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Input data
+ 3D soil structure

+ Initial spatial distribution of 
                biological elements:  

- Micro-organism (MB) 

- Dissolve Organic Matter (DOM) 

- Fresh Organic Matter (FOM) 

- Soil Organic Matter (SOM) 

- Enzymes (ENZ) 
- Inorganic organic matter (CO2) 
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∂e

∂t
= De∆e+ ν b− ζ e (6)

where De is the enzymes diffusion coefficient, ζ represents the enzymes
degradation rate.

Inorganic carbon (CO2) variation is due to its diffusion and to its produc-
tion by microbial decomposers (MB) during breathing.

variation (c) = diffusion + production

The CO2 evolution equation is:

∂c

∂t
= Dc∆c+ r b, (7)

where Dc is set to the CO2 diffusion coefficient.
On the border of Ω noted ∂Ω, we use the Neumann boundary conditions.

It means that flow is null on ∂Ω for all variables.

3.3 Mathematical model

In this section we use the above equations describing variables variations to
set a global PDE system modeling biological dynamics.

We note T > 0 a fixed time and define

ΩT = Ω×]0, T [. (8)

Therefore, the whole system of partial differential equations governing the
biological model becomes in ΩT :

∂b

∂t
= Db∆b+

(

k n

Kb+n
− µ− r − ν

)

b,
∂n

∂t
= Dn∆n+ e

Km+e
(c1 m1 + c2 m2)−

k n

Kb+n
b+ α1(ζ)e+ α2(µ)b,

∂m1

∂t
= − c1 e

Km+e
m1 + (1− α1(ζ))e+ (1− α2(µ))b,

∂m2

∂t
= − c2 e

Km+e
m2,

∂e

∂t
= De∆e+ ν b− ζ e,

∂c

∂t
= Dc∆c+ r b.

(9)

We use Neumann homogeneous boundary conditions and the following ini-
tial conditions in Ω: b0(x) for MB, n0(x) for DOM, m10(x) for SOM, m20(x)
for FOM, e0(x) for ENZ c0(x) for CO2.

3.2.5 Enzymes (ENZ)

Enzymes quantity variation is due to the enzymes production by microbial decomposers (MB),
the enzymes diffusion, and the enzymes degradation :

variation of e = diffusion of e + production of e � degradation of e .

The above scheme is expressed by the following equation:

@e

@t
= D

e

�e + ⌫ b� ⇣ e (6)

where D
e

is the enzymes diffusion coefficient, ⇣ represents the enzymes degradation rate.

3.2.6 Inorganic Carbon (CO2)

Inorganic carbon (CO2) variation is due to its diffusion and to its production by microbial de-
composers (MB) during breathing.

variation of c = diffusion of c + production of c .

The CO2 evolution equation is:

@c

@t
= D

c

�c + r b, (7)

where D
c

is set to the CO2 diffusion coefficient.

3.3 Boundary conditions for model variables
On the border of ⌦ noted @⌦, we use the Neumann boundary conditions. It means that flow is
null on @⌦ for all variables.

3.4 Forming Partial Differential Equations (PDE) System
In this section we use the above equations describing variables variations to set a global PDE
system modeling biological dynamics.

Let T > 0 be a fixed time and let’s define

⌦
T

= ⌦⇥]0, T [. (8)

Therefore, the whole system of partial differential equations governing the biological model
becomes in ⌦

T

:

@b

@t
= D

b

�b +
⇣ k n

K
b

+ n
� µ� r � ⌫

⌘
b, (9)

@n

@t
= D

n

�n +
e

K
m

+ e
(c1 m1 + c2 m2)�

k n

K
b

+ n
b + ↵1(⇣)e + ↵2(µ)b, (10)

@m1

@t
= � c1 e

K
m

+ e
m1 + (1� ↵1(⇣))e + (1� ↵2(µ))b, (11)

7
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∂e

∂t
= De∆e+ ν b− ζ e (6)

where De is the enzymes diffusion coefficient, ζ represents the enzymes
degradation rate.

