EXERCISES ON ALGEBRA
 Advanced Program
 Code: MI 1036

1) Midterm exam (proportion 0.3), writing, 60 minutes.

Contents: Chapter 1 to Chapter 3 (Section 3.5, determinants of matrices)
2) Final exam (proportion 0.7), writing, 90 minutes.

Chương 1

Sets, Maps, and Complex Numbers

1.1. Sets and set operations

Exercise 1. Let

$$
A=\left\{x \in \mathbb{R} \mid x^{2}-4 x+3 \leq 0\right\}, B=\{x \in \mathbb{R}| | x-1 \mid \leq 1\}, C=\left\{x \in \mathbb{R} \mid x^{2}-5 x+6 \leq 0\right\}
$$

Compute $(A \cup B) \cap C,(A \cup B) \backslash C$ and $(A \cap B) \cup C$.
Exercise 2. Let A, B, C, D be arbitrary sets. Prove that
a) $A \cap(B \backslash C)=(A \cap B) \backslash(A \cap C)$.
b) $A \cup(B \backslash A)=A \cup B$.
c) $(A \backslash B) \backslash C=A \backslash(B \cup C)$.
d) $A \backslash(A \backslash B)=A \cap B$.
e) $(A \backslash B) \cup(B \backslash A)=(A \cup B) \backslash(A \cap B)$.
f) $(A \backslash B) \cap(C \backslash D)=(A \cap C) \backslash(B \cup D)$.
g) $(A \cup B) \times C=(A \times C) \cup(B \times C)$.
h) $(A \cap B) \times C=(A \times C) \cap(B \times C)$.
i) Is it true that $(A \cup B) \times(C \cup D)=(A \times C) \cup(B \times D)$. If not, give a counterexample.
j) If $(A \cap C) \subset(A \cap B)$ and $(A \cup C) \subset(A \cup B)$, then $C \subset B$.

1.2. Mappings

Exercise 3. Let $f: X \rightarrow Y$ be a map. Prove that
a) $f(A \cup B)=f(A) \cup f(B), \forall A, B \subset X$
b) $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B), \forall A, B \subset Y$
c) $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B), \forall A, B \subset Y$
d) $f^{-1}(A \backslash B)=f^{-1}(A) \backslash f^{-1}(B), \forall A, B \subset Y$
e) $A \subset f^{-1}(f(A)), \forall A \subset X$,
f) $B \supset f\left(f^{-1}(B)\right), \forall B \subset Y$.
g) $f(A \cap B) \subset f(A) \cap f(B), \forall A, B \subset X$. Give an example to show that $f(A \cap B) \neq$ $f(A) \cap f(B)$.

Exercise 4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=(2 x, 2 y)$ and $A=\left\{(x, y) \in \mathbb{R}^{2} \mid(x-4)^{2}+y^{2}=4\right\}$. Find $f(A), f^{-1}(A)$.

Exercise 5. Which of the following maps are injective, surjective, bijective?
a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=3-2 x$,
b) $f:(-\infty, 0] \rightarrow[4,+\infty), f(x)=x^{2}+4$,
c) $f:(1,+\infty) \rightarrow(-1,+\infty), f(x)=x^{2}-$
d) $f: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R} \backslash\{3\}, f(x)=\frac{3 x+1}{x-1}$,
e) $f:[4,9] \rightarrow[21,96], f(x)=x^{2}+2 x-3$,
f) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=3 x-2|x|$,
g) $f:(-1,1) \rightarrow \mathbb{R}, f(x)=\ln \frac{1+x}{1-x}$,
h) $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, f(x)=\frac{1}{x}$,

Exercise 6. Let X, Y, Z be sets and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps. Prove that
a) If f and g are injective, then $g \circ f$ is injective.
b) If f and g are surjective, then $g \circ f$ is surjective.
c) If f and g are bijective, then $g \circ f$ is bijective.
d) If f is surjective and $g \circ f$ is injective, then g is injective.
e) Give an example to show that $g \circ f$ is injective, but g is not injective.
f) If g is is injective and $g \circ f$ is surjective, then f is surjective.
g) Give an example to show that $g \circ f$ is surjective but f is not surjective.

1.3. Algebraic structures

Exercise 7. Determine which of the following binary operations are associative:
(a) the operation $*$ on \mathbb{R} defined by: $a * b=a+b+a b$
(b) the operation $*$ on \mathbb{Z} defined by: $a * b=a-b$
(c) the operation $*$ on $\mathbb{Z} \times \mathbb{Z}$ defined by: $(a, b) *(c, d)=(a d+b c, b d)$

Exercise 8. Decide which of the binary operations in the preceding exercise are commutative.
Exercise 9. Determine which of the following sets are groups under addition:
a) the set of rational numbers of absolute value <1
b) the set of rational numbers with denominators equal to 1 or 2
c) the set of rational numbers with denominators equal to 1,2 or 3 .

Exercise 10. Consider the set $\mathbb{Z}_{5}=\{0,1,2,3,4\}$ with the following binary operation $*$ defined as: for $a, b \in \mathbb{Z}_{5}, a * b=(a+b) \bmod 5$ (the remainder of $(a+b)$ divided by 5). For example $2 * 4=1$. Show that \mathbb{Z}_{5} is a group under this operation $*$.

Exercise 11. Which set of the following sets is a ring? a field?
(a) $X=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$
(b) $Y=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$
where the addition and multiplication are the common addition and multiplication

$$
\begin{aligned}
(a+b \sqrt{2})+(c+d \sqrt{2}) & =(a+c)+(b+d) \sqrt{2} \\
(a+b \sqrt{2})(c+d \sqrt{2}) & =(a c+2 b d)+(a d+b c) \sqrt{2}
\end{aligned}
$$

1.4. Complex numbers

Exercise 12. Find the canonical forms of the following complex numbers.
a) $(1+i \sqrt{3})^{9}$,
b) $\frac{(1+i)^{21}}{(1-i)^{13}}$,
c) $(2+i \sqrt{12})^{5}(\sqrt{3}-i)^{11}$.

