
Computers and Operations Research 82 (2017) 95–101

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

A continuous DC programming approach for resource allocation in

OFDMA/TDD wireless networks

Nguyen Canh Nam

1 , ∗, Pham Thi Hoai

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, No1 Dai Co Viet Road, Ha Noi, Viet Nam

a r t i c l e i n f o

Article history:

Received 30 September 2015

Revised 2 January 2017

Accepted 19 January 2017

Available online 23 January 2017

Keywords:

DC programming

DCA

Pure 0-1 linear programming

Exact penalty techniques

Branch-and-Bound

WiMAX

a b s t r a c t

The next generation broadband wireless networks deploys OFDM/OFDMA as the enabling technologies

for broadband data transmission with QoS capabilities. Many optimization problems have arisen in the

conception of such a network. This article studies an optimization problem in resource allocation. By

using mathematical modeling technique we formulate the considered problem as a pure integer linear

program. This problem is reformulated as a DC (Difference of Convex functions) program via an exact

penalty technique. We then propose a continuous approach for its resolution. Our approach is based

on DC programming and DCA (DC Algorithm). It works in a continuous domain, but provides integer

solutions. To check globality of computed solutions, a global method combining DCA with a well adapted

Branch-and-Bound (B&B) algorithm is investigated. Preliminary numerical results are reported to show

the efficiency of the proposed method with respect to the standard Branch-and-Bound algorithm.

© 2017 Elsevier Ltd. All rights reserved.

1

m

t

W

d

o

n

m

c

i

i

t

A

e

a

t

s

p

a

h

n

t

b

t

n

a

t

v

w

n

t

b

p

s

t

a

n

m

B

h

0

. Introduction

Orthogonal Frequency Division Multiple Access (OFDMA) trans-

ission scheme is becoming popular as it is the key technology for

he fourth generation (4G) broadband wireless networks such as

iMAX. In OFDMA scheme data can be transmitted in both time

omain and frequency domain simultaneously. From the network

perator point of view, it is very important to utilize the chan-

el resources effectively as the available radio resources become

ore and more scarce while revenue should be maintained or in-

reased. In general, there has been a tremendous opportunity to

mprove the spectral efficiency while providing fairness and meet-

ng Quality of Service (QoS) requirements of all users at the same

ime [1,2] .

Thus, one functionality should be deployed in the MAC (Media

ccess Control) layer of the OFDMA wireless systems in order to

nsure spectral efficiency, fairness and QoS, namely the resource

llocation function. The resource allocation problem is to allocate

ime slots on a subset of the subcarriers available (frequency re-

ource) to meet client demands and maximize the system through-

ut. Difficulties of such an allocation come from the limit of avail-
ble resources while we need to serve different users as well as

∗ Corresponding author.

E-mail addresses: nam.nguyencanh@hust.edu.vn (N.C. Nam),

oai.phamthi@hust.edu.vn (P.T. Hoai).
1 This research is funded by Vietnam National Foundation for Science and Tech-

ology Development (NAFOSTED) under grant number 101.01-2017.16.

l

t

t

l

p

ttp://dx.doi.org/10.1016/j.cor.2017.01.011

305-0548/© 2017 Elsevier Ltd. All rights reserved.
echnology requirements should be satisfied. Different users should

e assigned to different sub-channels at a slot of time. In addition

he standard specifies that a data burst in the downlink subframe

eeds to be mapped into a time and frequency domain with a rect-

ngular shape.

Until now there are several efforts in research community at-

empting to maximize the efficiency in an OFDMA/TDD (Time Di-

ision Duplexing) frame [3–6] . However, in OFDMA/TDD schemes,

e find that the research on these previous mentioned issues is

ot sufficient. We then propose an efficient continuous approach

o solve this problem.

In this work we develop a deterministic continuous approach

ased on DC programming and DCA. The contributions of the pa-

er are 3-fold:

Firstly, we propose a classical mathematical model for the con-

idered problem. By introducing the binary variables (the alloca-

ion variables) we formulate the resource allocation problem as

 pure 0-1 linear program. Due to the large dimension and huge

umber of constraints of this problem in practice, the standard

ethods in combinatorial optimization such as Branch-and-Bound,

ranch-and-Cut or cutting plane cannot give a globally optimal so-

ution or even a solution closed to a globally optimal solution. At-

empting to develop robust numerical solution approaches, we try

o reformulate the problem as a DC program.

Secondly, we investigate an exact penalty technique to reformu-

ate the pure 0-1 linear program into a continuous optimization

roblem that is in fact a DC program.

http://dx.doi.org/10.1016/j.cor.2017.01.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.01.011&domain=pdf
mailto:nam.nguyencanh@hust.edu.vn
mailto:hoai.phamthi@hust.edu.vn
http://dx.doi.org/10.1016/j.cor.2017.01.011

96 N.C. Nam, P.T. Hoai / Computers and Operations Research 82 (2017) 95–101

Fig. 1. OFDMA/TDD frame in which resource conflict occurs so often.

Fig. 2. Rectangular design in a frame.

s

fl

b

t

r

t

2

0

x

w

x

t

c
Thirdly, we investigate DC programming and DCA for solving a

related DC program.