Inorganic carbon (CO2) variation is due to its diffusion and to its produc-
tion by microbial decomposers (MB) during breathing.

variation (c) = diffusion + production

The CO2 evolution equation is:

∂c

∂t
= Dc∆c+ r b, (7)

where Dc is set to the CO2 diffusion coefficient.
On the border of Ω noted ∂Ω, we use the Neumann boundary conditions.

It means that flow is null on ∂Ω for all variables.

3.3 Mathematical model

In this section we use the above equations describing variables variations to
set a global PDE system modeling biological dynamics.

We note T > 0 a fixed time and define

ΩT = Ω×]0, T [. (8)

Therefore, the whole system of partial differential equations governing the
biological model becomes in ΩT :

∂b

∂t
= Db∆b+

(

k n

Kb+n
− µ− r − ν

)

b,
∂n

∂t
= Dn∆n+ e

Km+e
(c1 m1 + c2 m2)−

k n

Kb+n
b+ α1(ζ)e+ α2(µ)b,

∂m1

∂t
= − c1 e

Km+e
m1 + (1− α1(ζ))e+ (1− α2(µ))b,

∂m2

∂t
= − c2 e

Km+e
m2,

∂e

∂t
= De∆e+ ν b− ζ e,
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(9)

We use Neumann homogeneous boundary conditions and the following ini-
tial conditions in Ω: b0(x) for MB, n0(x) for DOM, m10(x) for SOM, m20(x)
for FOM, e0(x) for ENZ c0(x) for CO2.

@m2

@t
= � c2 e

K
m

+ e
m2, (12)

@e

@t
= D

e

�e + ⌫ b� ⇣ e, (13)

@c

@t
= D

c

�c + r b (14)

We use Neumann homogeneous boundary conditions and the following initial conditions in
⌦:

• b0(x) for MB,

• n0(x) for DOM,

• m10(x) for SOM,

• m20(x) for FOM,

• e0(x) for ENZ

• c0(x) for CO2.

Therefore, the above PDE system describes precisely microbial decomposition of organic
matter in soil.

In the following section, we show how to solve this PDE system which allows to practically
simulate soil biological activity.

4 Numerical resolution of the PDE system (model): soil

biological dynamics simulation

4.1 PDE vectorial system formulation
We simplify the system writing by transforming it into a vector form. Let’s define vectors the
following way:

u ⌘
�
u1, u2, u3, u4, u5, u6

�
t

,

⌘
�
b, n,m1, m2, e, c

�
t

u0 ⌘
�
b0, n0, m10, m20, e0, c0

�
T

.

The diffusion coefficients matrix D is defined as follows:

D =

0

BBBBBB@

D
b

0 0 0 0 0
0 D

n

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 D

e

0
0 0 0 0 0 D

c

1

CCCCCCA
.

The reaction terms of equations are represented by functions F
i

, i = 1, 2, .., 6 defined as
follows:

8
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F1(u) =
⇣ k u2

K
s

+ u2
� µ� r � ⌫

⌘
u1,

F2(u) =
k u5

K
m

+ u5

⇣
c1 m1 + c2 m2

⌘
� k u2

K
s

+ u2
u1 + ↵1(⇣)u5 + ↵2(µ)u1,

F3(u) = � c1u5

K
m

+ u5
u3 + (1� ↵1(⇣))u5 + (1� ↵2(µ))u1,

F4(u) = � c2u5

K
m

+ u5
u4,

F5(u) = ⌫u1 � ⇣u5,

F6(u) = ru1.

Let’s define the vector function F such that

F (u) = (F1(u), F2(u), F3(u), F4(u), F5(u), F6(u))T .

The vector form of the system is
8
<

:

@
t

u = div
�
Dru

�
+ F (u) in ⌦

T

,
@u

@n

= 0 on @⌦⇥]0, T [,
u(t = 0) = u0 in ⌦.

4.2 System variational formulation
Let’s introduce the following Sobolev space

V =
�
v 2

⇣
H1(⌦)

⌘6
:

@u

@n
= 0 sur @⌦

 
.