Exercise 13. Find all 8th roots of $1-i \sqrt{3}$.
Exercise 14. Suppose $(3+4 i)^{10}=a+b i$, with $a, b \in \mathbb{R}$. Find $a^{2}+b^{2}$.
Exercise 15. Solve the following equations in the field of complex numbers.
a) $z^{2}+z+1=0$,
b) $z^{2}+2 i z-5=0$,
c) $z^{4}-3 i z^{2}+4=0$,
d) $z^{6}-7 z^{3}-8=0$,
e) $\frac{(z+i)^{4}}{(z-i)^{4}}=1$,
f) $z^{8}(\sqrt{3}+i)=1-i$,
g) $\overline{z^{7}}=\frac{1}{z^{3}}$,
h) $z^{4}=z+\bar{z}$.

Exercise 16. Let $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=z^{4}+1$. Find $f^{-1}(\{i\})$.
Exercise 17. Suppose $2+i$ is a root of a polynomial $p(x)=x^{3}-2 x^{2}-3 x+a$. Find a.

Exercise 18. Suppose $1+2 i$ is a root of a real polynomial $p(x)=x^{3}-a x^{2}+b x-(2 a+2)$.
Find a, b.
Exercise 19. Let $\epsilon=\cos \left(\frac{2 \pi}{7}\right)+i \sin \left(\frac{2 \pi}{7}\right)$. Show that
(a) $\epsilon+\epsilon^{2}+\epsilon^{3}+\epsilon^{4}+\epsilon^{5}+\epsilon^{6}=-1$;
(b) $\epsilon+\epsilon^{2}-\epsilon^{3}+\epsilon^{4}-\epsilon^{5}-\epsilon^{6}=i \sqrt{7}$;

Exercise 20. Let $\epsilon=\cos \left(\frac{2 \pi}{15}\right)+i \sin \left(\frac{2 \pi}{15}\right)$. Show that

$$
\epsilon+\epsilon^{2}+\epsilon^{4}+\epsilon^{7}+\epsilon^{8}+\epsilon^{11}+\epsilon^{13}+\epsilon^{14}=1 .
$$

Chương 2

Matrices, System of Linear Equations

2.1-2.2. Matrix operations

Exercise 21. Let $A=\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & 1 & -1 \\ 0 & 3 & -2\end{array}\right], B=\left[\begin{array}{ccc}2 & 1 & 1 \\ -2 & 3 & 0 \\ 1 & 2 & 4\end{array}\right], C=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 3 & 4 & 1 \\ 2 & 0 & 2\end{array}\right]$. Compute $A+B C, A^{T} B-C, A(B C),(A+3 B)(B-C)$.

Exercise 22. Let $A=\left[\begin{array}{cc}1 & 3 \\ -1 & 2\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right]$.
a) Compute $F=A^{2}-3 A$,
b) Find the matrix X satisfying $\left(A^{2}+5 I\right) X=B^{T}\left(3 A-A^{2}\right)$.

Exercise 23. Find the matrix X such that:
a) $\left[\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right]+2 X=\left[\begin{array}{cc}1 & -2 \\ 5 & 7\end{array}\right]$.
b) $\frac{1}{2} X-\left[\begin{array}{lll}1 & -3 & 2 \\ 3 & -4 & 1 \\ 2 & -5 & 3\end{array}\right]\left[\begin{array}{lll}2 & 5 & 6 \\ 1 & 2 & 5 \\ 1 & 3 & 2\end{array}\right]=\left[\begin{array}{ccc}0 & -6 & 6 \\ -2 & -9 & 2 \\ -4 & -8 & 6\end{array}\right]$.

Exercise 24. Find a real 2×2 matrix $A \neq 0$ such that: a) $A^{2}=0$,
b) $A^{2}=-I_{2}$.

Exercise 25. Find two real 2×2 matrices A and B such that $(A+B)^{2} \neq A^{2}+2 A B+B^{2}$.
Exercise 26. Use the given definition to find $f(A)$: If $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$, then for an $n \times n$ matrix $A, f(A)$ is defined to be $f(A)=a_{0} I_{n}+a_{1} A+a_{2} A^{2}+\cdots+a_{d} A^{d}$.
a) $f(x)=x^{2}-5 x+2, A=\left[\begin{array}{cc}1 & 2 \\ 2 & -3\end{array}\right]$;
b) $f(x)=x^{2}-7 x+6, A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$;
c) $f(x)=x^{3}-2 x^{2}+5 x-10, A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 0 & 2 \\ -1 & 1 & 3\end{array}\right]$.

Exercise 27. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Prove that $A^{2}-(a+d) A+(a d-b c) I_{2}=O_{2}$.
Exercise 28. Let $A=\left[\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right]$. Check that $A^{2}-4 A-5 I_{2}=O_{2}$, and compute $A^{n}(n \in \mathbb{N})$.
Exercise 29. Compute A^{n}, where: a) $A=\left[\begin{array}{cc}\cos a & -\sin a \\ \sin a & \cos a\end{array}\right]$, b) $A=\left[\begin{array}{lll}a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a\end{array}\right]$.
Exercise 30. Let A be a square matrix. Show that
a) $A A^{T}, A^{T} A$ and $A+A^{T}$ are symmetric matrices.
b) $A-A^{T}$ is a skew-symmetric matrix.

Exercise 31. Let $A \in M_{n}(\mathbb{R})$ be a matrix such that $A A^{T}=O_{n}$. Show that $A=O_{n}$.
Exercise 32. Let $A, B \in M_{n}(\mathbb{R})$ be two matrices such that $A A^{T}+B B^{T}=A B^{T}+B A^{T}$. Show that $A=B$.

