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Chapter 1. Vectors and the geometry of space

Exercise 1. Determine whether the given vectors are orthogonal, parallel, or neither

(a) ~a = (−5; 3; 7),~b = (6;−8; 2).

(b) ~a = (4; 6),~b = (−3; 2).

(c) ~a = −~i+ 2~j + 5~k, b = 3~i+ 4~j − ~k.

(d) ~u = (a, b, c), ~v = (−b, a, 0).

Exercise 2. For what values of b are the vectors (−6; b; 2) and (b; 2b; b) orthogonal?

Exercise 3. Find two unit vectors that make an angle of 300 with v = (3; 4).

Exercise 4. Find the angle between a diagonal of a cube and one of its edges.

Exercise 5. Find an unit vector that parallel with 8~i−~j + 4~k.

Exercise 6. Find area of triangle ABC, where A(2; 8; 12), B(4; 5; 8), C(1; 4; 10).

Exercise 7. Find the altitude AH of triangle ABC, where A(1; 6; 4), B(2; 5; 8) and C(−1; 4; 0).

Exercise 8. Prove that ~x× (~y × ~z) = (~x · ~z) · ~y − (~x · ~y) · ~z.

Exercise 9. Find the distance from the point (3; 7;−5) to

(a) xy-plane

(b) yz-plane

(c) zx-plane

(d) x-axis

(e) y-axis

(f) z-axis

Exercise 10. Evaluate ~a+~b, 2~a+ 3~b, |~a| and |~a−~b|.

(a) ~a = 4~i+~j and ~b =~i− 2~j. (b) ~a =~i+ 2~j − 3~k and ~b = −2~i−~j + 5~k.

Exercise 11. Find the angle between

(a) ~a = (3; 4) and ~b = (5; 12). (b) ~a = (6;−3; 2) and ~b = (2; 1;−2).

Exercise 12. Find a unit vector that is orthogonal to both ~i+~j and ~i+ ~k.

Exercise 13. Find the angle between a diagonal of a cube and a diagonal of one of its faces.

Exercise 14. Prove that |~a+~b|2 + |~a−~b|2 = 2|~a|2 + 2|~b|2.
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Exercise 15. Find the volume of the parallelepiped determined by the vectors

(a) ~a = (6;−3;−1), ~b = (0; 1; 2) and ~c = (4;−2; 5).

(b) ~a =~i+~j − ~k, ~b =~i−~j + ~k and ~c = −~i+~j + ~k.

Exercise 16. (a) Let P be a point not on the line that passes through the points Q,R and S. Show that

the distance d from the point P to the plane (QRS) is

d =
|~a · (~b× ~c)|
|~a×~b|

,

where ~a =
−→
QR, ~b =

−→
QS and ~c =

−→
QP .

(b) Use the formula in part (a) to find the distance from the point P (2; 1; 4) to the plane through the

points Q(1; 0; 0), R(0; 2; 0) and S(0; 0; 3).

Exercise 17. Find an equation of the sphere with center (1;−4; 3) and radius 5. Describe its intersection

with each of the coordinate planes.

Exercise 18. Find an equation of the sphere that passes through the origin and whose center is (1; 2; 3).

Exercise 19. Find an equation of a sphere if one of its diameters has end points (2; 1; 4) and (4; 3; 10).

Exercise 20. Find an equation of the largest sphere with center (5; 4; 9) that is contained in the first

octant.

Exercise 21. Consider the points P such that the distance from P to A(−1; 5; 3) is twice the distance

from P to B(6; 2;−2). Show that the set of all such points is a sphere, and find its center and radius.

Exercise 22. Find an equation of the set of all points equidistant from the points A(−1; 5; 3) and

B(6; 2;−2). Describe the set.

Exercise 23. Sketch and classify the quadric surface

(a) x2 + 2z2 − 6x− y + 10 = 0.

(b) x = y2 + 4z2.

(c) x2 = y2 + 4z2.

(d) −x2 + 4y2 − z2 = 4.

(e) y = z2 − x2.

(f) 4x2 − 16y2 + z2 = 16.

Exercise 24. Find an equation for the surface obtained by rotating

(a) the parabol y = x2 about the y-axis. (b) the line x = 3y about the x-axis.

Exercise 25. Find an equation for the surface consisting of all points that are equidistant from the point

(−1; 0; 0) and the plane x = 1. Identify the surface.

Exercise 26. Find an equation for the surface consisting of all points P for which the distance from P

to the x-axis is twice the distance from P to the yz-plane. Identify the surface.
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Exercise 27. Change from rectangular to cylindrical coordinates.

(a) (−1; 1; 1).

(b) (−2; 2
√

3; 3).

(c) (2
√

3; 2;−1).

(d) (4;−3; 2).

Exercise 28. Write the equations in cylindrical coordinates.

(a) x2 − x+ y2 + z2 = 1.

(b) z = x2 − y2.

(c) 3x+ 2y + z = 6.

