right)$.

- $\sigma_{1}=\sigma_{0}+\gamma_{0} d_{0}$
(0) $k=1$: Find $u\left(x, t ; \sigma_{k}\right)$ and $\psi_{k}(x, t)$, then compute

$$
\begin{gathered}
J_{\alpha}^{\prime}\left(\sigma_{k}\right)=\int_{0}^{T} u\left(x, t ; \sigma_{k}\right) \psi_{k}(x, t) d t+\alpha \sigma_{k} \\
r_{k}=-J_{\alpha}^{\prime}\left(\sigma_{k}\right), \quad d_{k}=r_{k}+\beta_{k} d_{k-1} \quad \text { where } \quad \beta_{k}=\frac{\left\|r_{k}\right\|^{2}}{\left\|r_{k-1}\right\|^{2}}
\end{gathered}
$$

(0) Line search $\gamma_{k}=\operatorname{argmin}_{\gamma \geq 0} J_{\alpha}\left(\sigma_{0}+\gamma d_{k}\right)$.
(-) Update $\sigma_{k+1}=\sigma_{k}+\gamma_{k} d_{k}$.

Outline

(1) Optimal control problems

(2) Inverse problems

(3) Numerical experiments

Numerical experiments

Numerical results for the inverse problem I
Let $\Omega=(0,1) \times(0,1), T=1$. For the temperature we take the exact solution be given by

$$
u(x, t)=x_{1}^{3}+x_{2}^{3}+2 x_{1}^{2} x_{2} \sin t+1,
$$

and then

$$
a(x)=x_{1}^{3}+x_{2}^{3}+1, \quad g(x, t)=2 x_{1}^{2} x_{2} \cos t-6 x_{1}-6 x_{2}-4 x_{2} \sin t .
$$

Prescribing σ, we can take b given by

$$
b(\xi, t):=\frac{\partial u}{\partial n}+\sigma u, \quad(\xi, t) \in \Sigma
$$

Numerical experiments

We test the following examples
Example $1 \quad \sigma(\xi)=\xi_{1}+\xi_{2}$.
Example $2 \sigma(\xi)=\left\{\begin{array}{lll}-\left|\xi_{1}-\frac{1}{2}\right|+\frac{1}{2} & \text { if } & \xi_{2} \in\{0,1\}, \xi_{1} \in(0,1), \\ -\left|\xi_{2}-\frac{1}{2}\right|+\frac{1}{2} & \text { if } & \xi_{1} \in\{0,1\}, \xi_{2} \in(0,1),\end{array}\right.$.
Example $3 \sigma(\xi)= \begin{cases}2 & \text { if } \xi_{2}=0 \text { or } \xi_{2}=1, \\ 1 & \text { otherwise }\end{cases}$

Numerical experiments

We test the following examples
Example $1 \quad \sigma(\xi)=\xi_{1}+\xi_{2}$.
Example $2 \sigma(\xi)=\left\{\begin{array}{lll}-\left|\xi_{1}-\frac{1}{2}\right|+\frac{1}{2} & \text { if } & \xi_{2} \in\{0,1\}, \xi_{1} \in(0,1), \\ -\left|\xi_{2}-\frac{1}{2}\right|+\frac{1}{2} & \text { if } & \xi_{1} \in\{0,1\}, \xi_{2} \in(0,1),\end{array}\right.$.
Example $3 \sigma(\xi)= \begin{cases}2 & \text { if } \xi_{2}=0 \text { or } \xi_{2}=1, \\ 1 & \text { otherwise }\end{cases}$
Boundary elements discretization: Take $M=128$ boundary elements and $N=64$ time steps.

Numerical experiments

Example 1 Integral observation

Numerical experiments

Example 2 Integral observation

Numerical experiments

Example 3 Integral observation

Numerical experiments

The results of the examples 1-3

Example	ϵ	n^{*}	$\left\\|\sigma-\sigma_{h}\right\\|_{L^{2}(\Gamma)}$	$J_{0}\left(\sigma_{h}\right)$
1	10^{-3}	36	0.0274	$4.2 \mathrm{E}-6$
1	10^{-2}	27	0.0487	$9.5 \mathrm{E}-5$
1	10^{-1}	8	0.1917	$7.8 \mathrm{E}-3$
2	10^{-3}	58	0.0270	$8.3 \mathrm{E}-6$
2	10^{-2}	34	0.0627	$1.5 \mathrm{E}-4$
2	10^{-1}	16	0.2774	$8.2 \mathrm{E}-3$
3	10^{-3}	40	0.2487	$7.4 \mathrm{E}-5$
3	10^{-2}	14	0.3905	$9.8 \mathrm{E}-4$
3	10^{-1}	12	0.4243	$5.4 \mathrm{E}-3$

Table: The stopping iteration numbers n^{*}, the errors $\left\|\sigma-\sigma_{h}\right\|_{L^{2}(\Gamma)}$ and the values of $J_{0}\left(\sigma_{h}\right)$ for examples 1-3 of the inverse problem I with the integral observation with $\omega(t)=t^{2}+1$, perturbed by $\epsilon \in\left\{10^{-3}, 10^{-2}, 10^{-1}\right\}$ noise.