Assuming that data are sufficiently regular, the variational formulation consists in finding a
function u(t) 2 V such that:

Z

⌦

@u

@t
v dx +

Z

⌦
Drurv dx =

Z

⌦
F (u)v dx 8v 2 V.

After building a mesh ⌦
h

of domain ⌦, we solve variational formulation in the following
discrete space:

V
h

=
�
v 2

⇣
C(⌦)

⌘6
: 8K 2 ⌦

h

⇣
v|K 2 P1

⌘6 
.

4.3 Resolution scheme of the variational system
4.3.1 Numerical scheme

The numerical resolution of the problem is divided into three steps:

• step 1: We discretize the problem via finite element method in the finite dimensional space
V

h

. The problem consists in solving the following system

@U

@t
+ B U = F (U).

9
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9
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A pore is usually defined as a cavity filled with fluids (air or water)

Vogel, H.J., Roth, K.I., 2001. Quantitative morphology and network representation of soil pore structure. Advances in Water Resources 
24 (3), 233–242.

Geoscience

Pore space is commonly understood as a set of pores

Geometrical definition

Author's personal copy

2003). Pore space is commonly understood as a set of pores, i.e., a
set of cavities within an empty space. In this paper, we propose a
formal and rigorous scheme to define a set of pores in pore space.
Our definition is particularly well adapted to the intuitive notion
of a pore as defined in the literature.

2.2. Formal geometrical way to define pores

Definition 1. :

Let p be the pore space defined by its indicative function I.

Let M(i,j,k) be a point of the 3D affine space whose coordinates

are (i,j,k).

We have

Mði; j; kÞ 2 p3Iði; j; kÞ ¼ 1 (1)

From a practical point of view, when pore space is extracted

from a computed tomography image, the function I is directly

defined by the result of the image thresholding. In this case, each

point (i,j,k) is attached to a voxel.

Definition 2. :

Let B(C,r) be an open ball included in p whose centre is C and

whose radius is r

BðC; rÞ $ p (2)

We consider that B(C,r) is a maximal ball of p if and only if

B(M,s) refers to any open ball whose centre is M and whose

radius is s.

8BðM; sÞ=BðM; sÞ $ p; BðC; rÞ $ BðM; sÞ) BðM; sÞ ¼ BðC; rÞ (3)

Bmax(p) is the set of all maximal balls of pore space p.

This means that a maximal ball of pore space p is a ball that

cannot be contained by any other ball in p.

Definition 3. :

The skeleton of p (Sp) is defined as the set of the centres of all

maximal balls (Attali et al., 2007; Schmitt and Mattioli, 1994)

M 2 Sp39BðM; rÞ 2 Bmax (4)

Intuitively, the skeleton corresponds to the middle axes of the

shape. For example, the skeleton of a cylinder corresponds to its

axis. Figs. 10 and 11 illustrate the definition of a skeleton.

Definition 4 ((new)). Let A be a set of maximal balls of p. We
define R(p) as the finite set of maximal balls recovering the
skeleton

RðpÞ ¼ fA $ BmaxðpÞ=ððSp $ AÞLðCardAÞoþ1ÞÞg (5)

The union of all maximal balls forms the shape. We choose to
describe the shape by a minimal set of maximal balls recovering
the shape skeleton. This minimal set provides a shape approx-
imation that preserves the shape topology and accurately
describes shape cavities (Monga et al., 2007).

Theorem1 ((new)). If the skeleton of p (Sp) is a compact set, then

RðpÞa+ (6)

Proof. :

Given that the skeleton is defined by the set of all centres of

maximal balls, it follows that the set of all maximal balls b of p

(Bmax(p)) forms a recovery of open sets of the skeleton of p (Sp)

Sp & fUb=ðb 2 BmaxðpÞÞg (7)

If the skeleton is a compact set, then, by definition, we can

extract a finite recovery from each recovery of open sets.

Therefore, in particular, a finite recovery of Sp can be extracted

from Bmax(p), in other words

CardðRðpÞÞX1 (8)

&

Conjecture 6 ((new)). In most cases, the skeleton of a shape can be
approximated by a compact set. This issue will be discussed in more
detail in a forthcoming paper. We can therefore consider that from a
practical point of view, the skeleton can always be recovered by a
finite set of maximal balls.