2.3. Linear systems of equations

Exercise 33. Solve the following systems of linear equations
a) $\begin{cases}x_{1}-2 x_{2}+x_{3} & =4 \\ 2 x_{1}+x_{2}-x_{3} & =0 \\ -x_{1}+x_{2}+x_{3} & =-1\end{cases}$
b) $\begin{cases}x_{1}-2 x_{2}+x_{3} & =4 \\ 2 x_{1}+x_{2}-x_{3} & =0 \\ -x_{1}-3 x_{2}+2 x_{3} & =4\end{cases}$
c) $\begin{cases}3 x_{1}-5 x_{2}+2 x_{3}+4 x_{4} & =2 \\ 7 x_{1}-4 x_{2}+x_{3}+3 x_{4} & =5 \\ 5 x_{1}+7 x_{2}-4 x_{3}-6 x_{4} & =3\end{cases}$
d) $\begin{cases}3 x_{1}-x_{2}+3 x_{3} & =1 \\ -4 x_{1}+2 x_{2}+x_{3} & =3 \\ -2 x_{1}+x_{2}+4 x_{3} & =4 \\ 10 x_{1}-5 x_{2}-6 x_{3} & =-10\end{cases}$

Exercise 34. For which values of a will the following system have no solutions? Exactly one solution? Infinitely many solutions?

$$
\begin{cases}x+2 y-3 z & =4 \\ 3 x-y+5 z & =2 \\ 4 x+y+\left(a^{2}-14\right) z & =a+2 .\end{cases}
$$

Chương 3

Vector spaces, rank and inverse of a matrix

3.1. Vector spaces and subspaces

Exercise 35. Determine whether V is a vector space?
a) $V=\{(x, y, z) \mid x, y, z \in \mathbb{R}\}$, the operations are defined as

$$
(x, y, z)+\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right) ; \quad k(x, y, z)=(|k| x,|k| y,|k| z)(k \in \mathbb{R}) .
$$

b) $V=\left\{x=\left(x_{1}, x_{2}\right) \mid x_{1}>0, x_{2}>0\right\} \subset \mathbb{R}^{2}$, the operations are defined as

$$
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1} y_{1}, x_{2} y_{2}\right) ; \quad k\left(x_{1}, x_{2}\right)=\left(x_{1}^{k}, x_{2}^{k}\right), \quad k \in \mathbb{R} .
$$

Exercise 36. For each of the following subsets of \mathbb{R}^{3}, determine whether it is a subspace of \mathbb{R}^{3} :
(a) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+2 x_{2}+x_{3}=0\right\}$;
(d) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1} x_{2} x_{3}=0\right\}$;
(b) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+2 x_{2}+x_{3}=1\right\}$;
(c) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+2 x_{2}+x_{3}>0\right\} ;$
(e) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=3 x_{3}\right\}$.

Exercise 37. Let V_{1}, V_{2} be linear subspaces of V and $V_{1}+V_{2}:=\left\{x_{1}+x_{2} \mid x_{1} \in V_{1}, x_{2} \in V_{2}\right\}$. Prove that:
a) $V_{1} \cap V_{2}$ is a linear subspace of V.
b) $V_{1}+V_{2}$ is a linear subspace of V.

Exercise 38. Let V_{1}, V_{2} be subspaces of V. Assume that
i) $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ be a set of generators (a generating set) of V_{1}, and
ii) $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ be a set of generators of V_{2}.

Prove that $\left\{v_{1}, \cdots, v_{m}, u_{1}, u_{2}, \cdots, u_{n}\right\}$ is a set of generators of $V_{1}+V_{2}$.

Exercise 39. Prove that $V=V_{1} \oplus V_{2}$ 1if and only if each $v \in V$ has a unique representation

$$
v=v_{1}+v_{2},\left(v_{1} \in V_{1}, v_{2} \in V_{2}\right) .
$$

3.2. Dimension and coordinates

Exercise 40. Write v as a linear combination of u_{1}, u_{2} and u_{3} if possible, where

$$
v=(3,0,-6), u_{1}=(1,-1,2), u_{2}=(2,4,-2), u_{3}=(1,2,-4) .
$$

Exercise 41. Express the polynomial $v=t^{2}+4 t-3$ over \mathbb{R} as a linear combination of the polynomials $p_{1}=t^{2}-2 t+5, p_{2}=2 t^{2}-3 t, p_{3}=t+3$.

Exercise 42. Find a condition on a, b, c so that $w=(a, b, c)$ is a linear combination of $u=$ $(1,-3,2)$ and $v=(2,-1,1)$, that is, so that w belongs to $\operatorname{span}(u, v)$.

Exercise 43. Is the vector $(3,-1,0,-1)$ in the subspace of \mathbb{R}^{4} spanned by the vectors $(2,-1,3,2)$, $(-1,1,1,-3)$ and $(1,1,9,-5)$?

Exercise 44. Determine whether the following vectors are linearly dependent or linearly independent.
a) $(1,2,-1),(2,1,-1),(7,-4,1)$.
b) $(2,3,-1),(3,-1,5),(1,7,-7)$.

Exercise 45. Let V be the vector space of functions from \mathbb{R} to \mathbb{R}. Show that $f, g, h \in V$ are linearly indepedent, where $f(t)=\sin t, g(t)=\cos t, h(t)=t$.

Exercise 46. Let v_{1}, v_{2} and v_{3} be three linearly independent vectors in a vector space V.
a) Prove that $\left\{v_{1}-v_{2}, v_{2}-v_{3}, v_{1}+v_{2}+v_{3}\right\}$ is linearly independent.
b) Prove that $\left\{v_{1}-v_{2}, v_{2}-v_{3}, v_{1}-2 v_{2}+v_{3}\right\}$ is linearly dependent.
c) For which values of a is the set $\left\{v_{1}-v_{2}, v_{2}-v_{3}, v_{1}+a v_{2}+v_{3}\right\}$ linearly independent?