Numerical experiments

Example 1 Point-integral observation

Numerical experiments

Example 2 Point-integral observation

Numerical experiments

Example 3 Point-integral observation

The inverse problem II

Example 4 Point-integral observation

Nonlinear heat transfer laws

Consider the inverse problem of determining the function $g(\cdot, \cdot)$

$$
\begin{align*}
u_{t}-\Delta u=0 & \text { in } Q, \tag{8}\\
u(x, 0)=u_{0}(x) & \text { in } \Omega, \tag{9}\\
\frac{\partial u}{\partial n}=g(u, f) & \text { on } \Sigma \tag{10}
\end{align*}
$$

and

1) $\left.u\right|_{\Sigma_{0}}=h(\xi, t), \quad(\xi, t) \in \Sigma_{0}$ (Boundary observations),
2) $\int_{\Gamma} \omega(\xi) u(\xi, t) d \xi=h(t), \quad t \in(0, T]$ (Boundary integral observations).

Nonlinear heat transfer laws

Consider the inverse problem of determining the function $g(\cdot, \cdot)$

$$
\begin{align*}
u_{t}-\Delta u=0 & \text { in } Q \tag{8}\\
u(x, 0)=u_{0}(x) & \text { in } \Omega \tag{9}\\
\frac{\partial u}{\partial n}=g(u, f) & \text { on } \Sigma \tag{10}
\end{align*}
$$

and

1) $\left.u\right|_{\Sigma_{0}}=h(\xi, t), \quad(\xi, t) \in \Sigma_{0}$ (Boundary observations),
2) $\int_{\Gamma} \omega(\xi) u(\xi, t) d \xi=h(t), \quad t \in(0, T]$ (Boundary integral observations).

Example

Nonlinear heat transfer laws

Consider the inverse problem of determining the function $g(\cdot, \cdot)$

$$
\begin{align*}
u_{t}-\Delta u=0 & \text { in } Q \tag{8}\\
u(x, 0)=u_{0}(x) & \text { in } \Omega \tag{9}\\
\frac{\partial u}{\partial n}=g(u, f) & \text { on } \Sigma \tag{10}
\end{align*}
$$

and

1) $\left.u\right|_{\Sigma_{0}}=h(\xi, t), \quad(\xi, t) \in \Sigma_{0}$ (Boundary observations),
2) $\int_{\Gamma} \omega(\xi) u(\xi, t) d \xi=h(t), \quad t \in(0, T]$ (Boundary integral observations).

Example

1) $g(u, f)=c(f-u)$ Linear boundary condition - Robin boundary condition.

Nonlinear heat transfer laws

Consider the inverse problem of determining the function $g(\cdot, \cdot)$

$$
\begin{align*}
u_{t}-\Delta u=0 & \text { in } Q \tag{8}\\
u(x, 0)=u_{0}(x) & \text { in } \Omega \tag{9}\\
\frac{\partial u}{\partial n}=g(u, f) & \text { on } \Sigma \tag{10}
\end{align*}
$$

and

1) $\left.u\right|_{\Sigma_{0}}=h(\xi, t), \quad(\xi, t) \in \Sigma_{0}$ (Boundary observations),
2) $\int_{\Gamma} \omega(\xi) u(\xi, t) d \xi=h(t), \quad t \in(0, T]$ (Boundary integral observations).

Example

1) $g(u, f)=c(f-u)$ Linear boundary condition - Robin boundary condition.
2) $g(u, f)=f^{4}-u^{4}$ Stefan-Boltzmann radiation condition.

Numerical results

Linear case

Figure: The exact linear function $g(u)=-u$ in comparison with the numerical solutions for $\delta=0.001$ noise (left) and for $\delta=0.01$ noise (right).

Numerical results

Nonlinear case

Figure: The exact nonlinear function $g(u)=-u^{4}$ in comparison with the numerical solutions for $\delta=0.001$ noise (left) and for $\delta=0.01$ noise (right).

References

Dinh Nho Hao, Phan Xuan Thanh and Daniel Lesnic, Determination of the heat transfer coefficient in transient heat conduction, Inverse Problems, 29(2013) 095020, 21pp.

Dinh Nho Hao, Bui Viet Huong, Phan Xuan Thanh and Daniel Lesnic, Identification of nonlinear heat transfer laws from boundary observations, Applicable Analysis (DOI: 10.1080/00036811.2014.948425).

Thanks for your attention!