Definition 5 ((new)). Let K and H be sets of maximal balls
recovering the skeleton. We define Rmin(p) as the element of R(p)
with a minimal cardinal, that is
RminðpÞ ¼ fK 2 RðpÞ=ð8H 2 RðpÞ;CardðKÞpCardðHÞÞg (9)

Rmin(p) then contains all minimal recoveries of the skeleton of p
by maximal balls.

In fact, due to the well-known property that the skeleton of a

shape is homotopic to the shape (Boissonnat and Yvinec, 1998),

Rmin(p) provides a description(s) of shape p that preserves the

topology of the pore space. Moreover, it provides the most

compact way to define the shape cavities referred to as pores in

the literature.

In a rigorous mathematical sense, a finite set of maximal balls

recovering the shape skeleton does not always exist (for example,

in the case of an open cone). However, from a practical point of

view, we can always consider that the skeleton can be approxi-

mated by a compact set, which implies the existence of such a

finite set.

Definition 6 ((new)). If we consider the l-skeleton instead of the
skeleton itself, Definition 5 can be directly generalised. The
l-skeleton (Chazal and Lieuthier, 2005) can be considered as all
centres of maximal balls whose radius is at least l. We can
therefore extend the above definitions to obtain the notion of
Rmin,l(p) corresponding to the minimal recovery of the l-skeleton
of p using maximal balls with a radius of more than l. Rmin,l(p) is
an accurate way to simply define pore space at different scales. In
the following, we will refer to Rmin(p) as MIRES(p) and to Rmin,l(p)
as l_MIRES(p). By doing this, we generalise Definition 5 by adding
a scale factor.

2.3. Computation of a minimal set of maximal balls recovering the
pore space skeleton

2.3.1. Extraction of maximal balls and the l-skeleton using 3D
Delaunay triangulation

It can be shown that maximal balls can be considered as
Delaunay spheres of the 3D Delaunay triangulation of the shape
boundaries (Boissonnat and Yvinec, 1998; Schmitt and Mattioli,
1994). The following algorithm can then be used to extract
maximal balls:

' Computation of the volume shape border
We select all points of p having at least one neighbour that
does not belong to p. For example, 26-connectivity can be used
for this step.
' Computation of 3D Delaunay triangulation of the volume

shape border
It is crucial to efficiently implement Delaunay triangulation
(Monga et al., 2007) when the number of shape border points
is very high. We propose using the Delaunay triangulation
program developed at INRIA by the GAMMA project (George,
2004; George and Borouchaki, 1998; Frey, 2001).

ARTICLE IN PRESS

O. Monga et al. / Computers & Geosciences 35 (2009) 1789–18011790

Pore

Monga, O., Ngom, N.F., Delerue, J.F., 2007. Representing geometric structures in 3D tomography soil images: application to pore space modelling. Computers 
& Geosciences 33, 1040–1161.
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2003). Pore space is commonly understood as a set of pores, i.e., a
set of cavities within an empty space. In this paper, we propose a
formal and rigorous scheme to define a set of pores in pore space.
Our definition is particularly well adapted to the intuitive notion
of a pore as defined in the literature.

2.2. Formal geometrical way to define pores

Definition 1. :

Let p be the pore space defined by its indicative function I.

Let M(i,j,k) be a point of the 3D affine space whose coordinates

are (i,j,k).

We have

Mði; j; kÞ 2 p3Iði; j; kÞ ¼ 1 (1)

From a practical point of view, when pore space is extracted

from a computed tomography image, the function I is directly

defined by the result of the image thresholding. In this case, each

point (i,j,k) is attached to a voxel.

Definition 2. :

Let B(C,r) be an open ball included in p whose centre is C and

whose radius is r

BðC; rÞ $ p (2)

We consider that B(C,r) is a maximal ball of p if and only if

B(M,s) refers to any open ball whose centre is M and whose

radius is s.
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Bmax(p) is the set of all maximal balls of pore space p.

