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Oldroyd-B Equations

Consider Oldroyd-B equations on an exterior domain Ω ⊂ R3

Re(ut + (u · ∇)u)− (1− α)∆u +∇p = divτ + f inΩ× (0,∞),
∇ · u = 0 inΩ× (0,∞),

We(τt + (u · ∇)τ + ga(τ,∇u)) + τ = 2αD(u) inΩ× (0,∞),
u = 0 on ∂Ω× (0,∞),

u|t=0 = u0 inΩ,
τ |t=0 = τ0 inΩ,

(1)
• u: Velocity
• τ : Purely elastic part of the stress tensor;
• Re , We: Reynolds, Weissenberg numbers
• ga(τ,∇u) := τW (u)−W (u)τ − a(D(u)τ + τD(u)) for
D(u) = 1

2(∇u + (∇u)T ), W (u) = 1
2(∇u − (∇u)T )- the

deformation and vorticity tensors.
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Intermezzo on Oldroyd-B model

Consider the momentum equation in incompressible case

ut + (u · ∇)u = divσ + f

Stokes' postulate: σ = −pI + τ .

Newtonian �uid: τ = 2µD(u).

Non-Newtonian �uid of Oldroyd-B type:

τ + λ1
Daτ

Dt
= 2µ(D(u) + λ2

DaD(u)

Dt
)

where Daτ
Dt =

[
∂
∂t + (u · ∇)

]
τ + ga(τ,∇u)

λ1: relaxation time, λ2: retardation time.

Decomposing τ = τN + τE for τN = 2µλ2
λ1D(u), using again

τ := τE yield

τ + λ1
Daτ

Dt
= 2µ(1− λ2

λ1
)︸ ︷︷ ︸

α

D(u).
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Historical Remarks

Bounded domain Ω.

• Guillopé and Saut (1990): Existence, uniqueness of solutions and
exp. stability of stationary solutions in L2(Ω) for small α.

• Molinet and Talhouk (2004): Any α ∈ (0, 1).

Whole space Ω = R3.
• Lions and Masmoudi (2000): Existence of global weak solutions
for a = 0, extended by Chemin, Masmoudi (2001); Lei, Liu, Zhou
(2008).
• Kupfermann, Mangoubi and Titi (2008): Blow-up criteria for
simpli�ed models.
• Lei, Masmoudi and Zhou (2010): General case.

Exterior domain Ω.
• Hieber, Naito and Shibata (2012): Global existence and
uniqueness of solutions in L2(Ω) for small α.
• Fang, Hieber and Zi (2013): any α ∈ (0, 1).
• No stability result.
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Linearized Problem

Consider the linearized problem of (2) (here set Re = We = 1):

ut − (1− α)∆u +∇p = divτ inΩ× (0,∞),
∇ · u = 0 inΩ× (0,∞),

τt + τ = 2αD(u) inΩ× (0,∞),
u = 0 on ∂Ω× (0,∞),

u|t=0 = u0 inΩ,
τ |t=0 = τ0 inΩ,

(3)

Applying the Helmholtz projection P, we have(
u̇

τ̇

)
=

(
(1− α)P∆ Pdiv

2αD −I

) (
u

τ

)
. (4)
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Oldroyd operator

Correspondingly, we consider the Oldroyd operator

B :=

(
(1− α)Aq −Pdiv
−2αD I

)
(5)

acting on L
q
σ(Ω)×W 1,q(Ω) with the domain

(W 2,q ∩W
1,q
0 ∩ L

q
σ)×W 1,q where Aq is the Stokes operator

Aq := −P∆.
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Existence and Strong Stability of Oldroyd Semigroups

Theorem

Let Ω ⊂ R3 be an exterior domain with smooth boundary, B be the
Oldroyd operator. Then,

(i) −B generates a bounded analytic semigroup (e−tB)t≥0

(Oldroyd semigroup) with the angle π
2 − arcsin

√
2α
1+α on

L
q
σ(Ω)×W 1,q(Ω) for all 1 < q < ∞.