Exercise 47. Determine whether the set S is a basis of \mathbb{R}^{3}
a) $S=\{(1,2,1),(1,1,1)\}$;
b) $S=\{(1,1,7),(3,1,-3),(2,1,2)\}$;
c) $S=\{(1,0,-1),(1,2,1),(0,-3,2)\}$.

Exercise 48. Determine whether the set S in $\mathcal{P}_{2}[x]$ is a basis. (Here $\mathcal{P}_{2}[x]$ is the vector space of polynomials in x with real coefficients of degree ≤ 2.)
a) $S=\left\{1+x, 2+x+x^{2}, 3-2 x+x^{2}\right\}$;
b) $S=\left\{x^{2}+3 x-2,2 x^{2}+5 x-3,-x^{2}-4 x+3\right\}$.

[^0]Exercise 49. Find a basis and the dimension of subspace W of \mathbb{R}^{3}.
a) $W=\{(a, a+b, a-2 b) \mid a, b \in \mathbb{R}\}$;
b) $W=\{(x, y, z) \mid x+y+z=0\}$;
c) $W=\{(x, y, z) \mid x-2 y+z=0$ and $2 x-3 y+z=0\}$.

Exercise 50. Let W be a subspace of \mathbb{R}^{4} spanned by the vectors

$$
u_{1}=(1,-2,5,-3), u_{2}=(2,3,1,-4), u_{3}=(3,8,-3,-5)
$$

a) Find a basis and the dimension of W.
b) Extend the basis of W found in part a) to a basis of the whole space \mathbb{R}^{4}.

Exercise 51. Find the coordinate vector of x relative to (with respective to) the basis B of \mathbb{R}^{m} :
a) $B=\{(1,1),(0,-2)\}, x=(2,-1)$.
b) $B=\{(1,0,0),(0,1,0),(1,1,1)\}, x=(4,-2,9)$.
c) $B=\{(1,2,3),(1,2,0),(0,-6,2)\}, x=(3,-3,0)$.

Exercise 52. Find the coordinate vector of x relative to the basis B^{\prime}, where

$$
B=\{(1,1),(1,-1)\}, B^{\prime}=\{(0,1),(1,2)\}, \quad[x]_{B}=\left[\begin{array}{c}
3 \\
-3
\end{array}\right] .
$$

Exercise 53. Find the coordinates of $p(x)=6-7 x+x^{2}$ relative to the basis S of $\mathcal{P}_{2}[x]$, where

$$
S=\left\{1+x, 2+x+x^{2}, 3-2 x+x^{2}\right\}
$$

Exercise 54. Consider the subspaces $U=\operatorname{span}\left(u_{1}, u_{2}, u_{3}\right)$ and $W=\operatorname{span}\left(w_{1}, w_{2}, w_{3}\right)$ of \mathbb{R}^{3} where
$u_{1}=(1,1,-1), u_{2}=(2,3,-1), u_{3}=(3,1,-5), w_{1}=(1,-1,-3), w_{2}=(3,-2,-8), w_{3}=(2,1,-3)$.
Show that $U=W$.
Exercise 55. Let $v_{1}=1, v_{2}=1+x, v_{3}=x+x^{2}, v_{4}=x^{2}+x^{3}$ be vectors on $P_{3}[x]$.
a) Prove that $B=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis of $P_{3}[x]$.
b) Find the coordinates of $v=2+3 x-x^{2}+2 x^{3}$ with respect to this basis.
c) Find the coordinates of $v=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ with respect to this basis.

Exercise 56. Let $E=\left\{1, x, x^{2}, x^{3}\right\}$ be the standard basis of $P_{3}[x]$ and $B=\left\{1,1+x,(1+x)^{2},(1+x)^{3}\right\}$.
a) Prove that B is a basis of $P_{3}[x]$.
b) Find the transformation matrices from E to B, and from B to E.
c) Find the coordinates of $v=2+2 x-x^{2}+3 x^{3}$ with respect to the basis B.

3.3. Rank

Exercise 57. Find the rank of the following family of vectors on $P_{3}[x]$:

$$
v_{1}=1+x^{2}+x^{3}, v_{2}=x-x^{2}+2 x^{3}, v_{3}=2+x+3 x^{3}, v_{4}=-1+x-x^{2}+2 x^{3} .
$$

Exercise 58. Find the rank of the following matrices
a) $A=\left[\begin{array}{cccc}1 & 3 & 5 & -1 \\ 2 & -1 & -1 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1\end{array}\right]$.
b) $B=\left[\begin{array}{ccccc}4 & 3 & -5 & 2 & 3 \\ 8 & 6 & -7 & 4 & 2 \\ 4 & 3 & -8 & 2 & 7 \\ 4 & 3 & 1 & 2 & -5 \\ 8 & 6 & -1 & 4 & -6\end{array}\right]$.