DC programming and DCA were introduced by Pham Dinh Tao

in 1985, as an extension of his earlier subgradient algorithms for

concave programming, and extensively developed by Le Thi Hoai

An and Pham Dinh Tao since 1994. The DCA has been successfully

applied to real world nonconvex programs in different fields of Ap-

plied Sciences, to which it quite often gave global solutions and

proved to be more robust and more efficient than related stan-

dard methods, especially in large scale settings. It is worth not-

ing that DCA is one of the rare efficient algorithms for nonsmooth

nonconvex programming which allows solving large-scale DC pro-

grams (see [7–13]).

DC programing and DCA ([9,12,13] and references therein) aim

to solve a general DC program of the form

α = inf
{

f (x) := g(x) − h (x) : x ∈ IR

p
}

(1.1)

where g, h are lower semicontinuous proper convex functions on

IR

p . Such a function f is called a DC function, and g − h, a DC de-

composition of f while g and h are the DC components of f . The

construction of DCA involves convex DC components g and h but

not the function f itself : each iteration k of DCA consists of com-

puting

y k ∈ ∂h (x k) , x k +1 ∈ arg min { g(x) − h (x k) − 〈 x − x k , y k 〉 : x ∈ IR

p } .
(1.2)

Hence, for a DC program, each DC decomposition corresponds

to a different version of DCA. Since a DC function f has infinitely

many DC decompositions which have crucial impacts on the quali-

ties (speed of convergence, robustness, efficiency, globality of com-

puted solutions, etc.) of DCA, the search for a “relevant” DC de-

composition is important from algorithmic point of view. Finding a

“good” initial point is then also an important stage of DCA. How to

develop an efficient algorithm generic DCA scheme for a practical

problem is thus a judicious question to be studied, and the answer

depends on the specific structure of the problem being considered.

In the current work, using an appropriate DC decomposition we

propose a DCA scheme which is very inexpensive, in term of CPU

time, thanks to the rapidity of the algorithm for solving subprob-

lem (1.2) .

To globalize the local DCA, its combination with a customized

B&B is investigated. The combined algorithm allows checking glob-

ality of solutions computed by DCA and restarting it if necessary,

and, consequently, accelerates the B&B approach. This combination

has been applied successfully to solve different classes of problems

in various domains such that binary quadratic programming, sup-

ply chain design problem [14–16] . These successes motivated us to

investigate it for solving problem in resource allocation in wireless

network.

The remainder of the paper is organized as follows. In Section 2 ,

we report the problem description and the mathematical formu-

lation of the considered problem, which is a pure 0-1 program.

Section 3 describes how to reformulate the problem in the con-

tinuous form via an exact penalty technique. Section 4 is devoted

to the DC programming and DCA for solving the penalty equiva-

lent. The combined DCA-B&B algorithm is presented in Section 5 ,

while the computational results are reported in Section 6 .

2. Problem description and mathematical formulation

2.1. Problem description

Consider an OFDMA/TDD frame which contains K users, M

sub-channels and N time-slots. Each user will attain his maxi-

mum efficiency if he is allocated suitable resources, i.e., with right
ub-channel and in right time. But there are, of course, many con-

icts within users, see Fig. 1 .

Let b ijk , 1 ≤ i ≤ M , 1 ≤ j ≤ N , 1 ≤ k ≤ K , be the number of

it data that user k can send if he is provided i sub-channel and

ime-slot j , our efficiency measure. Our problem is to allocate the

esources in a frame such that maximize the total efficiency. Never-

heless, such an allocation should satisfy the following conditions:

• At a slot of time and for a specific sub-channel there is at most

one user (to avoid conflicts).
• All resource allocation for users should be done with shape of

rectangle (IEEE802.16e standard on WiMAX network), see Fig. 2 .

.2. Pure 0-1 formulation

In the following we will formulate the above problem as a pure

-1 linear programming.

If we denote

 i jk ∈ { 0 , 1 } for 1 ≤ i ≤ M, 1 ≤ j ≤ N, 1 ≤ k ≤ K (2.1)

ith convention

 i jk =

{
1 if user k is provided sub-channel i at time-slot j

0 otherwise
,

hen the total data that can be transfered is

f (x) :=

K ∑

k =1

N ∑

i =1

M ∑

j=1

b i jk x i jk . (2.2)

In order to avoid conflicts, at a time-slot j and in one sub-

hannel i , there is at most one user. Hence we introduce the

N.C. Nam, P.T. Hoai / Computers and Operations Research 82 (2017) 95–101 97

Fig. 3. Allocation for one user if he is provided twos nodes in the frame.

f

∑

t

p

T

.

T

C

s

f

t

s

i

k

x

F

w

J

T

t

t

s

p

a

n

t

s

M

M

0

3

e

p

t

b

s

α

L ∑

fi{
H

α

F

(

m

T

h

n

t

a

i

R

a

o

o

t

s

s

(

4

4

g

m

t

s

c

t
ollowing constraint

K

k =1

x i jk ≤ 1 ∀ i = 1 , M , ∀ j = 1 , N . (2.3)

In order to get rectangular allocation we use a technique similar

o the well-known one in optimization called “Big-M” [17] . Sup-

ose that we have T + 2 binary variables y, z and x 1 , x 2 , . . . , x T .

hen the following constraint ensures, when y = z = 1 , x 1 = x 2 =
 . . = x T = 1 ,

 (y + z − 1) ≤
T ∑

i =1

x i ⇔ T (y + z − 1) −
T ∑

i =1

x i ≤ 0

learly, if y and z are not concurrently equal to one then this con-

traint does not force any value for x i , i = 1 , 2 , . . . , T .