This means that a maximal ball of pore space p is a ball that

cannot be contained by any other ball in p.

Definition 3. :

The skeleton of p (Sp) is defined as the set of the centres of all

maximal balls (Attali et al., 2007; Schmitt and Mattioli, 1994)

M 2 Sp39BðM; rÞ 2 Bmax (4)

Intuitively, the skeleton corresponds to the middle axes of the

shape. For example, the skeleton of a cylinder corresponds to its

axis. Figs. 10 and 11 illustrate the definition of a skeleton.

Definition 4 ((new)). Let A be a set of maximal balls of p. We
define R(p) as the finite set of maximal balls recovering the
skeleton

RðpÞ ¼ fA $ BmaxðpÞ=ððSp $ AÞLðCardAÞoþ1ÞÞg (5)

The union of all maximal balls forms the shape. We choose to
describe the shape by a minimal set of maximal balls recovering
the shape skeleton. This minimal set provides a shape approx-
imation that preserves the shape topology and accurately
describes shape cavities (Monga et al., 2007).

Theorem1 ((new)). If the skeleton of p (Sp) is a compact set, then

RðpÞa+ (6)

Proof. :

Given that the skeleton is defined by the set of all centres of

maximal balls, it follows that the set of all maximal balls b of p

(Bmax(p)) forms a recovery of open sets of the skeleton of p (Sp)

Sp & fUb=ðb 2 BmaxðpÞÞg (7)

If the skeleton is a compact set, then, by definition, we can

extract a finite recovery from each recovery of open sets.

Therefore, in particular, a finite recovery of Sp can be extracted

from Bmax(p), in other words

CardðRðpÞÞX1 (8)

&

Conjecture 6 ((new)). In most cases, the skeleton of a shape can be
approximated by a compact set. This issue will be discussed in more
detail in a forthcoming paper. We can therefore consider that from a
practical point of view, the skeleton can always be recovered by a
finite set of maximal balls.

Definition 5 ((new)). Let K and H be sets of maximal balls
recovering the skeleton. We define Rmin(p) as the element of R(p)
with a minimal cardinal, that is
RminðpÞ ¼ fK 2 RðpÞ=ð8H 2 RðpÞ;CardðKÞpCardðHÞÞg (9)

Rmin(p) then contains all minimal recoveries of the skeleton of p
by maximal balls.

In fact, due to the well-known property that the skeleton of a

shape is homotopic to the shape (Boissonnat and Yvinec, 1998),

Rmin(p) provides a description(s) of shape p that preserves the

topology of the pore space. Moreover, it provides the most

compact way to define the shape cavities referred to as pores in

the literature.

In a rigorous mathematical sense, a finite set of maximal balls

recovering the shape skeleton does not always exist (for example,

in the case of an open cone). However, from a practical point of

view, we can always consider that the skeleton can be approxi-

mated by a compact set, which implies the existence of such a

finite set.

Definition 6 ((new)). If we consider the l-skeleton instead of the
skeleton itself, Definition 5 can be directly generalised. The
l-skeleton (Chazal and Lieuthier, 2005) can be considered as all
centres of maximal balls whose radius is at least l. We can
therefore extend the above definitions to obtain the notion of
Rmin,l(p) corresponding to the minimal recovery of the l-skeleton
of p using maximal balls with a radius of more than l. Rmin,l(p) is
an accurate way to simply define pore space at different scales. In
the following, we will refer to Rmin(p) as MIRES(p) and to Rmin,l(p)
as l_MIRES(p). By doing this, we generalise Definition 5 by adding
a scale factor.

