MI1114E CALCULUS 1

Version: 2023.1.0

Objective: This is the first course in calculus and analytic geometry. It covers basic notions of functions given in Cartesian coordinate system as well as in Polar coordinate system including techniques of curve sketching, basic techniques of differentiation and integration with variety applications, and partial derivatives and applications in the domain of functions of several variables.

Contents: Limits and continuity. Derivatives and differentials of functions of single variable and multi-variables, integrals of functions of single variable.

1. GENERAL INFORMATION

Course title:	Calculus 1
Course ID:	MI1114E
Course Units:	3(2-2-0-6)
	Lecture: 30 hoursSeminars: 30 hours
Previous module:	-
Prerequisites:	-
Companion module:	None

2. DESCRIPTION

An introduction to the basic ideas and techniques of differential and integral calculus. Topics include differentiation and integration of functions of one variable, differentiation of functions of several variables, partial derivatives, Lagrange's multipliers.

3. OBJECTIVES AND EXPECTED OUTCOMES

Students who complete this module have the abilities to:

Objectives	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)
[1]	[2]	[3]
M1	Master the basic knowledge of calculus 1 and apply in practice to solve related exercises	
M1.1	Master the basic concepts of analysis 1 such as: limit of sequences, limit of functions, continuous functions, higher order derivatives and differentials, extremals of single- variable functions and multi-variable functions; antiderivative and integral of single-variable functions	I/T
M1.2	Be able to apply the knowledge to solve exercises	T/U
M2	Achieve serious attitude and necessary skills for highly effective work	
M2.1	Be skilled at analyzing and solving problems with strong logical thinking; working independently and staying focused	T/U

Objectives	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)
M2.2	Identify some practical problems that can be solved by using tools of calculus	I/T/U
M2.3	Gain serious working attitude, proactive creativity, adaptation to highly competitive working environment	I/T

4. COURSE MATERIALS

Textbooks

- [1] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2015). *Toán học cao cấp tập 2: Giải tích*. NXB Giáo dục.
- [2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2017). Bài tập Toán học cao cấp tập 2: Giải tích. NXB Giáo dục.
- [3] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh (2000). Bài tập Toán học cao cấp tập II. NXB Giáo dục.
- [4] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh (2000). Bài tập Toán học cao cấp tập III. NXB Giáo dục.

References

- [1] Trần Bình (1998). *Giải tích I: Phép tính vi phân và tích phân của hàm một biến*. NXB Khoa học và kỹ thuật, Hà Nội.
- [2] Trần Bình (2005). *Giải tích II và III: Phép tính vi phân và tích phân của hàm nhiều biến*. NXB Khoa học và kỹ thuật, Hà Nội.
- [3] Trần Bình (2001). Hướng dẫn giải bài tập toán học, tập 1. NXB Đại học quốc gia Hà Nội.
- [4] Trần Bình (2001). Bài tập giải sẵn giải tích II. NXB Khoa học và kỹ thuật, Hà Nội.

Components	Evaluation method	Description	CĐR được đánh giá	Proportion
[1]	[2]	[3]	[4]	[5]
A1. Attendance point	A1.1. Learning attitude	Attendance check		20%
A2. Mid-term test	A2.1. 1-st Mid-term test (MTT1) (Content: weeks 1- 5)	Multiple- choice test	M1.1, M1.2, M2.1, M2.2, M2.3	30%
(*)	A2.2. 2-nd Mid-term test (MTT2) (Content: weeks 6- 10)			
A3. Final exam	Final exam	Quizzes/Essay	M1.1, M1.2, M2.1, M2.2, M2.3	50%

5. ASSESSMENT

(*) The Mid-term test point (=1/3(MTT1+MTT2)) is adjusted by adding points for the performance of students during the course. These points vary from -1 to +1 according to the Regulations of Higher Education of Hanoi University of Science and Technology.