Because resource allocated for a user should be in a rectangle

orm, if two nodes in the frame are assigned for a user k then all

he nodes in the rectangle made by those two nodes will be as-

igned for this user too, see Fig. 3 .

Hence we have some conditions like if x i 1 j 1 k ∗ = x i 2 j 2 k ∗ = 1 ,

 1 , i 2 ∈ { 1 , . . . , M}; j 1 , j 2 ∈ { 1 , . . . , N}; (i 1 , j 1) 	 = (i 2 , j 2) , for some

∗ ∈ { 1 , 2 , . . . , K} then

 i jk ∗ = 1 , ∀ min { i 1 , i 2 } ≤ i ≤ max { i 1 , i 2 } ,
min { j 1 , j 2 } ≤ j ≤ max { j 1 , j 2 } .

ollowing the above technique, we introduce the constraint

(| i 1 − i 2 | + 1)(| j 1 − j 2 | + 1)(x i 1 j 1 k + x i 2 j 2 k −1) −
∑

i ∈ I i 1 i 2

∑

j∈ J j 1 j 2

x i jk ≤ 0 ,

(2.4)

here

I i 1 i 2 = { i : min { i 1 , i 2 } ≤ i ≤ max { i 1 , i 2 } } ,
 j 1 j 2 = { j : min { j 1 , j 2 } ≤ j ≤ max { j 1 , j 2 } } .
his process will be run repeatedly over all the rectangle parts of

he frame and for all users.

Finally, we arrive in the optimization problem with the objec-

ive function (2.2) and the constraints (2.3) , the system of con-

traints (2.4) and (2.1) .

This problem is a pure 0-1 problem and hence a nonconvex

rogram. Its difficulty is from the fact that the number of variables

nd the number of constraints increase so fast with respect to the

umber of users, the number of sub-channels and the number of

ime-slots. The number of binary variables and the number of con-

traints are calculated by the following formulas.
The number of binary variables is

 · N · K.

The number of constraints is

 · N + K · M N(M N − 1)

2

.

We then deal with a problem in the form of a large-scale pure

-1 linear program.

. Concave minimization reformulation

In this section, using the well-known results concerning the

xact penalty [18,19] , we will formulate the considered pure 0-1

roblem in the form of concave minimization programming.

Denote D as the set of feasible points x determined by the sys-

em of constraints {(2.3), (2.4)}. It is clear that D is a nonempty,

ounded polyhedral convex set in IR

n with n = K · M · N. The con-

idered problem can be expressed in the form

= min

{
c T x : x ∈ D, x ∈ { 0 , 1 } n }. (3.1)

et us consider function p defined by p(x) =

∑ n
i =1 p i (x i) =

 n
i =1 min { x i , 1 − x i } .
Set S := { x ∈ D : x ∈ [0, 1] n }. It is clear that p is concave and

nite on S, p (x) ≥ 0 for all x ∈ S , and

x ∈ D : x ∈ { 0 , 1 } n } = { x ∈ S : p(x) ≤ 0 } .
ence Problem (3.1) can be rewritten as

= min

{
c T x : x ∈ S, p(x) ≤ 0

}
. (3.2)

rom Theorem 3.1 below we get, for a sufficiently large number τ
 τ > τ 0), the equivalent concave minimization problem to (3.1) :

in { c T x + τ p(x) : x ∈ S} . (3.3)

heorem 3.1. (Theorem 2, [18]) Let S be a nonempty bounded poly-

edral convex set, f be a finite concave function on S and p be a fi-

ite nonnegative concave function on S. Then there exists τ 0 ≥ 0 such

hat, for all τ > τ 0 , the following problems have the same solution set

nd the same optimal value :

(P τ) α(τ) = inf { f (x) + τ p(x) : x ∈ S }
(P) α = inf { f (x) : x ∈ S, p(x) ≤ 0 } .
More precisely if the vertex set of S, denoted by V (S), is contained

n { x ∈ S, p (x) ≤ 0}, then τ0 = 0 , otherwise τ0 = min { f (x) −α(0)
S

: x ∈ S,
p(x) ≤0 } , where S := min { p (x): x ∈ V (S), p (x) > 0} > 0 .

emark 3.1 (Practical choice of the penalty parameter. τ > τ 0

nd its use in our combined DCA and BB)

In general, it is difficult to compute explicitly any upper bound

f τ 0 in Problem (3.3) . In practice, we take τ sufficiently large in

rder for Problem (3.3) to be equivalent to Problem (3.1) . To check

he equivalence of these problems, we use the exact penalty re-

ults in Theorem 3.1 : α(τ) ≤ α for every τ ≥ 0 and if an optimal

olution to Problem (3.3) with given τ ≥ 0 is feasible to Problem

3.1) then it is also an optimal solution of the latter one and τ ≥ τ0 .