2.3. Computation of a minimal set of maximal balls recovering the
pore space skeleton

2.3.1. Extraction of maximal balls and the l-skeleton using 3D
Delaunay triangulation

It can be shown that maximal balls can be considered as
Delaunay spheres of the 3D Delaunay triangulation of the shape
boundaries (Boissonnat and Yvinec, 1998; Schmitt and Mattioli,
1994). The following algorithm can then be used to extract
maximal balls:

' Computation of the volume shape border
We select all points of p having at least one neighbour that
does not belong to p. For example, 26-connectivity can be used
for this step.
' Computation of 3D Delaunay triangulation of the volume

shape border
It is crucial to efficiently implement Delaunay triangulation
(Monga et al., 2007) when the number of shape border points
is very high. We propose using the Delaunay triangulation
program developed at INRIA by the GAMMA project (George,
2004; George and Borouchaki, 1998; Frey, 2001).
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2003). Pore space is commonly understood as a set of pores, i.e., a
set of cavities within an empty space. In this paper, we propose a
formal and rigorous scheme to define a set of pores in pore space.
Our definition is particularly well adapted to the intuitive notion
of a pore as defined in the literature.

2.2. Formal geometrical way to define pores

Definition 1. :

Let p be the pore space defined by its indicative function I.

Let M(i,j,k) be a point of the 3D affine space whose coordinates

are (i,j,k).

We have

Mði; j; kÞ 2 p3Iði; j; kÞ ¼ 1 (1)

From a practical point of view, when pore space is extracted

from a computed tomography image, the function I is directly

defined by the result of the image thresholding. In this case, each

point (i,j,k) is attached to a voxel.

Definition 2. :

Let B(C,r) be an open ball included in p whose centre is C and

whose radius is r

BðC; rÞ $ p (2)

We consider that B(C,r) is a maximal ball of p if and only if

B(M,s) refers to any open ball whose centre is M and whose

radius is s.

8BðM; sÞ=BðM; sÞ $ p; BðC; rÞ $ BðM; sÞ) BðM; sÞ ¼ BðC; rÞ (3)

Bmax(p) is the set of all maximal balls of pore space p.

This means that a maximal ball of pore space p is a ball that

cannot be contained by any other ball in p.

Definition 3. :

The skeleton of p (Sp) is defined as the set of the centres of all

maximal balls (Attali et al., 2007; Schmitt and Mattioli, 1994)

M 2 Sp39BðM; rÞ 2 Bmax (4)

Intuitively, the skeleton corresponds to the middle axes of the

shape. For example, the skeleton of a cylinder corresponds to its

axis. Figs. 10 and 11 illustrate the definition of a skeleton.

Definition 4 ((new)). Let A be a set of maximal balls of p. We
define R(p) as the finite set of maximal balls recovering the
skeleton

RðpÞ ¼ fA $ BmaxðpÞ=ððSp $ AÞLðCardAÞoþ1ÞÞg (5)

The union of all maximal balls forms the shape. We choose to
describe the shape by a minimal set of maximal balls recovering
the shape skeleton. This minimal set provides a shape approx-
imation that preserves the shape topology and accurately
describes shape cavities (Monga et al., 2007).

Theorem1 ((new)). If the skeleton of p (Sp) is a compact set, then

RðpÞa+ (6)

Proof. :

Given that the skeleton is defined by the set of all centres of

maximal balls, it follows that the set of all maximal balls b of p

(Bmax(p)) forms a recovery of open sets of the skeleton of p (Sp)

Sp & fUb=ðb 2 BmaxðpÞÞg (7)

If the skeleton is a compact set, then, by definition, we can

extract a finite recovery from each recovery of open sets.

Therefore, in particular, a finite recovery of Sp can be extracted

from Bmax(p), in other words

CardðRðpÞÞX1 (8)

&

Conjecture 6 ((new)). In most cases, the skeleton of a shape can be
approximated by a compact set. This issue will be discussed in more
detail in a forthcoming paper. We can therefore consider that from a
practical point of view, the skeleton can always be recovered by a
finite set of maximal balls.

Definition 5 ((new)). Let K and H be sets of maximal balls
recovering the skeleton. We define Rmin(p) as the element of R(p)
with a minimal cardinal, that is
RminðpÞ ¼ fK 2 RðpÞ=ð8H 2 RðpÞ;CardðKÞpCardðHÞÞg (9)

Rmin(p) then contains all minimal recoveries of the skeleton of p
by maximal balls.