3.4. Linear systems of equations revisited

Exercise 59. Find the dimension and a basis of the solution space of the homogeneous system

$$
\left\{\begin{array}{r}
x_{1}-x_{2}+2 x_{3}+2 x_{4}-x_{5}=0 \\
x_{1}-2 x_{2}+3 x_{3}-x_{4}+5 x_{5}=0 \\
2 x_{1}+x_{2}+x_{3}+x_{4}+3 x_{5}=0 \\
3 x_{1}-x_{2}-2 x_{3}-x_{4}+x_{5}=0
\end{array}\right.
$$

3.5. The inverse and determinant of a matrix

Exercise 60. Find the inverses of the matrices
a) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$,
b) $C=\left[\begin{array}{lll}3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & 1\end{array}\right]$
c) $D=\left[\begin{array}{cccc}1 & -a & 0 & 0 \\ 0 & 1 & -a & 0 \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1\end{array}\right]$

Exercise 61. Compute the following determinants
a) $A=\left|\begin{array}{cccc}1 & 0 & 2 & -1 \\ 3 & 0 & 0 & 5 \\ 2 & 1 & 4 & -3 \\ 1 & 0 & 5 & 0\end{array}\right|$
b) $B=\left|\begin{array}{llll}a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a\end{array}\right|$
c) $C=\left|\begin{array}{cccc}1 & 1 & 2 & 3 \\ 1 & 2-x^{2} & 2 & 3 \\ 2 & 3 & 1 & 5 \\ 2 & 3 & 1 & 9-x^{2}\end{array}\right|$
d) $D=\left|\begin{array}{cccc}1+x & 1 & 1 & 1 \\ 1 & 1-x & 1 & 1 \\ 1 & 1 & 1+z & 1 \\ 1 & 1 & 1 & 1-z\end{array}\right|$.

Exercise 62. Prove that if A is a skew-symmetric (or antisymmetric) matrix of order n, where n is odd, then $\operatorname{det}(A)=0$.

Exercise 63. Let A be a square matrix of order 2017. Prove that

$$
\operatorname{det}\left(A-A^{T}\right)^{2017}=2017\left(\operatorname{det} A-\operatorname{det} A^{T}\right) .
$$

Exercise 64. Let A, B be square matrices of order 2017 satisfying $A B+B^{T} A^{T}=0$. Prove that $\operatorname{det} A=0$ or $\operatorname{det} B=0$.

Exercise 65. Let $A, B \in M_{n}(\mathbb{R})$. Suppose that $A B=B A$. Show that
a) $\operatorname{det}\left(A^{2}+B^{2}\right) \geq 0$.
b) $\operatorname{det}\left(A^{2}+A B+B^{2}\right) \geq 0$.

Exercise 66. Let $A, B \in M_{n}(\mathbb{R})$. Suppose that $A^{2}+B^{2}=O_{n}$ and $A B-B A$ is invertible. Show that n is even.

Exercise 67. Prove that if A is a real square matrix satisfying $A^{3}=A+I$, then $\operatorname{det} A>0$. (Hint: $A^{5}=A^{2}+A+I$.)

Exercise 68. Let A, B be square matrices of the same order satisfying $A B=A+B$. Prove that $A B=B A$.

Exercise 69. Let A, B be two 3×3 matrices such that $A^{2}=A B+B A$. Prove that $\operatorname{det}(A B-$ $B A)=0$. (Hint: $A B-B A=A^{2}-2 B A=A(A-2 B)$, then taking determinant both sides.)

Chương 4

Linear mappings and transformations

4.1-4.3. Linear mappings

Exercise 70. If $\alpha_{1}=(1,-1), \alpha_{2}=(2,-1), \alpha_{3}=(-3,2), \beta_{1}=(1,0), \beta_{2}=(0,1), \beta_{3}=(1,1)$, is there a linear transformation T from \mathbb{R}^{2} to \mathbb{R}^{2} such that $T\left(\alpha_{i}\right)=\beta_{i}$ for $i=1,2,3$?

Exercise 71. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear mapping for which $T(1,2)=(2,3)$ and $T(0,1)=$ $(1,4)$. Find a formula for T, that is, find $T(a, b)$ for arbitrary a and b.

Exercise 72. Suppose $b, c \in \mathbb{R}$. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $T(x, y, z)=(2 x-4 y+3 z+b, 6 x+c x y z)$ Show that T is linear if and only if $b=c=0$.

Exercise 73. Let T be the function from \mathbb{R}^{3} to \mathbb{R}^{3} defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}+2 x_{3}, 2 x_{1}+x_{2},-x_{1}-2 x_{2}+2 x_{3}\right) .
$$

a) Verify that T is a linear transformation.
b) Show that $(a, b, c) \in \operatorname{im} T$ if and only if $-a+b+c=0$.
c) Find a basis of im T.
d) Find a basis of $\operatorname{ker} T$.

Exercise 74. Find a basis for (a) $\operatorname{ker}(T)$ and (b) $\operatorname{im}(T)$, where

$$
T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}, T(x, y, z, w)=(4 x-5 y+5 z+2 w,-2 x+2 y-w,-y+5 z) .
$$

Exercise 75. Let $T: V \rightarrow U$ be linear, and suppose $v_{1}, \ldots, v_{n} \in V$ have the property that their images $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ are linearly indepedent. Show that the vectors v_{1}, \ldots, v_{n} are also linearly independent.

Exercise 76. Suppose $T: V \rightarrow U$ be an injective linear map and v_{1}, \ldots, v_{m} are linearly independent in V. Show that $T\left(v_{1}\right), \ldots, T\left(v_{m}\right)$ are linearly independent in U.

Exercise 77. Give an example of a linear map $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that $\operatorname{im} T=\operatorname{ker} T$.
Exercise 78. Prove that there does not exist a linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ such that $\operatorname{im} T=\operatorname{ker} T$.

