Stability results for non-Newtonian fluid equations of Oldroyd-B type

Nguyen Thieu Huy joint work with M. Geissert and M. Hieber

Hanoi University of Science and Technology

Mini-Workshop on PDE : AA

Oldroyd Semigroups •000000000 Oldroyd-B Equations on Exterior Domains Oldroyd-B Equations

Consider Oldroyd-B equations on an exterior domain $\Omega \subset \mathbb{R}^3$

$$\begin{array}{ll} \nabla \operatorname{Re}(u_t + (u \cdot \nabla)u) - (1 - \alpha)\Delta u + \nabla p &= \operatorname{div}\tau + f & \operatorname{in} \Omega \times (0, \infty), \\ \nabla \cdot u &= 0 & \operatorname{in} \Omega \times (0, \infty), \\ \operatorname{We}(\tau_t + (u \cdot \nabla)\tau + g_a(\tau, \nabla u)) + \tau &= 2\alpha D(u) & \operatorname{in} \Omega \times (0, \infty), \\ u &= 0 & \operatorname{on} \partial\Omega \times (0, \infty), \\ u|_{t=0} &= u_0 & \operatorname{in} \Omega, \\ \tau|_{t=0} &= \tau_0 & \operatorname{in} \Omega, \\ \end{array}$$

$$\begin{array}{l} \end{array}$$

$$\begin{array}{l} (1) \end{array}$$

- *u*: Velocity
- τ : Purely elastic part of the stress tensor;
- $\bullet~\mathrm{Re}$, We: Reynolds, Weissenberg numbers

•
$$g_a(\tau, \nabla u) := \tau W(u) - W(u)\tau - a(D(u)\tau + \tau D(u))$$
 for $D(u) = \frac{1}{2}(\nabla u + (\nabla u)^T)$, $W(u) = \frac{1}{2}(\nabla u - (\nabla u)^T)$ - the deformation and vorticity tensors.

The Stability of Oldroyd-B Equation

Oldroyd-B Equations on Exterior Domains

Intermezzo on Oldroyd-B model

Consider the momentum equation in incompressible case

$$u_t + (u \cdot \nabla)u = \operatorname{div} \sigma + f$$

Stokes' postulate: $\sigma = -pI + \tau$.

Oldroyd Semigroups ⊙●○○○○○○○ The Stability of Oldroyd-B Equation

Oldroyd-B Equations on Exterior Domains

Intermezzo on Oldroyd-B model

Consider the momentum equation in incompressible case

$$u_t + (u \cdot \nabla)u = \operatorname{div} \sigma + f$$

Stokes' postulate: $\sigma = -pI + \tau$.

• Newtonian fluid: $\tau = 2\mu D(u)$.

The Stability of Oldroyd-B Equation

Oldroyd-B Equations on Exterior Domains

Intermezzo on Oldroyd-B model

Consider the momentum equation in incompressible case

$$u_t + (u \cdot \nabla)u = \operatorname{div} \sigma + f$$

Stokes' postulate: $\sigma = -pl + \tau$.

- Newtonian fluid: $\tau = 2\mu D(u)$.
- Non-Newtonian fluid of Oldroyd-B type:

$$\tau + \lambda_1 \frac{\mathcal{D}_a \tau}{\mathcal{D}_t} = 2\mu (D(u) + \lambda_2 \frac{\mathcal{D}_a D(u)}{\mathcal{D} t})$$

where $\frac{\mathcal{D}_a \tau}{\mathcal{D}t} = \left[\frac{\partial}{\partial t} + (u \cdot \nabla)\right] \tau + g_a(\tau, \nabla u)$
 λ_1 : relaxation time, λ_2 : retardation time.

The Stability of Oldroyd-B Equation

Oldroyd-B Equations on Exterior Domains

Intermezzo on Oldroyd-B model

Consider the momentum equation in incompressible case

$$u_t + (u \cdot \nabla)u = \operatorname{div} \sigma + f$$

Stokes' postulate: $\sigma = -pl + \tau$.