(d) −x2 − y2 + z2 = 1.

Exercise 29. Identify the surface whose equation is given

(a) z = 4− r2. (b) 2r2 + z2 = 1.

Exercise 30. Change from rectangular to spherical coordinates

(a) (0;−2; 0).

(b) (−1; 1;−
√

2).

(c) (1; 0;
√

3).

(d) (
√

3;−1; 2
√

3).

Exercise 31. Identify the surface whose equation is given.

(a) r = sin θ sinϕ. (b) r2(sin2 ϕ sin2 θ + cos2 ϕ) = 9.

Exercise 32. Write the equation in spherical coordinates

(a) z2 = x2 + y2.

(b) x2 + z2 = 9.

(c) x2 − 2x+ y2 + z2 = 0.

(d) x+ 2y + 3z = 1.

Chapter 2. Vector Functions

Exercise 33. Find the parametric equations for the intersection of the circular cylinder x2 + y2 = 4 and

parabolic cylinder z = x3.

Exercise 34. Find the domain.

(a) ~r(t) = (
√

4− t2, e−3t, ln(1 + t)).

(b) ~r(t) =
t− 2

t+ 2
~i+ sin t~j + ln(9− t2)~k.

(c) ~r(t) = arcsin
2t

1 + t
~i+

√
t

sin πt
~k.

(d) ~r(t) = (
√

cosh t− 1,
√
t4 − 5t2 + 4, 0).
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Exercise 35. Find the limit

(a) lim
t→0

(
et − 1

t
,

√
t+ 1− 1

t
,

3

t+ 1

)
. (b) lim

t→+∞

(
arctan t, e−2t,

ln t

t+ 1

)
.

Exercise 36. Find a vector function that represents the curve of intersection of the two surfaces.

(a) The cylinder x2 + y2 = 4 and the surface z = xy.

(b) The paraboloid z = 4x2 + y2 and the parabolic cylinder y = x2.

Exercise 37. Suppose u and v are vector functions that possess limits as t→ a and let c be a constant.

Prove the following properties of limits.

(a) lim
t→a

[~u(t) + ~v(t)] = lim
t→a

~u(t) + lim
t→a

~v(t).

(b) lim
t→a

c~v(t) = c lim
t→a

~v(t).

(c) lim
t→a

[~u(t) · ~v(t)] = lim
t→a

~u(t) · lim
t→a

~v(t).

(d) lim
t→a

[~u(t)× ~v(t)] = lim
t→a

~u(t)× lim
t→a

~v(t).

Exercise 38. Find the derivative of the vector function.

(a) ~r(t) = (t sin t, t3, t cos 2t).

(b) ~r(t) = arcsin t~i+
√

1− t2~j + ~k.

(c) ~r(t) = et
2~i− sin2 t~j + ln(1 + 3t)~k.

(d) ~r(t) = (esin t, arctan t, t2).

Exercise 39. Find parametric equations for the tangent line to the curve with the given parametric

equations at the specified point.

(a)


x = t,

y = e−t,

z = 2t− t2,

at (0; 1; 0). (b)


x = t cos t,

y = t,

z = t sin t,

at (−π; π; 0).

Exercise 40. Find the point of intersection of the tangent lines to the curve ~r(t) = (sin πt; 2 sin πt; cosπt)

at the points where t = 0 and t = 0.5.

Exercise 41. Evaluate the integral.

(a)
∫ π/2
0

(3 sin2 t cos t~i+ 3 sin t cos2 t~j + 2 sin t cos t~k)dt.

(b)
∫ 2

1
(t2~i+ t

√
t− 1~j + t sin πt~k)dt.

(c)
∫ 2

1
(et~i+ 2t~j + ln t~k)dt.

(d)
∫ 1/4

0
(cos πt~i+ sin πt~j + t2 ~k)dt.

Exercise 42. If a curve has the property that the position vector ~r(t) is always perpendicular to the

tangent vector
d

dt
~r(t), show that the curve lies on a sphere with center the origin.
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Exercise 43. Find the length of the curve.

(a) ~r(t) = (2 sin t, 5t, 2 cos t);−10 ≤ t ≤ 10.

(b) ~r(t) = (2t, t2,
1

3
t3); 0 ≤ t ≤ 1.

(c) ~r(t) = (cos t, sin t, ln cos t); 0 ≤ t ≤ π/4.

(d) ~r(t) = (sin t− t cos t, cos t+ t sin t, t2); 0 ≤ t ≤ 2π.

Exercise 44. Let C be the curve of intersection of the parabolic cylinder x2 = 2y and the surface 3z = xy.

Find the length of C from the origin to the point (6; 18; 36).

Exercise 45. Suppose you start at the point (0; 0; 3) and move 5 units along the curve x = 3 sin t; y =

4t; z = 3 cos t in the positive direction. Where are you now?

Exercise 46. Find the curvature of ~r(t) = (et cos t, et sin t, t) at the point (1; 0; 0).