. DCA for solving Problem (3.3)

.1. Outline of DC programming and DCA

Pham Dinh Tao in 1985 introduced DC Algorithm for DC pro-

ramming which constitutes the backbone of (smooth or nons-

ooth) nonconvex programming and global optimization. These

heoretical and algorithmic tools have been extensively developed,

ince 1994, by Le Thi Hoai An and Pham Dinh Tao to become now

lassic and increasingly popular (see [9,12,13,20] , and references

herein). DC programming addresses the problem of minimizing a

98 N.C. Nam, P.T. Hoai / Computers and Operations Research 82 (2017) 95–101

w

S

t

y

A

r

∂

w

d

∂

a

−

h

∂

p

m

R

t

a

t

l

L

w

e

x

R

p

n

t

T

function f which is a difference of convex functions on the whole

space IR

p or on a convex set C ⊂ IR

p . Generally speaking, a DC pro-

gram takes the form

α := inf
{

f (x) := g(x) − h (x) | x ∈ IR

p
}
, (4.1)

with g, h being lower semicontinuous proper convex functions on

IR

p . Such a function f is called DC function, and g − h, DC decom-

position of f while g and h are DC components of f . Note that the

closed convex constraint x ∈ C can be included in the objective

function of (4.1) by using the indicator function on C denoted by

χC which is defined by χC = 0 if x ∈ C , and + ∞ otherwise :

inf { f (x) := g(x) − h (x) | x ∈ C} = inf { χC + g(x) − h (x) | x ∈ IR

p } .
A DC program (4.1) is called a polyhedral DC program when

either g or h is a polyhedral convex function (i.e., the sum of the

indicator function of a polyhedral convex set and the supremum of

a finite collection of affine functions).

Recall that, for a convex function ϕ, the subdifferential of ϕ at

x ′ ∈ dom ϕ := { x ∈ IR

p | ϕ(x) < + ∞} , denoted by ∂ϕ(x ′), is defined

by

∂ϕ(x ′) := { y ∈ IR

p | ϕ(x) ≥ ϕ(x ′) + 〈 x − x ′ , y 〉 , ∀ x ∈ IR

p }
The subdifferential ∂ϕ(x ′) generalizes the derivative in the sense

that ϕ is differentiable at x ′ if and only if ∂ϕ(x ′) =

{∇ x ϕ(x ′)
}

.

A point x ∗ is said to be a local minimizer of g − h if g(x ∗) − h (x ∗)
is finite and there exists a neighbourhood B of x ∗ such that

g(x ∗) − h (x ∗) ≤ g(x) − h (x) , ∀ x ∈ B. (4.2)

The necessary local optimality condition for (primal) DC program

(4.1) is given by

∅ 	 = ∂h (x ∗) ⊂ ∂g(x ∗) . (4.3)

The condition (4.3) is also sufficient, for local optimality, for poly-

hedral DC program with h being polyhedral convex [9] .

The DCA (see [9,12,21] and reference therein) is based on local

optimality conditions and duality in DC programming (by reason of

simplicity we omit here the presentation of DC duality). The main

idea of DCA is simple: each iteration k of DCA approximates the

concave part −h by its affine majorization and minimizes the ob-

taining convex function. Precisely, each iteration k of a general DCA

consist of computing

y k ∈ ∂h (x k) , x k +1 ∈ arg min { g(x) −h (x k) −〈 x − x k , y k 〉 : x ∈ IR

p } .
(4.4)

In fact, there is not only one DCA, but infinitely many DCAs for

a considered DC program. DCA’s properties rely upon the fact that

DCA deals with the convex DC components g and h but not with

the DC function f itself. The fact is crucial for nonconvex nons-

mooth programs for which DCA is one of rare effective algorithms.

The solution of a practical nonconvex program by DCA must have

two stages : the search of an appropriate DC decomposition and

the search of a good initial point. An appropriate DC decomposi-

tion, in our sense, is the one that corresponds to a DCA, which is

not expensive and has interesting convergence properties.

In the next subsection, we will develop an instance of DCA to

solve the Problem (3.3) , and study the convergence properties of

the proposed algorithm.

4.2. DCA for solving Problem (3.3) .

Clearly that (3.3) is a DC program with the following DC de-

composition

g(x) = χS (x) and h (x) = −c T x − τ
n ∑

i =1

min { x i , 1 − x i } (4.5)
here χS (x) = 0 if x ∈ S , + ∞ , otherwise (the indicator function on

).

Performing DCA for Problem (3.3) amounts to computing the

wo sequences { x k } and { y k } defined by

k ∈ ∂h (x k) , x k +1 ∈ arg min { g(x) −h (x k) −〈 x − x k , y k 〉 : x ∈ IR

p } .
s usually, ∂h is often explicitly computed with the help of known

ules in convex analysis. We have

h (x k) = ∂(−c T x k) + τ∂(−p)(x k) (4.6)

here ∂(−c T x k) and ∂(−p)(x k) can be calculated explicitly. In-

eed,

(−c T x k) = −c,

nd since

p(x k) =

n ∑

i =1

max {−x k i , x
k
i − 1 }

ence

h (x k) = −c + d where d i =

{
−τ if x k

i
< 0 . 5

τ otherwise
for i = 1 , 2 , . . . , n.

(4.7)

As for finding x k +1 , we need only to solve the following linear

rogram

in

{
−〈 x, y k 〉 : x ∈ S

}
. (4.8)

emark 4.1. The sequence { x k } can be then included in the ver-

ex set V (S) of S . This property constitutes one of the interesting

dvantages of DC decomposition (4.5) , knowing that V (S) contains

he feasible set of (3.1) .

We are now in a position to describe the DCA applied to Prob-

em (3.3))

Algorithm 4.1 (DCA applied to (3.3)) .

et ε > 0 be small enough and x 0 . Set k ← 0 ; er ← 1 .

hile er > ε do

Calculate y k ∈ ∂h (x k) via (4.7) .