- Newtonian fluid: $\tau = 2\mu D(u)$.
- Non-Newtonian fluid of Oldroyd-B type:

$$\tau + \lambda_1 \frac{\mathcal{D}_a \tau}{\mathcal{D}_t} = 2\mu (D(u) + \lambda_2 \frac{\mathcal{D}_a D(u)}{\mathcal{D}t})$$

where $\frac{\mathcal{D}_a \tau}{\mathcal{D}t} = \left[\frac{\partial}{\partial t} + (u \cdot \nabla)\right] \tau + g_a(\tau, \nabla u)$
 λ_1 : relaxation time, λ_2 : retardation time.
Decomposing $\tau = \tau_N + \tau_E$ for $\tau_N = 2\mu \frac{\lambda_2}{\lambda_1} D(u)$, using again $\tau := \tau_E$ yield

$$\tau + \lambda_1 \frac{\mathcal{D}_a \tau}{\mathcal{D} t} = 2\mu \underbrace{(1 - \frac{\lambda_2}{\lambda_1})}_{\alpha} D(u).$$

Oldroyd Semigroups 00000000 Oldroyd-B Equations on Exterior Domains Oldroyd-B Equations

Consider Oldroyd-B equations on an exterior domain $\Omega \subset \mathbb{R}^3$

$$\begin{array}{ll}
\operatorname{Re}(u_t + (u \cdot \nabla)u) - (1 - \alpha)\Delta u + \nabla p &= \operatorname{div}\tau + f & \operatorname{in} \Omega \times (0, \infty), \\
\nabla \cdot u &= 0 & \operatorname{in} \Omega \times (0, \infty), \\
\operatorname{We}(\tau_t + (u \cdot \nabla)\tau + g_a(\tau, \nabla u)) + \tau &= 2\alpha D(u) & \operatorname{in} \Omega \times (0, \infty), \\
u &= 0 & \operatorname{on} \partial\Omega \times (0, \infty), \\
u|_{t=0} &= u_0 & \operatorname{in} \Omega, \\
\tau|_{t=0} &= \tau_0 & \operatorname{in} \Omega, \\
\end{array}$$
(2)

- *u*: Velocity
- τ : Purely elastic part of the stress tensor;
- $\bullet~{\rm Re}$, We: Reynolds, Weissenberg numbers

•
$$g_a(\tau, \nabla u) := \tau W(u) - W(u)\tau - a(D(u)\tau + \tau D(u))$$
 for $D(u) = \frac{1}{2}(\nabla u + (\nabla u)^T)$, $W(u) = \frac{1}{2}(\nabla u - (\nabla u)^T)$ - the deformation and vorticity tensors.

Oldroyd-B Equations on Exterior Domains

Historical Remarks

Bounded domain Ω .

The Stability of Oldroyd-B Equation

Oldroyd Semigroups 000●000000 The Stability of Oldroyd-B Equation 000000

Oldroyd-B Equations on Exterior Domains

Historical Remarks

Bounded domain Ω .

• Guillopé and Saut (1990): Existence, uniqueness of solutions and exp. stability of stationary solutions in $L^2(\Omega)$ for small α .

Oldroyd-B Equations on Exterior Domains

Historical Remarks

Bounded domain Ω .

- Guillopé and Saut (1990): Existence, uniqueness of solutions and exp. stability of stationary solutions in $L^2(\Omega)$ for small α .
- Molinet and Talhouk (2004): Any $\alpha \in (0,1)$.

Historical Remarks

Bounded domain Ω .

- Guillopé and Saut (1990): Existence, uniqueness of solutions and exp. stability of stationary solutions in $L^2(\Omega)$ for small α .
- Molinet and Talhouk (2004): Any $lpha \in (0,1).$

Whole space $\Omega = \mathbb{R}^3$.