(ii) The semigroup (e−tB)t≥0 is strongly stable.
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Sketch of the proof.

Step 1. We use the resolvent equation to prove

λ ∈ σ(−B) ⇔ k(λ) =
λ(λ + 1)

(1− α)λ + 1 + α
∈ σ(−Aq).

Then, using σ(−Aq) ⊂ (−∞, 0], we obtain
σ(−B) ⊂ C\Σ

π−arcsin
√ 2α1+α

where

Σθ := {λ ∈ C\{0} : | arg(λ)| < θ} .

and we can compute σ(−B) explicitly:
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Existence and Strong Stability of Oldroyd Semigroups
Proof

Step 2. We prove k(λ) ∈ Σπ ⊂ ρ(−Aq) for λ ∈ Σ
π−arcsin

√ 2α1+α

,

then, prove the resolvent estimate∥∥λ(λ + B)−1
∥∥
Lq×W 1,q 6 M for all λ ∈ Σ

π−arcsin
√ 2α1+α

and 1 < q < ∞.

=⇒ −B generates a bounded analytic semigroup (e−tB)t≥0.

Step 3. Using ‖ − Be−tB‖ 6 M
t
, t > 0, and 0 /∈ σr (−B) we can

prove the strong stability.
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Oldroyd-B Equations without External Forces

Consider the Oldroyd-B Equation with f = 0.

Re(ut + (u · ∇)u)− (1− α)∆u +∇p = divτ inΩ× (0,∞),
∇ · u = 0 inΩ× (0,∞),

We(τt + (u · ∇)τ + ga(τ,∇u)) + τ = 2αD(u) inΩ× (0,∞),
u = 0 on ∂Ω× (0,∞),

u|t=0 = u0 inΩ,
τ |t=0 = τ0 inΩ,

(6)
• Hieber, Naito, Shibata (JDE 2012): Existence and uniqueness of
the global solutions to (6) for small α.
• Hieber, Fang, Zhi (Math. Anal. 2013): Any α ∈ (0, 1).
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Theorem

Theorem

Denote E1 := H3(Ω) ∩ H1
0 (Ω) ∩ L2σ(Ω). Then, solution (0, 0) is

L2-stable in the sense that every other solutions (u, τ) of (6)
starting from a small ball centered at (0, 0) in E1 × H2(Ω) satisfy

lim
t→∞

‖u(t)‖L2 = lim
t→∞

‖τ(t)‖L2 = 0.
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Ideas for Proof

• Taking the inner product, using Schwarz's and Gronwall's
inequalities to obtain

‖τ(t)‖ 6 e−Ct‖τ(0)‖+
√

α

We

∫ t

0
e−C(t−ξ)‖D(u(ξ))‖dξ for all t ≥ 0.

(7)
• Direct computations using Cauchy-Schwarz's inequalies lead to

‖u(t)‖ 6
1

t

∫ t

0
‖u(s)‖ds +

√
2/Re

t1/2

(∫ t

0
‖τ(s)‖‖∇u(s)‖ds

)1/2
.

(8)
• Using the estimate of τ in (7) and Young inequality we obtain

supt≥0

(∫ t

0 ‖τ(s)‖‖∇u(s)‖ds
)

< ∞
• Using weak-Lp spaces, testing u with some relevant test function,
and using time-regularity of u(t) we obtain
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1

t

∫ t

0
‖u(s)‖ds 6

1

t

∫ t

0
‖e−sAu(0)‖ds +

C1

t1/4
+

C2
t
−→ 0.



Oldroyd Semigroups The Stability of Oldroyd-B Equation
Further Research
Further Research

Stability of zero solution in Lp-spaces

Existence and Stability of steady-state solutions when f 6= 0.

Existence and of periodic solutions
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Thank you for your attention!
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