Calculate x k +1 by solving the linear program (4.8)

er ← min

{ || x k +1 − x k ||
‖ x k ‖ + 1

,
| f (x k +1) − f (x k) |

| f (x k) | + 1

}
k ← k + 1

ndwhile

k +1 is the computed solution.

emark 4.2. Performing of DCA amounts to solve a series of linear

rogramming problems.

The convergence of Algorithm 4.1 can be summarized in the

ext theorem whose proof is essentially based on the convergence

heorem of a DC polyhedral program [9,12,21] .

heorem 4.1. (Convergence properties of Algorithm 4.1)

(i) Algorithm 4.1 generates a sequence { x k } contained in V (S) such

that the sequence c T x + τ p(x) is decreasing.

(ii) There exists a nonnegative number τ 1 such that for every τ >

τ 1 the sequence { p (x k)} is decreasing. In particular, if, at iter-

ation r, x r is a feasible solution of (3.1) , then x k , for k ≥ r, is

feasible too.

(iii) The sequence { x k } converges to x ∗ ∈ V (S) after a finite number

of iterations. The point x ∗ is a critical point of Problem (3.3) .

Moreover, if x ∗
i

	 =

1
2 for i = 1 , . . . , n, then x ∗ is a locally optimal
solution to Problem (3.3) .

N.C. Nam, P.T. Hoai / Computers and Operations Research 82 (2017) 95–101 99

R

f

p

n

5

c

a

t

s

w

i

d

i

b

d

s

A

γ

a

b

v

W

e

s

S

D

a

p

b

g

5

p

i

t

f

c

c

g

t

0

P

v

F

w

c

5

f

i

s

s

c

b

c

c

w

g

R

t

5

g

p

p

(

t

b

f

h

s

L

o

w

a

m

t

m

r

emark 4.3. According to Theorem 4.1 , let us emphasize the key

eatures of DCA applied to (3.3) : ({ x k } being generated by DCA ap-

lied to (3.3) with τ > max { τ 0 , τ 1 })

(i) Both sequences { c T x k + τ p(x k) } and { p (x k)} are decreasing.

(ii) If x r is feasible for (3.1) then x k , for k ≥ r , is feasible too.

In this case, sequence { x k } moves in the feasible set of (3.1) ,

(x k ∈ D, x k ∈ {0, 1} n), while decreasing the objective function.

These nice properties have great impacts on the search of bi-

ary solutions.

. A global optimization based on DC programming approach

We will globally solve the obtained optimization problem by a

ustomized Branch-and-Bound (B&B) method. Linear relaxation is

pplied to compute lower bounds while the upper bounds are de-

ermined by applying DCA to (3.3) . Our combined algorithm can be

ummarized as follows : starting with the rectangle R 0 := [0, 1] n ,

e consider at each iteration k ≥ 0 the rectangle R k correspond-

ng to the smallest lower bound βk . The selected rectangle R k is

ivided into two subrectangles R k i , i = 0 , 1 and the lower bound is

mproved by solving the corresponding linear programs. The upper

ound γ k is determined by applying the DCA to (3.3) . The proce-

ure is determined when γk − βk ≤ ε and it provides an ε−optimal

olution of (3.1) .

lgorithm 5.1 (The combined algorithm) . Let R 0 = [0 , 1] n . Set

0 := + ∞ , β0 := −∞ , restar t := tr ue, R := { R 0 } , and k = 0 . Let ε be

 sufficiently small positive number.

1. Let R k be the rectangle such that βk = β(R k) = min

{
β(R) :

R ∈ R

}
. Bisect R k into two subrectangles R k 0 and R k 1 via the

index j ∗

R k i
= { x ∈ R k : x j ∗ = i } , i = 0 , 1 .

2. Compute the lower bound βk i
(i = 0 , 1) by solving the linear

relaxation problems corresponding to the set R k i .

3. If (restar t = tr ue) then update γk , the best upper bound of

the optimal value of (3.1) by applying DCA to Problem (3.3)

from a suitable starting point found in Step 2. Update

R ← R\{ R t : β(R t) ≥ γk − ε, R t ∈ R} .
4. If R = ∅ (i.e., γk − βk ≤ ε), then STOP, the ε−optimal solu-

tion is x k that verifies c T x k = γk , otherwise update

R ← R ∪

{
R k i

: β(R k i
) < γk − ε, i = 0 , 1

}\ R k

and go to step 1.

The combined algorithm differs from the classical B&B scheme

y Step 3 in which DCA is investigated. Here restart is a boolean

ariable which takes value true when we decide to restart DCA.

e will discuss in detail this procedure in Section 5.2 . As in sev-

ral DC programs, DCA provides a global solution to (3.3) (and

o is to (3.1)) from a good starting point (detail will be found in

ection 5.1). We will see in the computational experiments that

CA provides a global solution after first two iterations of the B&B

lgorithm. Nevertheless, we must continue the branch and bound

rocess to improve the lower bound until it is closed enough to the

est upper bound. In fact, the B&B algorithm is presented to get a

ood starting point for DCA and to check the globality of DCA.

.1. Finding a good starting point for DCA

Theorem 4.1 says that, starting with a feasible solution of the

ure 0-1 linear program (3.1) , DCA provides a better one, although

t works on the continuous feasible set of (3.3) . It is so important

o find a good feasible point to (3.1) for restarting DCA.
During the Branch and Bound procedure, we can restart DCA

rom the best feasible solution to (3.1) that is discovered while

omputing lower bounds. This is motivated by a similar and effi-

ient way introduced in the combined DCA-Branch and Bound al-

orithm for nonconvex quadratic programming [14] .