In fact, due to the well-known property that the skeleton of a

shape is homotopic to the shape (Boissonnat and Yvinec, 1998),

Rmin(p) provides a description(s) of shape p that preserves the

topology of the pore space. Moreover, it provides the most

compact way to define the shape cavities referred to as pores in

the literature.

In a rigorous mathematical sense, a finite set of maximal balls

recovering the shape skeleton does not always exist (for example,

in the case of an open cone). However, from a practical point of

view, we can always consider that the skeleton can be approxi-

mated by a compact set, which implies the existence of such a

finite set.

Definition 6 ((new)). If we consider the l-skeleton instead of the
skeleton itself, Definition 5 can be directly generalised. The
l-skeleton (Chazal and Lieuthier, 2005) can be considered as all
centres of maximal balls whose radius is at least l. We can
therefore extend the above definitions to obtain the notion of
Rmin,l(p) corresponding to the minimal recovery of the l-skeleton
of p using maximal balls with a radius of more than l. Rmin,l(p) is
an accurate way to simply define pore space at different scales. In
the following, we will refer to Rmin(p) as MIRES(p) and to Rmin,l(p)
as l_MIRES(p). By doing this, we generalise Definition 5 by adding
a scale factor.

2.3. Computation of a minimal set of maximal balls recovering the
pore space skeleton

2.3.1. Extraction of maximal balls and the l-skeleton using 3D
Delaunay triangulation

It can be shown that maximal balls can be considered as
Delaunay spheres of the 3D Delaunay triangulation of the shape
boundaries (Boissonnat and Yvinec, 1998; Schmitt and Mattioli,
1994). The following algorithm can then be used to extract
maximal balls:

' Computation of the volume shape border
We select all points of p having at least one neighbour that
does not belong to p. For example, 26-connectivity can be used
for this step.
' Computation of 3D Delaunay triangulation of the volume

shape border
It is crucial to efficiently implement Delaunay triangulation
(Monga et al., 2007) when the number of shape border points
is very high. We propose using the Delaunay triangulation
program developed at INRIA by the GAMMA project (George,
2004; George and Borouchaki, 1998; Frey, 2001).
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Fig. 9. Influence of soil type and soil pressure on mineralised carbon and microbial biomass variations. Left: loamy soil; right: clayey soil.

Fig. 10. Some simple skeleton examples in 2D case (courtesy of Pooran Memari).

Fig. 11. Skeleton example in 3D case (red line) (courtesy of Pooran Memari). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 9. Influence of soil type and soil pressure on mineralised carbon and microbial biomass variations. Left: loamy soil; right: clayey soil.

Fig. 10. Some simple skeleton examples in 2D case (courtesy of Pooran Memari).

Fig. 11. Skeleton example in 3D case (red line) (courtesy of Pooran Memari). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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2003). Pore space is commonly understood as a set of pores, i.e., a
set of cavities within an empty space. In this paper, we propose a
formal and rigorous scheme to define a set of pores in pore space.
Our definition is particularly well adapted to the intuitive notion
of a pore as defined in the literature.

2.2. Formal geometrical way to define pores

Definition 1. :

Let p be the pore space defined by its indicative function I.

Let M(i,j,k) be a point of the 3D affine space whose coordinates

are (i,j,k).

We have

Mði; j; kÞ 2 p3Iði; j; kÞ ¼ 1 (1)

From a practical point of view, when pore space is extracted

from a computed tomography image, the function I is directly

defined by the result of the image thresholding. In this case, each

point (i,j,k) is attached to a voxel.

Definition 2. :

Let B(C,r) be an open ball included in p whose centre is C and

whose radius is r

BðC; rÞ $ p (2)

We consider that B(C,r) is a maximal ball of p if and only if

B(M,s) refers to any open ball whose centre is M and whose

radius is s.

8BðM; sÞ=BðM; sÞ $ p; BðC; rÞ $ BðM; sÞ) BðM; sÞ ¼ BðC; rÞ (3)

Bmax(p) is the set of all maximal balls of pore space p.

This means that a maximal ball of pore space p is a ball that

cannot be contained by any other ball in p.