- Lions and Masmoudi (2000): Existence of global weak solutions for a = 0, extended by Chemin, Masmoudi (2001); Lei, Liu, Zhou (2008).
- Kupfermann, Mangoubi and Titi (2008): Blow-up criteria for simplified models.
- Lei, Masmoudi and Zhou (2010): General case.

Historical Remarks

Bounded domain Ω .

- Guillopé and Saut (1990): Existence, uniqueness of solutions and exp. stability of stationary solutions in $L^2(\Omega)$ for small α .
- Molinet and Talhouk (2004): Any $lpha \in (0,1).$

Whole space $\Omega = \mathbb{R}^3$.

- Lions and Masmoudi (2000): Existence of global weak solutions for a = 0, extended by Chemin, Masmoudi (2001); Lei, Liu, Zhou (2008).
- Kupfermann, Mangoubi and Titi (2008): Blow-up criteria for simplified models.
- Lei, Masmoudi and Zhou (2010): General case.
- Exterior domain Ω .
- Hieber, Naito and Shibata (2012): Global existence and uniqueness of solutions in $L^2(\Omega)$ for small α .
- Fang, Hieber and Zi (2013): any $lpha \in (0,1).$
- No stability result.

Oldroyd Semigroups 0000000000 Oldroyd-B Equations on Exterior Domains Linearized Problem

Consider the linearized problem of (2) (here set Re = We = 1):

$$\begin{cases} u_t - (1 - \alpha)\Delta u + \nabla p = \operatorname{div}\tau & \operatorname{in} \Omega \times (0, \infty), \\ \nabla \cdot u = 0 & \operatorname{in} \Omega \times (0, \infty), \\ \tau_t + \tau = 2\alpha D(u) & \operatorname{in} \Omega \times (0, \infty), \\ u = 0 & \operatorname{on} \partial \Omega \times (0, \infty), \\ u|_{t=0} = u_0 & \operatorname{in} \Omega, \\ \tau|_{t=0} = \tau_0 & \operatorname{in} \Omega, \end{cases}$$
(3)

Oldroyd Semigroups 0000000000 Oldroyd-B Equations on Exterior Domains Linearized Problem

Consider the linearized problem of (2) (here set $\mathrm{Re}=\mathrm{We}=1$):

$$\begin{cases} u_t - (1 - \alpha)\Delta u + \nabla p = \operatorname{div}\tau & \operatorname{in} \Omega \times (0, \infty), \\ \nabla \cdot u = 0 & \operatorname{in} \Omega \times (0, \infty), \\ \tau_t + \tau = 2\alpha D(u) & \operatorname{in} \Omega \times (0, \infty), \\ u = 0 & \operatorname{on} \partial \Omega \times (0, \infty), \\ u|_{t=0} = u_0 & \operatorname{in} \Omega, \\ \tau|_{t=0} = \tau_0 & \operatorname{in} \Omega, \end{cases}$$
(3)

Applying the Helmholtz projection \mathbb{P} , we have

$$\begin{pmatrix} \dot{u} \\ \dot{\tau} \end{pmatrix} = \begin{pmatrix} (1-\alpha)\mathbb{P}\Delta & \mathbb{P}\mathrm{div} \\ 2\alpha D & -I \end{pmatrix} \begin{pmatrix} u \\ \tau \end{pmatrix}.$$
 (4)

Oldroyd Semigroups 000000000 Oldroyd-B Equations on Exterior Domains

Oldroyd operator

The Stability of Oldroyd-B Equation

Correspondingly, we consider the Oldroyd operator

$$\mathcal{B} := \begin{pmatrix} (1-\alpha)A_q & -\mathbb{P}\mathrm{div} \\ -2\alpha D & I \end{pmatrix}$$
(5)

acting on $L^{q}_{\sigma}(\Omega) \times W^{1,q}(\Omega)$ with the domain $(W^{2,q} \cap W^{1,q}_{0} \cap L^{q}_{\sigma}) \times W^{1,q}$ where A_{q} is the Stokes operator $A_{q} := -\mathbb{P}\Delta$.