Exercise 79. Suppose $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is a linear map such that

$$
\operatorname{ker} T=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}=5 x_{2} \text { and } x_{3}=7 x_{4}\right\}
$$

Prove that T is surjective.
Exercise 80. Prove that there does not exist a linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ such that

$$
\operatorname{ker} T=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5} \mid x_{1}=3 x_{2} \text { and } x_{3}=x_{4}=x_{5}\right\} .
$$

Exercise 81. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear map defined $f\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{2}-x_{3}, 2 x_{1}+x_{3}\right)$.
Find the matrix of f with respect to the standard bases.
Exercise 82. Find the matrix of T with respect to the bases \mathcal{B} and \mathcal{B}^{\prime}, where

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, T(x, y)=(-x, y, x+y), \mathcal{B}=\{(1,1),(1,-1)\}, \mathcal{B}^{\prime}=\{(0,1,0),(0,0,1),(1,0,0)\} .
$$

Exercise 83. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be be a function defined by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}-x_{3}, x_{1}-x_{2}+x_{3},-x_{1}+x_{2}+x_{3}\right) .
$$

Find the matrix of f with respect to the basis $B=\left\{v_{1}=(1,0,0), v_{2}=(1,1,0), v_{3}=(1,1,1)\right\}$.
Exercise 84. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(2 x, 4 x-$ $y, 2 x+2 y-z)$. (a) Show that T is invertible. Find formulas for: (b) T^{-1}, (c) T^{2}, (d) T^{-2}.

Exercise 85. Let the function $f: P_{2}[x] \rightarrow P_{4}[x]$ be a map defined as: $f(p)=p+x^{2} p, \forall p \in$ $P_{2}[x]$.
a) Prove that f is a linear map.
b) Find the matrix of f with respect to the bases $E_{1}=\left\{1, x, x^{2}\right\}$ of $P_{2}[x]$ and $E_{2}=$ $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ of $P_{4}[x]$.
c) Find the matrix of f with respect to the bases $E_{1}^{\prime}=\left\{1+x, 2 x, 1+x^{2}\right\}$ of $P_{2}[x]$ and $E_{2}=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ of $P_{4}[x]$.
Exercise 86. Suppose $A=\left[\begin{array}{ccc}1 & 3 & -1 \\ 2 & 0 & 5 \\ 6 & -2 & 4\end{array}\right]$ is the matrix of a linear transformation $f: P_{2}[x] \rightarrow$ $P_{2}[x]$ with respect to the basis $B=\left\{v_{1}, v_{2}, v_{3}\right\}$, where

$$
v_{1}=3 x+3 x^{2}, v_{2}=-1+3 x+2 x^{2}, v_{3}=3+7 x+2 x^{2} .
$$

a) Find $f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right)$.
b) Find $f\left(1+x^{2}\right)$.

Exercise 87. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Prove that

$$
\operatorname{rank}(A B) \leq \min \{\operatorname{rank} A, \operatorname{rank} B\}
$$

Exercise 88. Let A, B be $m \times n$ matrices. Prove that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$.

Chương 5

Eigenvalues and eigenvectors

5.1. Eigenvalues and eigenvectors

Exercise 89. Find the eigenvalues and a basis for each eigenspace of the following matrices:
a) $\left[\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & -2 & 4\end{array}\right]$
c) $\left[\begin{array}{ccc}0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2\end{array}\right]$
d) $\left[\begin{array}{lll}4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4\end{array}\right]$

Exercise 90. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, T(x, y, z)=(-2 x+2 y-3 z, 2 x+y-6 z,-x-2 y)$. Find all eigenvalues and a basis for each eigenspace of T.

Exercise 91. Let $f: P_{2}[x] \rightarrow P_{2}[x]$ be a linear transformation defined by

$$
f\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(5 a_{0}+6 a_{1}+2 a_{2}\right)-\left(a_{1}+8 a_{2}\right) x+\left(a_{0}-2 a_{2}\right) x^{2} .
$$

Find the eigenvalues and eigenvectors of f.

5.2-5.3. Properties of eigenvalues and eigenvectors, diagonalization

Exercise 92. Suppose $T: V \rightarrow V$ is linear with $\operatorname{rank} T=k$. Prove that T has at most $k+1$ distinct eigenvalues.

Exercise 93. Suppose $T: V \rightarrow V$ is linear and there exist a nonzero vectors v and w in V such that $T v=3 w$ and $T w=3 v$. Prove that 3 or -3 is an eigenvalue of T.

Exercise 94. Suppose that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is linear and that $-4,5, \sqrt{6}$ are eigenvalues of T. Prove that there exists $x \in \mathbb{R}^{3}$ such that $T x-7 x=(-4,5, \sqrt{6})$.

Exercise 95. Let $\lambda_{1}, \ldots, \lambda_{n}$ be a list of distinct real numbers. Prove that the list $e^{\lambda_{1} x}, \ldots, e^{\lambda_{n} x}$ is linearly independent in the vector space of real-valued functions on \mathbb{R}. [Hint: Let $V=$ $\operatorname{span}\left\{e^{\lambda_{1} x}, \ldots, e^{\lambda_{n} x}\right\}$ and define $T: V \rightarrow V$ by $\left.T f=f^{\prime}.\right]$

Exercise 96. Diagonalize the following matrices (if possible)
a) $A=\left[\begin{array}{ll}-14 & 12 \\ -20 & 17\end{array}\right]$
b) $B=\left[\begin{array}{cc}1 & 0 \\ 6 & -1\end{array}\right]$
c) $C=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
d) $D=\left[\begin{array}{ccc}2 & 1 & -2 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right]$
e) $E=\left[\begin{array}{ccc}-1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3\end{array}\right]$.

Exercise 97. Suppose that $A, B \in M_{3}(\mathbb{R})$ each have 2, 6, 7 as eigenvalues. Prove that there exists an invertible matrix $P \in M_{3}(\mathbb{R})$ such that $B=P^{-1} A P$.