Exercise 47. Find the curvature of ~r(t) = (t, t2, t3) at the point (1; 1; 1).

Exercise 48. Find the curvature of y =
√
x2 + 1− 2 at the point A(0;−1).

Exercise 49. Find the curvature of the curve given by

x2 + y2 + 1 = 2(x− y),

x+ y − z = 2
at the pointA(1; 0;−1).

Exercise 50. Find the curvature.

(a) ~r(t) = t~i+ t~j + (1 + t2)~k.

(b) ~r(t) = 3t~i+ 4 sin t~j + 4 cos t~k.

(c) x = et cos t, y = et sin t.

(d) x = t3 + 1, y = t2 + 1.

Exercise 51. Find the curvature.

(a) y = 2x− x2.

(b) y = cosx.

(c) y = 4x5/2.

(d) y = sinx.

Exercise 52. At what point does the curve have maximum curvature? What happens to the curvature

as x→∞.

(a) y = lnx. (b) y = ex.

Exercise 53. Find an equation of a parabola that has curvature 4 at the origin.

Exercise 54. Find the velocity vector, acceleration vector, and speed of a moving particle with the given

position function

(a) ~r(t) = (e−t, t
√

3, et). (b) ~r(t) = et(sin t, t, cos t).

Exercise 55. A moving particle starts at an initial position ~r(0) = (2;−3; 4) with initial velocity ~v(0) =

(1; 5;−4). Find its velocity and position at time t if ~a(t) = (2, t3, e3t). Find its speed at t = 1.
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Chapter 3. Double Integrals

Exercise 56. Find the volume of the solid that lies under the plane 4x+ 6y− 2z + 15 = 0 and above the

rectangle R = {(x, y) : −1 ≤ x ≤ 2,−1 ≤ y ≤ 1}.

Exercise 57. Find the volume of the solid enclosed by the surface z = 1 + ex sin y and the planes x = ±1,

y = 0, y = π and z = 0.

Exercise 58. Find the volume of the solid in the first octant bounded by the cylinder z = 16 − x2 and

the plane y = 5.

Exercise 59. Find the volume of the solid enclosed by the paraboloid z = 2+x2 +(y−2)2 and the planes

z = 1, x = 1, x = −1, y = 0, and y = 4.

Exercise 60. Evaluate the following integrals

(a)
∫ 3

1
dx
∫ 5

1

ln y

xy
dx.

(b)
∫ 1

0
dx
∫ 1

0
xy
√
x2 + y2dy.

(c)
∫∫

R

1

1 + x+ y
dxdy, where R = [1; 3]× [1; 2].

(d)
∫∫
D

yexydxdy, where D = {(x, y) ∈ R2 : 0 ≤ x ≤ 2; 0 ≤ y ≤ 3}.

(e)
∫∫
D

|x+ y|dxdy, where D = {(x, y) ∈ R2 : |x| ≤ 1; |y| ≤ 1}.

(f)
∫∫
D

√
|y − x2|dxdy, where D = {(x, y) ∈ R2 : |x| ≤ 1, 0 ≤ y ≤ 2}.

(g)
∫∫
D

|y − x2|3dxdy, where D = {(x, y) ∈ R2 : |x| ≤ 1, and 0 ≤ y ≤ 2}.

Exercise 61. Use Midpoint rule to estimate the volume of the solid that lies below the surface z = xy

and above the rectangle R = {(x, y) : 0 ≤ x ≤ 6, 0 ≤ y ≤ 4}. Use a Riemann sum with m = 3, n = 2.

Exercise 62.

(a) Estimate the volume of the solid that lies below the surface z = 1 + x2 + 3y and above the rectangle

R = [1; 2]× [0; 3]. Use a Riemann sum with m = n = 2 and choose the sample points to be lower left

corners.

(b) Use the Midpoint Rule to estimate the volume in part (1).

Exercise 63. A table of values is given for a function f(x, y) defined on R = [0; 4]× [2; 4].

(a) Estimate
∫∫

R
f(x, y)dxdy using Midpoint rule with m = n = 2.

(b) Estimate the double integral with m = n = 4 by choosing the sample points to be the points closest

to the origin.
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x

y
2.0 2.5 3.0 3.5 4.0

0 -3 -5 -6 -4 -1

1 -1 -2 -3 -1 1

2 1 0 -1 1 4

3 2 2 1 3 7

4 3 4 2 5 9

Exercise 64. Change the order of the following integration.

(a)
1∫
−1
dx

1−x2∫
−
√
1−x2

f(x, y)dy.

(b)
1∫
0

dy
1+
√

1−y2∫
2−y

f(x, y)dx.

(c)
2∫
0

dx

√
2x∫

√
2x−x2

f(x, y)dy.

(d)

π
2∫
0

dy
1+y2∫
sin y

f(x, y)dx.