The Stability of Oldroyd-B Equation

Existence and Strong Stability of Oldroyd Semigroups

Existence and Strong Stability of Oldroyd Semigroups

Theorem

Let $\Omega \subset \mathbb{R}^3$ be an exterior domain with smooth boundary, $\mathcal B$ be the Oldroyd operator. Then,

- (i) $-\mathcal{B}$ generates a bounded analytic semigroup $(e^{-t\mathcal{B}})_{t\geq 0}$ (Oldroyd semigroup) with the angle $\frac{\pi}{2} - \arcsin\sqrt{\frac{2\alpha}{1+\alpha}}$ on $L^q_{\sigma}(\Omega) \times W^{1,q}(\Omega)$ for all $1 < q < \infty$.
- (ii) The semigroup $(e^{-t\mathcal{B}})_{t\geq 0}$ is strongly stable.

Existence and Strong Stability of Oldroyd Semigroups

Sketch of the proof.

The Stability of Oldroyd-B Equation

Oldroyd Semigroups 0000000 Existence and Strong Stability of Oldroyd Semigroups Sketch of the proof. The Stability of Oldroyd-B Equation

Step 1. We use the resolvent equation to prove

$$\lambda \in \sigma(-\mathcal{B}) \Leftrightarrow k(\lambda) = rac{\lambda(\lambda+1)}{(1-lpha)\lambda+1+lpha} \in \sigma(-A_q).$$

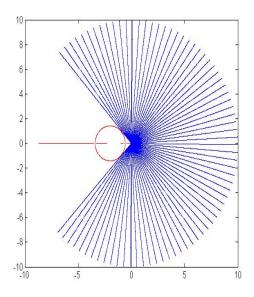
Then, using $\sigma(-A_q) \subset (-\infty, 0]$, we obtain $\sigma(-\mathcal{B}) \subset \mathbb{C} \setminus \Sigma_{\pi-\arcsin\sqrt{\frac{2\alpha}{1+\alpha}}}$ where $\Sigma_{\theta} := \{\lambda \in \mathbb{C} \setminus \{0\} : |\arg(\lambda)| < \theta\}.$

and we can compute $\sigma(-\mathcal{B})$ explicitly:

Oldroyd Semigroups ○○○○○○○●○

Existence and Strong Stability of Oldroyd Semigroups

Picture



The Stability of Oldroyd-B Equation

Step 2. We prove
$$k(\lambda) \in \Sigma_{\pi} \subset \rho(-A_q)$$
 for $\lambda \in \Sigma_{\pi-\arcsin\sqrt{\frac{2\alpha}{1+\alpha}}}$, then, prove the resolvent estimate

$$\left\|\lambda(\lambda+\mathcal{B})^{-1}\right\|_{L^q \times W^{1,q}} \leqslant M \text{ for all } \lambda \in \Sigma_{\pi-\arcsin\sqrt{\frac{2\alpha}{1+\alpha}}} \text{ and } 1 < q < \infty.$$

 $\implies -\mathcal{B}$ generates a bounded analytic semigroup $(e^{-t\mathcal{B}})_{t\geq 0}.$

Step 2. We prove $k(\lambda) \in \Sigma_{\pi} \subset \rho(-A_q)$ for $\lambda \in \Sigma_{\pi-\arcsin\sqrt{\frac{2\alpha}{1+\alpha}}}$, then, prove the resolvent estimate

$$\left\|\lambda(\lambda+\mathcal{B})^{-1}\right\|_{L^q \times W^{1,q}} \leqslant M \text{ for all } \lambda \in \Sigma_{\pi-\arcsin\sqrt{\frac{2\alpha}{1+\alpha}}} \text{ and } 1 < q < \infty.$$

 $\implies -\mathcal{B}$ generates a bounded analytic semigroup $(e^{-t\mathcal{B}})_{t\geq 0}$. Step 3. Using $\| -\mathcal{B}e^{-t\mathcal{B}} \| \leq \frac{M}{t}, t > 0$, and $0 \notin \sigma_r(-\mathcal{B})$ we can prove the strong stability.