Exercise 98. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined as

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}-x_{2}-x_{3}, x_{1}-x_{2}+x_{3},-x_{1}+x_{2}+2 x_{3}\right) .
$$

Diagonalize the transformation f.
Exercise 99. Find a basis of \mathbb{R}^{3} such that the matrix of $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with respect to this basis is a diagonal matrix, where

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+x_{2}+x_{3}, x_{1}+2 x_{2}+x_{3}, x_{1}+x_{2}+2 x_{3}\right) .
$$

Exercise 100. Let V be the \mathbb{R}-vector space of all polynomials $p(x) \in \mathbb{R}[x]$ with $\operatorname{deg}(p) \leq 2$.
Let $T: V \rightarrow V$ be the linear transformation given by

$$
T\left(a+b x+c x^{2}\right)=(a+3 b+3 c)+(3 a+b+3 c) x+(3 a+3 b+c) x^{2} .
$$

If possible find a basis B for V such that the matrix of T with respect to B is diagonal. (Diagonalize the transformation T.)

Exercise 101. The trace of an n-by- n square matrix A is defined to be the sum of the elements on the main diagonal,i.e., $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}=a_{11}+a_{22}+\cdots+a_{n n}$. Prove that
a) The trace is a linear mapping. That is,
i) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$,
ii) $\operatorname{tr}(c A)=c \operatorname{tr}(A)$;
b) $\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$,
c) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$,
d) $\operatorname{tr}\left(P^{-1} A P\right)=\operatorname{tr} A$.

Exercise 102. Let $A \in M_{n}(\mathbb{C})$ be an invertible matrix and $0 \neq \lambda \in \mathbb{C}$. Show that λ is an eigenvalue of A if and only if $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.
Exercise 103. Let $P(x) \in \mathbb{C}[x]$ be a polynomial and let A be a square matrix. Show that if λ is an eigenvalue of A then $P(\lambda)$ is an eigenvalue $P(A)$.

Exercise 104. Let $A \in M_{n}(\mathbb{C})$ and let $P \in \mathbb{C}[x]$ be a polynomial such that $P(A)=0$. Prove that any eigenvalue λ of A satisfies $P(\lambda)=0$.

Chương 6

Euclidean spaces, orthogonality

6.1. Inner products

Exercise 105. Verify that the following is an inner product on \mathbb{R}^{2} where $u=\left(x_{1}, x_{2}\right)$ and $v=\left(y_{1}, y_{2}\right)$:

$$
\langle u\rangle v=x_{1} y_{1}-2 x_{1} y_{2}-2 x_{2} y_{1}+5 x_{2} y_{2} .
$$

Exercise 106. Find the values of k so that the following is an inner product on \mathbb{R}^{2} where $u=\left(x_{1}, x_{2}\right)$ and $v=\left(y_{1}, y_{2}\right)$:

$$
\langle u\rangle v=x_{1} y_{1}-3 x_{1} y_{2}-3 x_{2} y_{1}+k x_{2} y_{2} .
$$

Exercise 107. Determine if each of the following is an inner product on $P_{3}[x]$:
a) $\langle p, q\rangle=p(0) q(0)+p(1) q(1)+p(2) q(2)$
b) $\langle p, q\rangle=p(0) q(0)+p(1) q(1)+p(2) q(2)+p(3) q(3)$
c) $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$.

In case it is an inner product, compute $\langle p, q\rangle$, where $p=2-3 x+5 x^{2}-x^{3}, q=4+x-3 x^{2}+2 x^{3}$.
Exercise 108. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation such that $\|T v\| \leq\|v\|$ for every $v \in V$. Prove that $T-\sqrt{2} I$ is invertible.

Exercise 109. (a) Suppose $u, v, w \in \mathbb{R}^{n}$. Prove that

$$
\left\|w-\frac{1}{2}(u+v)\right\|^{2}=\frac{\|w-u\|^{2}+\|w-v\|^{2}}{2}-\frac{\|u-v\|^{2}}{4} .
$$

(b) Suppose C is a subset of \mathbb{R}^{n} with the property that $u, v \in C$ implies $\frac{1}{2}(u+v) \in C$. Let $w \in V$. Show that there is at most one $u \in C$ such that

$$
\|w-u\| \leq\|w-v\| \quad \text { for all } v \in C
$$

6.2. Orthogonality

Exercise 110. Let the inner product on $P_{2}[x]$ be defined as $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$, where $p, q \in P_{2}[x]$.
a) Apply the Gram-Schmidt process to the basis $\left\{1, x, x^{2}\right\}$ to get an orthonormal basis \mathcal{A}.
b) Find the coordinate vector $[r]_{\mathcal{A}}$, where $r=2-3 x+3 x^{2}$.

In the following exercises (Ex 111-Ex 121), we consider \mathbb{R}^{n} or $M_{n \times 1}(\mathbb{R})$ with the standard inner product.

Exercise 111. Find vectors $u, v \in \mathbb{R}^{2}$ such that u is a scalar multiple of $(1,3), v$ is orthogonal to $(1,3)$ and $(1,2)=u+v$.

Exercise 112. Let S consist of the following vectors of \mathbb{R}^{4} :

$$
u_{1}=(1,1,1,1), u_{2}=(1,1,-1,-1), u_{3}=(1,-1,1,-1), u_{4}=(1,-1,-1,1) .
$$

a) Show that S is orthogonal and a basis of \mathbb{R}^{4}.
b) Write $v=(1,3,-5,6)$ as a linear combination of $u_{1}, u_{2}, u_{3}, u_{4}$.
c) Find the coordinates of an arbitrary vector $v=(a, b, c, d)$ in \mathbb{R}^{4} relative to the basis S.
d) Normalize S to obtain an orthonormal basis of \mathbb{R}^{4}.

Exercise 113. Use the Gram-Schmidt process to transform the basis B into an orthonormal basis.
(a) $B=\{(1,1),(0,1)\}$.
(c) $B=\{(1,2,-2),(0,1,-2),(-1,3,11)$,
(b) $B=\{(1,-2,2),(2,2,1),(2,-1,-2)\}$,
(d) $B=\{(3,4,0,0),(-1,1,0,0),(2,1,0,-1),(0,1,1,0)\}$.