(e)

√
2∫

0

dy
y∫
0

f(x, y)dx+
2∫
√
2

dy

√
4−y2∫
0

f(x, y)dx.

Exercise 65. Evaluate the integrals

(a)
1∫
0

dx
1−x2∫
0

xe3y

1− y
dy.

(b)
∫∫
D

x2(y − x)dxdy, where D is bounded by y = x2 and x = y2.

(c)
∫∫

D

y

1 + x2
dxdy, where D is bounded by y =

√
x, y = 0 and x = 1.

(d)
∫∫
D

xydxdy, where D is bounded by x = y2, x = −1, y = 0 and y = 1.

(e)
∫∫
D

(x+ y)dxdy, where D is bounded by x2 + y2 ≤ 1,
√
x+
√
y ≥ 1.

(f)
∫∫

D
(x2 + y2)3/2dxdy, where D is a region in the first quadrant and bounded by y = 0, y =

√
3x and

circle x2 + y2 = 9.

(g)
∫∫
D

(|x|+ |y|)dxdy, D = {(x, y) ∈ R2 : |x|+ |y| ≤ 1}.

Exercise 66. Change to polar coordinates in a double integral
∫∫
D

f(x, y)dxdy, where D is a region as

follows:

(a) a2 ≤ x2 + y2 ≤ b2.

(b) x2 + y2 ≥ 4x, x2 + y2 ≤ 8x, y ≥ x, y ≤
√

3x.

(c) x2 + y2 ≤ 2x, x2 + y2 ≤ 2y.
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Exercise 67. Use polar coordinates to find the following integrals

(a)
R∫
0

dx

√
R2−x2∫
0

ln(1 + x2 + y2)dy, (R > 0).

(b)
∫∫
D

xydxdy, where D is a disk (x− 2)2 + y2 ≤ 1, y ≥ 0.

(c)
∫∫
D

(sin y + 3x)dxdy, where D is a disk (x− 2)2 + y2 ≤ 1.

(d)
∫∫
D

|x+ y|dxdy, where D is a disk x2 + y2 ≤ 1.

Exercise 68. Evaluate the following integrals:

(a)
∫∫
D

2xy + 1√
1 + x2 + y2

dxdy, with D : x2 + y2 ≤ 1.
(b)

∫∫
D

dxdy

(x2 + y2)2
, with D :

y ≤ x2 + y2 ≤ 2y

x ≤ y ≤
√

3x.

Exercise 69. Find the mass and center of mass of the lamina that occupies the region D and has the

given density function f(x, y).

(a) D = {(x, y) : 1 ≤ x ≤ 3, 1 ≤ y ≤ 4}, f(x, y) = 2y2.

(b) D = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}, f(x, y) = 1 + x2 + y2.

(c) D is bounded by y = 1− x2 and y = 0; f(x, y) = ky.

(d) D is bounded by y = x2 and y = x+ 2; f(x, y) = kx.

(e) D = {(x, y) : 0 ≤ y ≤ sin
πx

L
, 0 ≤ x ≤ L}; f(x, y) = y.

(f) D is bounded by the parabolas y = x2, and x = y2; f(x, y) =
√
x.

Exercise 70. Find the area of the surface.

(a) The part of the plane z = 2 + 3x+ 4y that lies above the rectangle [0; 5]× [1; 4].

(b) The part of the plane 2x+ 5y + z = 10 that lies inside the cylinder x2 + y2 = 9.

(c) The part of the paraboloid z = 4− x2 − y2 that lies above xy-plane.

(d) The part of the sphere x2 + y2 + z2 = 4z that lies inside the paraboloid z = x2 + y2.

Exercise 71. Use the change of variables u = x+ y and v = x− y to evaluate the integral

1∫
0

dx

x∫
−x

(2− x− y)2dy.

Exercise 72. Evaluate the following integrals:

(a)
∫∫
D

xy

x2 + y2
dxdy, where D :


2x ≤ x2 + y2 ≤ 12

x2 + y2 ≥ 2
√

3y

x ≥ 0, y ≥ 0.
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(b)
∫∫
D

|9x2 − 4y2|dxdy, where D :
x2

4
+
y2

9
≤ 1.

Chapter 4. Triple Integrals

Exercise 73. Express the triple integral
1∫
0

1∫
√
x

1−y∫
0

f(x, y, z)dzdydx in the order dxdydz.

Exercise 74. Evaluate the iterated integral

(a)
1∫
0

2x∫
x

y∫
0

2xyz dzdydx,

(b)
3∫
0

1∫
0

√
1−z2∫
0

zeydxdzdy,

(c)
1∫
0

z∫
0

y∫
0

ze−y
2
dxdydz,

(d)

π
2∫
0

y∫
0

x∫
0

cos(x+ y + z)dzdxdy.

Exercise 75. Evaluate the triple integral

(a)
∫∫∫
E

ydxdydz, where E is bounded by the planes x = 0, y = 0, z = 0 and 2x+ 2y + z = 4.