A good feasible point can be found by applying beforehand DCA

o the concave programming problem as in [22]

 = min

{

n ∑

i =1

min { x i , 1 − x i }
}

. (5.1)

roblem (5.1) is a polyhedral DC program with known optimal

alue and whose solution set is exactly the feasible set F of (3.1) .

ortunately, as for linear complementarity problems [22,23] , DCA,

ith starting point x not necessarily feasible but satisfy p(x) ≤ 0 ,

onverges, almost always in practice, to a global solution of (5.1) .

.2. When do we restart DCA?

During the branch and bound process, we restart DCA when a

easible solution to (3.1) improving the best current upper bound

s pointed out. Usually, an upper bound is obtained when a binary

olution is found, we call this upper bound (the value of f of this

olution a Score). However, by using the exact penalty technique,

T x + τ p(x) , with x ∈ K , is also an upper bound and is denoted

y UB f . So, in our algorithm, we restart DCA when the following

ondition is satisfied

T x̄ + τ p(̄x) < min

{
Score , UB f

}
(1 + 10 e −3) , (5.2)

here x̄ is an optimal solution of the current relaxed linear pro-

ram (computing lower bound).

emark 5.1. Since the value of τ is large, so Score is often smaller

han UB f .

.3. Branching procedure using binary subdivision

Using exact penalty techniques, we obtain equivalent DC pro-

rams in the continuous framework which make possible the ap-

lication of the local continuous approach DCA. In the branching

rocedure of our branch and bound, we turn the binary character

of the variable in the binary linear program (3.1)) to take advan-

age in replacing the bisection of a chosen k th edge [0, 1] with the

inary one : x k = 0 and x k = 1 . The procedure is detailed in the

ollowing:

Suppose that, at a node in our Branch and Bound scheme, we

ave to solve

min c T x

ubject to x i ∈ D

x i = 0 i ∈ I, x i = 1 i ∈ J

x i ∈ { 0 , 1 } i ∈ { 0 , 1 , . . . , n }\ (I ∪ J) . (5.3)

et x R be an optimal solution of the linear relaxation of (5.3) .

If x R ∈ {0, 1} n , i.e., p(x R) = 0 then x R is also an optimal solution

f (5.3) . Otherwise, there exists some j ∗ such that x R
j ∗ ∈ (0 , 1) . Then

e replace Problem (5.3) with two subproblems by setting x R
j ∗ = 0

nd x R
j ∗ = 1 , respectively.

The index j ∗ is chosen such that the gaps between p j (x R
j
) =

in { x R
j
, 1 − x R

j
} and its convex hull on [0, 1] - which is identical

o zero - is maximum with respect to j = 1 , . . . , n, i.e.,

ax
j

{
min { x R j , 1 − x R j }

}
= min { x R j ∗ , 1 − x R j ∗ } . (5.4)

We now describe the combined DCA-Branch and Bound algo-

ithm for globally solving Problem (3.1) .

100 N.C. Nam, P.T. Hoai / Computers and Operations Research 82 (2017) 95–101

e

c

b

o

r

s

e

e

a

#

#

#

U

L

N

t

7

c

n

p

t

l

h

s

c

a

T

D

i

g

j

5.4. Global algorithm (DCA-BB)

Let R 0 := [0 , 1] n . Let ε be a sufficient small positive number.

Solve the linear relaxation problem of (3.1) to obtain an optimal

solution x R 0 and the first lower bound β0 := β(R 0).

Solve (3.3) by DCA from the starting point x R 0 to obtain x
R 0
τ .

If x
R 0
τ is feasible to (3.1) then set γ0 := c T x

R 0
τ and set x 0 = x

R 0
τ else

set γ0 := + ∞ .

If (γ0 − β0) ≤ ε| γ0 | then x 0 is an ε−optimal solution of (3.1) else

set R := { R 0 } , k := 0.

While stop = false do

Select a rectangle R k such that βk = β(R k) = min { β(R) : R ∈ R} .
Bisect R k into two subrectangles R k 0 and R k 1 via the index j ∗,

chosen by (5.4) .

R k i = { x ∈ R k : x j ∗ = i, i = 0 , 1 } .
Solve the subproblems (P k i) to obtain β(R k i) and x

R k i :

β(R k i
) := min { c T x : x ∈ K ∩ R k i

} (i = 0 , 1) (Pki)

If x
R k i is the best feasible solution to (3.1) then update γ k and

the best feasible solution x k by applying DCA to (3.3) from x
R k i .

End if

If the condition of restarting DCA (5.2) is satisfied then

Apply DCA to (5.1) from x
R k i to obtain x

R k i
τ

If x
R k i
τ is feasible to (3.1) and c T x

R k i
τ < γk then

Update upper bound γk = c T x
R k i
τ and solution x k = x

R k i
τ

End if

End if

Update the list of rectangles R ← R ∪ { R k i : β(R k i) < γk − ε,

i = 0 , 1 }\ {R k ∪ { R j : β(R j) ≥ γ − ε, R j ∈ R} }
If R = ∅ then STOP, x k is an ε-optimal solution else k ← k + 1

End if

End while

The correctness and the convergence of the algorithm are stated

in the following result whose proof is fairly standard from the

branching procedure and the bounding one [24,25] . Its finiteness

is due to the binary subdivision used in the algorithm.