Exercise 114. Let $v_{1}=(1,1,0,0,0), v_{2}=(0,1,-1,2,1), v_{3}=(2,3,-1,2,1)$, and

$$
V=\left\{x \in \mathbb{R}^{5} \mid x \perp v_{i}, i=1,2,3\right\} .
$$

a) Prove that V is a subspace of \mathbb{R}^{5}.
b) Find a baisis of V and $\operatorname{dim} V$.

Exercise 115. Let W be a the solution space of the homogeneous system of linear equations

$$
\begin{array}{r}
x+y-z+w=0 \\
2 x+y+z+2 w=0 .
\end{array}
$$

(a) Find an orthonormal basis for W.
(b) Find an orthonormal basis for W^{\perp}.
(c) Find a system of linear equations for which W^{\perp} is its solution space.

Exercise 116. Find the (orthogonal) projection of $u=(1,3,-2,4)$ on $v=(2,-2,4,5)$.
Exercise 117. Let $v_{1}=(2,2,1), v_{2}=(2,5,4)$. Find the (orthogonal) projection of $v=$ $(3,-2,1)$ onto $U=\operatorname{span}\left(v_{1}, v_{2}\right)$.

6.3. Least square approximations

Exercise 118. In \mathbb{R}^{4}, let $U=\operatorname{span}\{(1,1,0,0),(1,1,1,2),(2,2,1,2)\}$. Find $u \in U$ such that $\|u-(1,2,3,4)\|$ is as small as possible.

Exercise 119. Find $a, b \in \mathbb{R}$ such that

$$
(a+b-1)^{2}+(a+b-2)^{2}+(b-3)^{2}+(2 b-4)^{2}
$$

is as small as possible.
Exercise 120. Let $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 2 & 2\end{array}\right], B=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$. Find a column vector $\tilde{X} \in M_{3 \times 1}(\mathbb{R})$ for which minimizes the function $f(X)=\|A X-B\|$ defined for all $X \in M_{3 \times 1}(\mathbb{R})$.

6.4. Orthogonal diagonalization

Exercise 121. Orthogonally diagonalize of the following symmetric matrices
а) $\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{ccc}7 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 5\end{array}\right]$.

6.5. Quadratic forms

Exercise 122. Determine the definiteness of the following quadratic form on \mathbb{R}^{3}.
a) $\omega_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+5 x_{2}^{2}-4 x_{3}^{2}+2 x_{1} x_{2}-4 x_{1} x_{3}$,
b) $2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}$,
c) $\omega_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+4 x_{1} x_{3}+x_{2} x_{3}$,

Exercise 123. Find a such that the following quadratic forms are positive definite:
a) $5 x_{1}^{2}+x_{2}^{2}+a x_{3}^{2}+4 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}$,
b) $2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+2 a x_{1} x_{2}+2 x_{1} x_{3}$,
c) $x_{1}^{2}+x_{2}^{2}+5 x_{3}^{2}+2 a x_{1} x_{2}-2 x_{1} x_{3}+4 x_{2} x_{3}$.

Exercise 124. Orthogonally diagonalize of the following quadratic forms
a) $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}$,
b) $7 x_{1}^{2}-7 x_{2}^{2}+48 x_{1} x_{2}$,
c) $7 x_{1}^{2}+6 x_{2}^{2}+5 x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$.

Exercise 125. Transform the following quadric surface to the principal axes:

$$
2 x^{2}+6 y^{2}+14 z^{2}-6 x y+2 x z+6 y z+2 x-y+z=0 .
$$

Exercise 126. Classify the following quadratic curves
a) $2 x^{2}-4 x y-y^{2}+8=0$,
b) $x^{2}+2 x y+y^{2}+8 x+y=0$,
c) $2 x^{2}+4 x y+5 y^{2}=24$.

Exercise 127. Classify the following quadric surfaces
a) $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}=4$,
b) $2 x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}=16$,
c) $2 x y+2 y z+2 x z-6 x-6 y-4 z=0$.

Exercise 128. Let $Q\left(x_{1}, x_{2}, x_{3}\right)=9 x_{1}^{2}+7 x_{2}^{2}+11 x_{3}^{2}-8 x_{1} x_{2}+8 x_{1} x_{3}$.
Find $\max _{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=16} Q\left(x_{1}, x_{2}, x_{3}\right), \min _{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=16} Q\left(x_{1}, x_{2}, x_{3}\right)$.
Exercise 129. Let $Q(x, y, z)=9 x_{1}^{2}+7 x_{2}^{2}+11 x_{3}^{2}-8 x_{1} x_{2}+8 x_{1} x_{3}(x, y, z \in \mathbb{R})$. Find $\max _{Q\left(x_{1}, x_{2}, x_{3}\right)=16} x_{1}^{2}+$ $x_{2}^{2}+x_{3}^{2}$, and $\min _{Q\left(x_{1}, x_{2}, x_{3}\right)=16} x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.

Exercise 130. Is there an orthogonal matrix $A \in M_{3}(\mathbb{R})$ such that

$$
A\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right] \text { and } A\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right] ?
$$

Exercise 131. Is there a symmetric matrix $A \in M_{3}(\mathbb{R})$ such that

$$
A\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { and } A\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] ?
$$

Exercise 132. Let A, B be $n \times n$ matrices on \mathbb{R}. Prove that:
a) All the eigenvalues of A are positive if and only if $X^{T} A X>0$ for all $X \in M_{n \times 1}(\mathbb{R}) \backslash\{0\}$.
b) If all the eigenvalues of A and B are positive, then so are the eigenvalues of $A+B$.

[^0]: ${ }^{1}$ We say that V is a direct sum of V_{1} and V_{2} and write $V=V_{1} \oplus V_{2}$ if $V_{1}+V_{2}=V, V_{1} \cap V_{2}=\{0\}$.