(b)
∫∫∫
E

x2eydxdydz, where E is bounded by the parabolic cylinder z = 1− y2 and the planes z = 0, x =

1, x = −1.

(c)
∫∫∫
E

xydxdydz, where E is bounded by the parabolic cylinder y = x2, x = y2 and the planes z = 0, z =

x+ y.

(d)
∫∫∫
E

xdxdydz, where E is the bounded by the paraboloid x = 4y2 + 4z2 and the plane x = 4.

(e)
∫∫∫
E

(x3 + xy2)dxdydz, where E is the solid in the first octant that lies beneath the paraboloid z =

1− x2 − y2.

Exercise 76. Find the volume of the region E bounded by the paraboloids z = x2 + y2 and z = 36 −
3x2 − 3y2.

Exercise 77. Find the volume of the solid that lies within both the cylinder x2 + y2 = 1 and the sphere

x2 + y2 + z2 = 4.

Exercise 78. Find the center of mass and the moments of inertia of the cubic [1; 2]× [1; 2]× [1; 2] if the

density is ρ(x, y, z) = x2 + y2 + z2.

Exercise 79. Find the center of mass and the moments of inertia of the tetrahedron with vertices (0; 0; 0);

(1; 0; 0); (0; 1; 0) and (0; 0; 1) if the density is C (constant 6= 0).

9



HUST School of Applied Mathematics and Informatics

Exercise 80. Evaluate the integrals by changing to cylindrical coordinates.

(a)
2∫
−2

√
4−y2∫

−
√

4−y2

2∫
√
x2+y2

xzdzdxdy, (b)
3∫
−3

√
9−x2∫
0

9−x2−y2∫
0

√
x2 + y2dzdydx.

Exercise 81. Evaluate the triple integrals.

(a)
∫∫∫
B

x dxdydz, where B is bounded by the cone x =
√
y2 + z2, and the plane x = 1.

(b)
∫∫∫
B

√
x2 + 4z2 dxdydz, where B is bounded by the cone x2 + 4z2 = y2, and the plane y = −1.

Exercise 82. Evaluate the triple integrals.

(a)
∫∫∫
A

√
x2 + 4y2 + z2 dxdydz, where A is given by x2 + 4y2 + z2 ≤ 2x.

(b)
∫∫∫
A

x2 dxdydz, where A is bounded by the xz-plane and the hemispheres y =
√

9− x2 − z2 and

y =
√

16− x2 − z2.

Exercise 83. Find the moments of inertia of the ball B = {x2 + y2 + z2 ≤ 1} if the density ρ(x, y, z) =√
x2 + y2 + z2.

Exercise 84. Evaluate the integral by changing to spherical coordinates
1∫
0

√
1−x2∫
0

√
2−x2−y2∫
x2+y2

xydzdydx.

Exercise 85. Let E be the solid given by x ≤ x2 + y2 + z2 ≤ 2x, y ≤ x2 + y2 + z2 ≤ 2y, and z ≤
x2 + y2 + z2 ≤ 2z.

(a) Evaluate the Jacobian of doing change the variables:

u =
x

x2 + y2 + z2
, v =

y

x2 + y2 + z2
, w =

z

x2 + y2 + z2
.

(b) Evaluate the triple integral
∫∫∫
E

1

(x2 + y2 + z2)2
dxdydz.

Exercise 86. Let E be the solid given by |x− y|+ |x+ 3y|+ |x+ y + z| ≤ 1. Evaluate the triple integral∫∫∫
E

xydxdydz.

Chapter 5. Line Integrals

Exercise 87. Evaluate the following line integrals:

(a)
∫
C

xyds, where C : x = t2, y = 2t, 0 ≤ t ≤ 1.

(b)
∫
C

xy4ds, where C : x2 + y2 = 9, x ≥ 0.
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(c)
∫
C

(x2y3 −
√
x)dy, where C is the arc of the curve y =

√
x from (1; 1) to (4; 2).

(d)
∫
C

x2dx+ y2dy, where C consists of circle x2 + y2 = 4 from (2; 0) to (0; 2) and the segment from (0; 2)

to (4; 3).

(e)
∫
C

(3x− y)ds, where C is the half of circle y =
√

9− x2.

(f)
∫
C

(x− y)ds, where C is a circle x2 + y2 = 2x.

(g)
∫
C

y2ds, where C is given by x = a(t− sin t), y = a(1− cos t) with 0 ≤ t ≤ 2π, a > 0.

(h)
∫
C

√
x2 + y2ds, where C is a curve x = a(cos t+ t sin t), y = a(sin t− t cos t), with 0 ≤ t ≤ 2π, a > 0.

Exercise 88. Evaluate the following line integrals:

(a)
∫
C

(x2 + y2 + z2)ds, where C : x = t, y = cos 2t, z = sin 2t, 0 ≤ t ≤ 2π.