6. COURSE PLAN

Week	Topics	Objective	Activities	Test/Exam
[1]	[2]	[3]	[4]	[5]
1	Chapter 1: Differentiation of functions of single variable	M1.1 M1.2	Lecturer: - Self-introduce	A2.1, A3
	1.2. Functions: definition, basic notions, composite functions, inverse functions	M2.1 M2.3	- Introduce the course outline	
	1.3. Essential functions: inverse trigonometric functions; hyperbolic functions; the concept of elementary functions1.4. Number sequences: definition, basic		- Explain teaching and learning methods; and forms of subject	
	notions. Limits law: squeeze theorem; monotone convergence theorem; Cauchy's criterion		assessment - Lecture, exchange questions and answers with students during the lecture	
			Student:	
			- Read in advance the next lesson	
			- Master the basic concepts and apply to solve exercises according to the content and progress of the subject	
2	 1.5. Limit of functions: two equivalent definitions; algebraic limit theorems and properties. Limits of composite functions; one-sided limits; limits at infinity; infinite limits 1.6. Infinites and infinitesimals; comparison of infinites and infinitesimals; theorems 1.7. Continuity; one-sided continuity; uniform continuity and properties. Points of discontinuity: definition and 		Lecturer: - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next	A2.1, A3
	classification. Piecewise continuity		lesson	
3	 1.8. Derivatives and differentials Basic concepts One-sided derivatives, relationship between derivative and one-sided derivatives, relationship between differentiability and continuity Derivatives of composite functions 		- Master the basic concepts and apply to solve exercises as well as some practical models connected with	A2.1, A3

Week	Topics	Objective	Activities	Test/Exam	
[1]	[2]	[3]	[4]	[5]	
	Derivatives of inverse functions - Differentials: definition, geometric interpretation, approximation by differentials. Relationship between functions having derivatives and differentiable. Differentials of composite functions and invariance property of first order differentials		the subject		
4	 Higher order derivatives and differentials 1.9. Mean value theorems and applications 			A2.1, A3	
	- Fermat's, Rolle's, Lagrange's and Cauchy's theorems				
5	 Taylor and Maclaurin expansions L'Hospital's rules for eliminating indeterminate forms, application of finite expansion in finding limits Monotone functions and properties Convex functions Local extrema: Local minimum, local maximum 			A2.1, A3	
6	1.10. Curves sketching	M1.1 M1.2 M2.1 M2.2 M2.3		A2.2, A3	
7	Chapter 2: Integration of functions of single variable 2.1. Antiderivatives - Basic concepts - Integration of rational functions	M1.1 M1.2 M2.1 M2.3		A2.2, A3	
8	 Trigonometric integrals; Integration of irrational functions. Simple examples of Euler substitutions 2.2. Definite Integrals Definition, geometric and mechanical interpretations 	M1.1 M1.2 M2.1 M2.2 M2.3		A2.2, A3	
9	Mid-term break				
10	 Criteria for integrability. Properties of definite integrals Differentiation with respect to endpoints, Newton-Leibniz formula Techniques of Integration 	M1.1 M1.2 M2.1 M2.3	Lecturer: - Lecture, exchange questions and answers with	A2.2, A3	
11	2.4. Applications of definite integrals- Integration summation diagram and		students during the lecture	A3	

Week	Topics	Objective	Activities	Test/Exam
[1]	[2]	[3]	[4]	[5]
	differentiation diagram - Areas of plane regions, solids of revolution; volume of solids, arc length		Student: - Read in	
12	 Chapter 3: Functions of Several Variables 3.1 Basic concepts Domain, distance, neighborhood, boundary, closed and open sets, bounded sets Definition of functions of multivariable, geometric interpretation, domain of definition, range Pointwise limit of functions of multivariable, algebraic limit theorems 	M1.1 M1.2 M2.1 M2.2 M2.3	advance the next lesson - Master the basic concepts and apply to solve exercises as well as some practical models connected with the subject	A3
13	 Continuity: definition, operations, properties, uniform continuity 3.2. Partial derivatives and total differentials Partial derivatives: definition, rules for calculation Total differential: definition, relationship between functions having partial derivatives and differentiable functions, approximation by differentials 	M1.1 M1.2 M2.1 M2.3		A3
14	 Implicit functions: definition, existence theorems and methods for implicit differentiation Higher partial derivatives and differentials: definition, Schwarz' theorem on equality of mixed partials, non-invariance property of higher differentials 			A3
15	 Taylor expansion 3.3. Extrema of functions of multivariables Definition Rules for finding extrema 	M1.1 M1.2 M2.1 M2.2 M2.3		A3
16	 Constrained extrema Maxima and minima Summary 			A3

7. RULES OF THE MODULE

8. DATE OF APPROVAL:

School of Applied Mathematics and Informatics