Proposition 5.1. Algorithm DCA-BB terminates after finitely many it-

erations and yielding an ε−optimal solution of Problem (3.1) .

6. Computational experiments

The algorithms were implemented on a PC Intel Core i3, CPU

2.2 GHz, 4G RAM, in C++. To solve the linear programs in relaxation

procedure and in DCA, we used CLP solver, a very famous open

source solver from COIN-OR (www.coin-or.org).

In order to evaluate the performance of the proposed algo-

rithms as well as the efficiency of DCA, we randomly generated 10
Table 1

Numerical results.

No. M N K #Var #Constr B & B

#Iter UB LB

1 3 3 4 36 280 5 4981 4981

2 4 4 3 48 1215 11 2267 2267

3 4 4 4 64 1615 5 16,528 16,500

4 3 3 6 54 416 39 40 40

5 4 4 5 80 2015 797 876,753 876,624

6 4 4 6 96 2415 49 5962 5950

7 5 5 4 100 6024 123 9564 9514

8 6 6 3 108 13,055 137 3757 3743

9 5 4 6 120 4699 – – –

10 5 5 5 125 7524 – – –

– : Failed in finding optimal solution.
xamples in which the number of binary variables is increased by

hanging the number of users, number of sub-channels and num-

er of slots of time. In this experiment, we compare the efficiency

f our DCA-BB algorithm with the classical Brand and Bound algo-

ithm. For all test problems, we always try to find out an ε-optimal

olution, with ε ≤ 5 . 10 −2 . We limit the algorithms in number of it-

ration to 10 5 , i.e, after 10 5 iterations the problem will be consid-

red as failed in finding an ε−optimal solution. The results of our

lgorithm in each case are summarized in Table 1 .

Some notations used in Table 1 :

Var : Number of variables

Constr : Number of constraints

Iter : Number of iterations

B : Upper bound

B : Lower bound

o F : the ‘th’-restarting DCA in DCA-BB at which DCA

provides the first feasible solution to (3.1)

Comments on the numerical simulations : From the results in the

ables above we observe that

• The DCA with restarting provides the first feasible solution to

(3.1) very rapidly, at most after 2 restarting times.
• DCA is inexpensive and can so handle problems with large

number of binary variables. The superiority of DCA-Branch and

Bound relative to the Branch and Bound algorithm increases

when the number of binary variables increases. DCA-Branch

and Bound is fast for large-scale problems while Branch and

Bound algorithm is quite slow or it cannot solve some prob-

lems in reasonable time.

. Conclusion

We considered an important problem in wireless network con-

eption, the resource allocation problem. By using modeling tech-

iques we have presented the considered problem in the form of

ure 0-1 linear program. The binary character of the variable in

his problem and exact penalty in DC programming allow reformu-

ating the obtained problem into an appropriate equivalent poly-

edral DC program. That leads to a very simple DCA, consisting of

imply solving a finite number of linear programs with the same

onstraint set. This is the first time a deterministic optimization

pproach is investigated in the literature for solving this problem.

his constitutes an interesting contribution of the paper.

Preliminary numerical simulations show that the combination

CA-Branch and Bound is efficient. Its success is due to DCA, which

s featured by the fact: Although being a continuous approach, DCA

enerates a finite sequence of binary solutions with decreasing ob-

ective values. DCA gives ε−optimal solutions in almost cases.
DCA - BB

Time(s) #Iter UB LB Time(s) N

o F

1 .4 2 4981 4981 0 .9 1

0 .5 2 2267 2267 0 .3 1

1 .4 2 16,543 16,500 1 1

8 .8 17 40 40 1 .4 1

25 .4 95 876,654 876,534 23 .4 2

65 .6 38 5962 5871 35 .4 2

792 .4 37 9587 9432 76 .8 2

1023 .2 33 3789 3641 151 .4 1

– 399 12,367 12,356 1500 2

– 278 98,794 98,765 1809 2

http://www.coin-or.org

N.C. Nam, P.T. Hoai / Computers and Operations Research 82 (2017) 95–101 101

i

w

a

w

a

i

s

g

t

i

o

A

c

p

R

[

[

[

[

[

They confirm the practical observations concerning DCA: DCA

s inexpensive and can be applied to large-scale DC programs to

hich it gives quite often optimal solutions, while starting from

 good initial point. Finally, the combined DCA-Branch and Bound

ill be able to handle large-scale instances if its number of iter-

tions remains in certain reasonable limits. Otherwise, thanks to

ts inexpensiveness, DCA still works well to find good local binary

olutions, but we do not have any more means of checking their

lobality. We hope that the DCA will be useful for people having

o solve real-life problems. Their computational results will make

t possible to strongly appreciate the robustness and effectiveness

f the DCA.

cknowledgments

The authors would like to thank two referees for their useful

omments and suggestions which have considerably improved the

resentation of the revised paper.

eferences

[1] Rodrigues EB , Casadevall F . Control of the trade-off between resource efficiency
and user fairness in wireless networks using utility-based adaptive resource

allocation. IEEE Commun Mag 2011;49:90–8 .
[2] Ali-Yahiya T , Beylot A-L , Pujolle G . Downlink resource allocation strategies for

ofdma based mobile wimax. Telecommun Syst 2010;44:29–37 .
[3] Bacioccola A , Cicconett C , Lenzini L , Mingozzi E , Erta A . A downlink data region

allocation algorithm for ieee 802.16e ofdma. In: Proc. 6th int. conf. information,
communications and signal processing; 2007. p. 1–5 .