(b)
∫
C

xeyzds, where C is the segment from (0; 0; 0) to (1; 2; 3).

(c)
∫
C
ydx+ zdy + xdz, where C : x =

√
t, y = t, z = t2, 1 ≤ t ≤ 4.

(d)
∫
C

(y + z)dx + (x + z)dy + (x + y)dz, where C consists of two line segments from (0; 0; 0) to (1; 0; 1),

and from (1; 0; 1) to (0; 1; 2).

Exercise 89. Evaluate the following line integrals

(a)
∫
AB

(x2 − 2xy)dx+ (2xy − y2)dy, where AB is a part of parabol y = x2 from A(1; 1) to B(2; 4).

(b)
∫
C

(2x− y)dx+ xdy, where C is a curve

x = a(t− sin t)

y = a(1− cos t)
whose direction is increasing direction of

the parameter t, (0 ≤ t ≤ 2π, a > 0).

(c)
∫

ABCA

2(x2 + y2)dx + x(4y + 3)dy, where ABCA is a broken line through the points A(0; 0), B(1; 1),

C(0; 2).

(d)
∫

ABCDA

dx+ dy

|x|+ |y|
, whereABCDA is a broken line through the pointsA(1; 0), B(0; 1), C(−1; 0), D(0;−1).

(e)
∫
C

4
√
x2 + y2dx

2
+ dy, where C is curve

x = t sin
√
t

y = t cos
√
t, (0 ≤ t ≤ π2

4
).

Exercise 90. Evaluate the following line integral∫
C

(xy + x+ y)dx+ (xy + x− y)dy

in two ways: by computing it directly, and by Green’s formula, then compare the results, where C is a

curve:

11
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(a) x2 + y2 = 2x (b)
x2

a2
+
y2

b2
= 1, (a, b > 0)

Exercise 91. Evaluate the following line integrals:

(a)

∮
x2+y2=2x

x2
(
y +

x

4

)
dy − y2

(
x+

y

4

)
dx.

(b)

∮
OABO

ex[(1−cos y)dx−(y−sin y)dy], where OABO is a broken line through the points O(0; 0), A(1; 1),

B(0; 2).

(c)

∮
x2+y2=2x

(xy + ex sinx+ x+ y)dx− (xy − e−y + x− sin y)dy.

(d)

∮
C

(xy4 +x2 +y cos(xy))dx+

(
x3

3
+ xy2 − x+ x cos(xy)

)
dy, where C is a curve x = a cos t, y = a sin t,

(a > 0).

(e)
∮
C

(ex + y6)dx+ (ey + 3x)dy, where C is a boundary of region enclosed by x = 14 +
√
|y| and x = y2,

with oriented counterclockwise.

Exercise 92. Using the line integral of the second kind in order to compute the area of the region bounded

by an arch of the cycloid: x = a(t− sin t), y = a(1− cos t) and x-axis, (a > 0).

Exercise 93. Evaluate the following line integral

(a)

(3;0)∫
(−2;−1)

(x4 + 4xy3)dx+ (6x2y2 − 5y4)dy. (b)

(2;2π)∫
(1;π)

(1− y2

x2
cos

y

x
)dx+ (sin

y

x
+
y

x
cos

y

x
)dy.

Exercise 94. Evaluate the line integral

I =

∫
L

(3x2y2 +
2

4x2 + 1
)dx+ (3x3y +

2

y3 + 4
)dy,

where L is curve y =
√

1− x4 from A(1; 0) to B(−1; 0).

Exercise 95. Find the constant α such that the following integral is an independent of path in the domain∫
AB

(1− y2)dx+ (1− x2)dy
(1 + xy)α

.

Exercise 96. Find the curl and the divergence of the vector

(a)
−→
F (x, y, z) = xy~i+ yz~j + zx~k.

(b)
−→
F (x, y, z) =

x

x2 + y2 + z2
~i+

y

x2 + y2 + z2
~j +

z

x2 + y2 + z2
~k.

12
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Exercise 97. Prove that

(a) curl(
−→
F + ~G) = curl

−→
F + curl~G. (b) curl(f

−→
F ) = fcurl

−→
F + (∇f)×

−→
F .

Exercise 98. Determine whether or not
−→
F is a conservative vector field. If it is, find a function f such

that
−→
F = ∇f .

(a)
−→
F (x, y) = (2x− 3y)~i+ (−3x+ 4y − 8)~j.

(b)
−→
F (x, y) = ex cos y~i+ ex sin y~j.

(c)
−→
F (x, y) = (xy cos(xy) + sin(xy))~i+ (x2 cos(xy))~j.

(d)
−→
F (x, y) = (ln y + 2xy3)~i+ (3x2y2 +

x

y
)~j.

Exercise 99. Find f such that
−→
F = ∇f and then compute

∫
C

−→
F · d~r.

(a)
−→
F (x, y) = xy2~i+ x2y~j, where C : ~r(t) = (t+ sin

πt

2
, t+ cos

πt

2
), 0 ≤ t ≤ 1.