The Stability of Oldroyd-B Equation

The Stability of Zero-solutions

Oldroyd-B Equations without External Forces

Consider the Oldroyd-B Equation with f = 0.

$$\begin{array}{rl} \operatorname{Re}(u_t + (u \cdot \nabla)u) - (1 - \alpha)\Delta u + \nabla p &= \operatorname{div}\tau & \operatorname{in} \Omega \times (0, \infty), \\ \nabla \cdot u &= 0 & \operatorname{in} \Omega \times (0, \infty), \\ \operatorname{We}(\tau_t + (u \cdot \nabla)\tau + g_a(\tau, \nabla u)) + \tau &= 2\alpha D(u) & \operatorname{in} \Omega \times (0, \infty), \\ u &= 0 & \operatorname{on} \partial\Omega \times (0, \infty), \\ u &= 0 & \operatorname{on} \partial\Omega \times (0, \infty), \\ u &= u_0 & \operatorname{in} \Omega, \\ \tau &|_{t=0} &= \tau_0 & \operatorname{in} \Omega, \end{array}$$

$$\begin{array}{r} (6) \end{array}$$

• Hieber, Naito, Shibata (JDE 2012): Existence and uniqueness of the global solutions to (6) for small α .

• Hieber, Fang, Zhi (Math. Anal. 2013): Any $\alpha \in (0, 1)$.

The Stability of Zero-solutions

Theorem

Theorem

Denote $E_1 := H^3(\Omega) \cap H^1_0(\Omega) \cap L^2_{\sigma}(\Omega)$. Then, solution (0,0) is L^2 -stable in the sense that every other solutions (u, τ) of (6) starting from a small ball centered at (0,0) in $E_1 \times H^2(\Omega)$ satisfy

$$\lim_{t\to\infty} \|u(t)\|_{L^2} = \lim_{t\to\infty} \|\tau(t)\|_{L^2} = 0.$$

The Stability of Zero-solutions

Ideas for Proof

• Taking the inner product, using Schwarz's and Gronwall's inequalities to obtain

$$\|\tau(t)\| \leqslant e^{-Ct} \|\tau(0)\| + \sqrt{\frac{\alpha}{\operatorname{We}}} \int_0^t e^{-C(t-\xi)} \|D(u(\xi))\| d\xi \text{ for all } t \ge 0.$$
(7)

• Direct computations using Cauchy-Schwarz's inequalies lead to

$$\|u(t)\| \leq \frac{1}{t} \int_0^t \|u(s)\| ds + \frac{\sqrt{2/\text{Re}}}{t^{1/2}} \left(\int_0^t \|\tau(s)\| \|\nabla u(s)\| ds \right)^{1/2}.$$
(8)

- Using the estimate of τ in (7) and Young inequality we obtain $\sup_{t\geq 0} \left(\int_0^t \|\tau(s)\| \|\nabla u(s)\| ds \right) < \infty$
- Using weak- L^p spaces, testing u with some relevant test function, and using time-regularity of u(t) we obtain

$$\frac{1}{t}\int_0^t \|u(s)\|ds\leqslant \frac{1}{t}\int_0^t \|e^{-sA}u(0)\|ds+\frac{C_1}{t^{1/4}}+\frac{C_2}{t}\longrightarrow 0.$$

Further Research

- Stability of zero solution in L^p-spaces
- Existence and Stability of steady-state solutions when $f \neq 0$.
- Existence and of periodic solutions

Thank you for your attention!