[4] Wand T , Feng H , Hu B . Two-dimensional resource allocation for ofdma sys-

tem. In: Proc. IEEE int. conf. communications workshop. Beijing, China; 2008.
p. 1–5 .

[5] Rodrigues E , Casadevall F , Sroka P , Moretti M , Dainelli G . Resource allocation
and packet scheduling in ofdma-based cellular networks. In: Proc. 4th interna-

tional conference on cognitive radio oriented wireless networks and commu-
nications; 2009. p. 1–6 .

[6] Cicconetti C , Lenzini L , Lodi A , Martello S , Mingozzi E , Monaci M . Efficient

two-dimensional data allocation in ieee 802.16 ofdma. IEEE/ACM Trans Net-
working 2014;22(5):1645–58 .

[7] An LTH , Tao PD . Solving a class of linearly constrained indefinite quadratic
problems by dc algorithms. J Global Optim 1997;11:253–85 .

[8] An LTH , Tao PD . Large scale molecular optimization from distance matrices by
a dc optimization approach. SIAM J Optim 2003;14(1):77–117 .
[9] An LTH , Tao PD . The dc (difference of convex functions) programming and dca
revisited with dc models of real world nonconvex optimization problem. Ann

Oper Res 2005;133:23–46 .
[10] An LTH , Tao PD , Nam NC . Local and global approaches based on dc program-

ming, branch-and-bound and sdp techniques for nonconvex quadratic pro-
gramming. Tech. Rep.. National Institute for Applied Sciences, Rouen; 2005 .

[11] Nam NC . Approches locales et globales basées sur la programmation dc &
dca et les techniques b&b avec relaxation sdp pour certaines classes des pro-

grammes non convexes. simulations numériques et codes à l’usage industriel.

National Institute for Applied Sciences, Rouen, France; 2007 .
[12] Tao PD , An LTH . Convex analysis approach to dc programming: theory, algo-

rithms and applications. Acta Mathematica Vietnamica 1997;22:289–355 . ded-
icated to Professor Hoang Tuy on the occasion of his 70th birthday

[13] Tao PD , An LTH . Dc optimization algorithms for solving the trust region sub-
problem. SIAM J Optim 1998;8(2):476–505 .

[14] An LTH , Tao PD . A continuous approach for globally solving linearly

constrained quadratic zero-one programming problems. Optimization
2001;50:93–120 .

[15] An LTH , Phuc NT , Tao PD . A continuous dc programming approach to the
strategic supply chain design problem from qualified partner set. Eur J Oper

Res 20 07;183(3):10 01–12 .
[16] Tao PD , Nam NC , An LTH . An efficient combined dca and b& b using dc/sdp

relaxation for globally solving binary quadratic programs. J Global Optim

2010;48:595–632 .
[17] Griva I , Nash SG , Sofer A . Linear and nonlinear optimization. 2nd ed. Society

for Industrial Mathematics; 2009. ISBN 978-0-89871-661-0 .
[18] An LTH , Tao PD , Muu LD . Exact penalty in dc programming. Vietnam J Math

1999;27:1216–31 .
[19] An LTH , Tao PD , Ngai HV . Exact penalty and error bounds in dc programming.

J Global Optim 2012;52:509–35 .

20] An LTH , Tao PD . Large scale molecular optimization from distances matrices by
a dc optimization approach. SIAM J Optim 2003;14(1):77–116 .

[21] An LTH , Tao PD . Dc programming: theory, algorithms and applications. the
state of the art. In: Proceedings (containing refereed contributed papers) of the

first international workshop on global constrained Optimization and Constraint
Satisfaction (Cocos’ 02). Valbonne-Sophia Antipolis, France; 2002 . 26 pages.

22] An LTH , Tao PD . Dc programming approaches and dca for globally solving lin-

ear complementarity problems. Tech. Rep.. National Institute for Applied Sci-
ences, Rouen; 2004 .

23] Tao PD , An LTH , Francois A . Combining dca and interior point techniques
for large-scale nonconvex quadratic programming. Optim Methods Software

2008;23(4):609–29 .
24] Phong TQ , An LTH , Tao PD . Decomposition branch and bound method for glob-

ally solving linearly constrained indefinite quadratic minimization problems.

Oper Res Lett 1995;17:215–22 .
25] Phong TQ , An LTH , Tao PD . On the global solution of linearly constrained in-

definite quadratic minimization problems by decomposition branch and bound
method. RAIRO, Recherche Operationelle 1996;30(1):31–49 .

http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30011-4/sbref0025

	A continuous DC programming approach for resource allocation in OFDMA/TDD wireless networks
	1 Introduction
	2 Problem description and mathematical formulation
	2.1 Problem description
	2.2 Pure 0-1 formulation

	3 Concave minimization reformulation
	4 DCA for solving Problem (3.3)
	4.1 Outline of DC programming and DCA
	4.2 DCA for solving Problem (3.3).

	5 A global optimization based on DC programming approach
	5.1 Finding a good starting point for DCA
	5.2 When do we restart DCA?
	5.3 Branching procedure using binary subdivision
	5.4 Global algorithm (DCA-BB)

	6 Computational experiments
	7 Conclusion
	 Acknowledgments
	 References