(b)
−→
F (x, y) =

y2

1 + x2
~i+ 2y arctanx~j, where C : ~r(t) = t2i+ 2tj, 0 ≤ t ≤ 1.

(c)
−→
F (x, y) = (2xz + y2)~i+ 2xy~j + (x2 + 3z2)~k, where C : x = t2, y = t+ 1, z = 2t− 1, 0 ≤ t ≤ 1.

(d)
−→
F (x, y) = ey~i+ xey~j + (z + 1)ez~k, where C : x = t, y = t2, z = t3, 0 ≤ t ≤ 1.

Chapter 6. Surface Integrals

Exercise 100. Evaluate the surface integrals of scalar fields.

(a)
∫∫
F

xy dS, where F is the triangular region with vertices (1; 0; 0), (0; 2; 0), and (0; 0; 2).

(b)
∫∫
F

yz dS, where F is the part of the plane x+ y + z = 1 that lies in the first octant.

(c)
∫∫
F

yz dS, where F is the surface with parametric equations x = u2, y = u sin v, z = u cos v, 0 ≤ u ≤ 1,

0 ≤ v ≤ π

2
.

(d)
∫∫
F

z dS, where F is the surface x = y + 2z2, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

(e)
∫∫
F

y2 dS, where F is the part of the sphere x2 + y2 + z2 = 4 that lies inside the cylinder x2 + y2 = 1

and above the xy-plane.

(f)
∫∫
F

dS

(2 + x+ y + z)2
, where F is the boundary of the triangular pyramid x + y + z ≤ 1;x ≥ 0; y ≥

0; z ≥ 0.

13
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Exercise 101. Find the area of

(a) the ellipse cut from the plane z = 2x+ y by the cylinder x2 + y2 = 1.

(b) the surface x2 − 2 lnx +
√

15y − z = 0 above the square D = {(x, y) ∈ R2 : 1 ≤ x ≤ 2, 0 ≤ y ≤ 1} in

the xy-plane.

(c) the part of the paraboloid z = x2 + y2 which lies under the plane z = 6.

(d) the surface determined by the parametric equations x = z(cosu + u sinu), y = z(sinu − u cosu),

0 ≤ u, z ≤ 1.

Exercise 102. Find the mass of the surface F determined by the parametric equations x = uv, y =

u+ v, z = u− v, u2 + v2 ≤ 1, u ≥ 0, v ≥ 0 if the density ρ(x, y, z) = x+ yz.

Exercise 103. Find the center of mass of

(a) a thin hemisphere of radius R and constant mass density C.

(b) the triangle with vertices (1; 0; 0), (0; 1; 0), (0; 0; 1) and the density ρ(x, y, z) = x+ 2y + z.

(c) the cylinder x2 + y2 = 1, 0 ≤ z ≤ 1 and the density ρ(x, y, z) = x2 + y2 + z2.

Exercise 104. Evaluate the surface integral
∫∫
A

−→
F · ~n dS for the given vector field

−→
F and the oriented

surface A. For closed surfaces, use the positive (outward) orientation.

(a)
−→
F (x, y, z) = xzey~i− xzey~j + z ~k, A is the part of the plane x+ y + z = 1 in the first octant and has

downward orientation.

(b)
−→
F (x, y, z) = x~i + y~j + z4 ~k, A is the part of the cone z =

√
x2 + y2 beneath the plane z = 1 with

downward orientation.

(c)
−→
F (x, y, z) = xz~i + x~j + y ~k, A is the hemisphere x2 + y2 + z2 = 25; y ≥ 0, oriented in the direction

of the positive y-axis.

(d)
−→
F (x, y, z) = xy~i+ 4x2~j + yz ~k, A is the surface z = xey, 0 ≤ x, y ≤ 1, with upward orientation.

(e)
−→
F (x, y, z) = x2~i+y2~j+z2 ~k, A is the boundary of the solid half-cylinder 0 ≤ z ≤

√
1− y2, 0 ≤ x ≤ 2.

(f)
−→
F (x, y, z) = (x, y, z) and A is the upper surface, upward oriented, z = 16− x2 − y2, x2 + y2 ≤ 16.

(g)
−→
F (x, y, z) = (

x

z
,
y

z
, z− 2) and A is the upper surface, upward oriented, of z = 4−x2− y2, x2 + y2 ≤ 2.

(h)
−→
F (x, y, z) = (0, y,−z) and A consists of the paraboloid y = x2+z2, 0 ≤ y ≤ 1 and the disk x2+z2 ≤ 1,

y = 1.

Exercise 105. Evaluate the surface integral
∫∫
A

−→
F · ~n dS for the given vector field

−→
F and the oriented

surface A.

(a)
−→
F (x, y, z) = (x, z, y) and A is the sphere x2 + y2 + z2 = 1, oriented outward.
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(b)
−→
F (x, y, z) = (x, 2y, 3z) and A is the cube [1; 2]× [1; 2]× [1; 2], oriented outward.

(c)
−→
F (x, y, z) = (x + 2y, 2y + 3z, 3z + x) and A the triangular pyramid ODBC, O(0; 0; 0), D(1; 0; 0),

B(0; 1; 0), C(0; 0; 1), oriented outward.

Exercise 106. A fluid with density C flows with velocity ~v = (yx2, x, z). Find the rate of flow upward

through the paraboloid A : z = 9− x2 + y2

4
, x2 + y2 ≤ 36.

Exercise 107. Let
−→
F be an inverse square field, that is

−→
F (~r) = C

~r

|~r|3
, for some constant C, where

~r = x~i + y~j + z ~k. Show that the surface integral
∫∫
A

−→
F · ~n dS, where A is a sphere with center at the

origin, is independent of the radius of A.

Exercise 108. Use Stokes’ Theorem to evaluate
∫
C

−→
F · d~r. In each case C is oriented counterclockwise as

viewed from above.

(a)
−→
F (x, y, z) = yz~i+ 2xz~j + 3xy ~k and C is the circle x2 + y2 = 4, z = 10.

(b)
−→
F (x, y, z) = (3x+2y2)~i+(8y+

z2

3
)~j+(4z+

3x2

2
)~k and C is the boundary of the triangle with vertices

(2; 0; 0), (0; 3; 0) and (0; 0; 6).

(c)
−→
F (x, y, z) = xy~i+2z~j+3y ~k and C is the curve of intersection of the plane x+z = 5 and the cylinder

x2 + y2 = 9.

(d)
−→
F (x, y, z) = x2z~i+ xy2~j + z2 ~k and C is the curve of intersection of the plane x+ y + z = 1 and the

cylinder x2 + y2 = 9.

Exercise 109. The work done by the force field
−→
F (x, y, z) = (xx + z2, yy + x2, zz + y2) when a particle

moves under its influence around the close edge of the part of the sphere x2 + y2 + z2 = 4 that lies in the

first octant, in a counterclockwise direction as viewed from above.

Exercise 110. Use Stokes’ Theorem to evaluate
∫∫
A

curl
−→
F · ~n dS.

(a)
−→
F (x, y, z) = 2y cos z~i + ex sin z~j + xey ~k and A is the hemisphere x2 + y2 + z2 = 9, z ≥ 0 oriented

upward.

(b)
−→
F (x, y, z) = x2z2~i+ y2z2~j + xyz ~k and A is the part of the paraboloid z = x2 + y2 that lies inside the

cylinder x2 + y2 = 4, oriented upward.

(c)
−→
F (x, y, z) = (xyz, xy, x2yz) and A consists of the top and the four sides but not the bottom of the

cube [0; 1]× [0; 1]× [0; 1], oriented outward.

(d)
−→
F (x, y, z) = (exyz, y2z, 2z), A is the part of the hemisphere x2 + y2 + z2 = 9, x ≥ 0, that lies inside

the cylinder y2 + z2 = 4, oriented in the direction of the positive x-axis.
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Exercise 111. Use the Divergence Theorem to calculate
∫∫
A

−→
F · ~n dS.

(a)
−→
F (x, y, z) = x3y~i − x2y2~j − x2yz ~k and A is the surface of the solid bounded by the hyperboloid

x2 + y2 − z2 = 1 and the planes z = −2 and z = 2.

(b)
−→
F (x, y, z) = (cos z + xy2)~i+ xe−z~j + (sin y + x2z)~k and A is the surface of the solid bounded by the

paraboloid z = x2 + y2 and the plane z = 4.

(c)
−→
F (x, y, z) = 4x3z~i+ 4y3z~j + 3z4 ~k and A is the sphere with radius R and center the origin.

(d)
−→
F (x, y, z) = z2x~i + (y3 + sin z)~j + (x2z + y2)~k and A is the upward oriented top half of the sphere

x2 + y2 + z2 = 1.

(e)
−→
F (x, y, z) = z2y10~i + (4x2y3 + sin z)~j + (2x2z + y2)~k and A is the outward oriented surface of the

cube [−1; 1]× [−1; 1]× [−1; 1].

(f)
−→
F (x, y, z) = −xy~i + 3y2~j + 3zy ~k and A is the outward oriented surface of the tetrahedron with

vertices (0; 0; 0), (1; 0; 0), (0; 1; 0), and (0; 0; 1).

(g)
−→
F (x, y, z) = 6xy2~i + 3x2e2z~j + 2z3 ~k and A is the outward oriented surface of the solid bounded by

the cylinder x2 + y2 = 4 and the planes z = −1, and z = 2.

(h)
−→
F (x, y, z) = x5~i+ 10

3
x2y3~j+ 5zy4 ~k and A is the outward oriented surface of the solid bounded by the

paraboloid z = 1− x2 − y2 and the plane z = 0.
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