Definition 3. :

The skeleton of p (Sp) is defined as the set of the centres of all

maximal balls (Attali et al., 2007; Schmitt and Mattioli, 1994)

M 2 Sp39BðM; rÞ 2 Bmax (4)

Intuitively, the skeleton corresponds to the middle axes of the

shape. For example, the skeleton of a cylinder corresponds to its

axis. Figs. 10 and 11 illustrate the definition of a skeleton.

Definition 4 ((new)). Let A be a set of maximal balls of p. We
define R(p) as the finite set of maximal balls recovering the
skeleton

RðpÞ ¼ fA $ BmaxðpÞ=ððSp $ AÞLðCardAÞoþ1ÞÞg (5)

The union of all maximal balls forms the shape. We choose to
describe the shape by a minimal set of maximal balls recovering
the shape skeleton. This minimal set provides a shape approx-
imation that preserves the shape topology and accurately
describes shape cavities (Monga et al., 2007).

Theorem1 ((new)). If the skeleton of p (Sp) is a compact set, then

RðpÞa+ (6)

Proof. :

Given that the skeleton is defined by the set of all centres of

maximal balls, it follows that the set of all maximal balls b of p

(Bmax(p)) forms a recovery of open sets of the skeleton of p (Sp)

Sp & fUb=ðb 2 BmaxðpÞÞg (7)

If the skeleton is a compact set, then, by definition, we can

extract a finite recovery from each recovery of open sets.

Therefore, in particular, a finite recovery of Sp can be extracted

from Bmax(p), in other words

CardðRðpÞÞX1 (8)

&

Conjecture 6 ((new)). In most cases, the skeleton of a shape can be
approximated by a compact set. This issue will be discussed in more
detail in a forthcoming paper. We can therefore consider that from a
practical point of view, the skeleton can always be recovered by a
finite set of maximal balls.

Definition 5 ((new)). Let K and H be sets of maximal balls
recovering the skeleton. We define Rmin(p) as the element of R(p)
with a minimal cardinal, that is
RminðpÞ ¼ fK 2 RðpÞ=ð8H 2 RðpÞ;CardðKÞpCardðHÞÞg (9)

Rmin(p) then contains all minimal recoveries of the skeleton of p
by maximal balls.

In fact, due to the well-known property that the skeleton of a

shape is homotopic to the shape (Boissonnat and Yvinec, 1998),

Rmin(p) provides a description(s) of shape p that preserves the

topology of the pore space. Moreover, it provides the most

compact way to define the shape cavities referred to as pores in

the literature.

In a rigorous mathematical sense, a finite set of maximal balls

recovering the shape skeleton does not always exist (for example,

in the case of an open cone). However, from a practical point of

view, we can always consider that the skeleton can be approxi-

mated by a compact set, which implies the existence of such a

finite set.

Definition 6 ((new)). If we consider the l-skeleton instead of the
skeleton itself, Definition 5 can be directly generalised. The
l-skeleton (Chazal and Lieuthier, 2005) can be considered as all
centres of maximal balls whose radius is at least l. We can
therefore extend the above definitions to obtain the notion of
Rmin,l(p) corresponding to the minimal recovery of the l-skeleton
of p using maximal balls with a radius of more than l. Rmin,l(p) is
an accurate way to simply define pore space at different scales. In
the following, we will refer to Rmin(p) as MIRES(p) and to Rmin,l(p)
as l_MIRES(p). By doing this, we generalise Definition 5 by adding
a scale factor.

2.3. Computation of a minimal set of maximal balls recovering the
pore space skeleton

2.3.1. Extraction of maximal balls and the l-skeleton using 3D
Delaunay triangulation

It can be shown that maximal balls can be considered as
Delaunay spheres of the 3D Delaunay triangulation of the shape
boundaries (Boissonnat and Yvinec, 1998; Schmitt and Mattioli,
1994). The following algorithm can then be used to extract
maximal balls:

' Computation of the volume shape border
We select all points of p having at least one neighbour that
does not belong to p. For example, 26-connectivity can be used
for this step.
' Computation of 3D Delaunay triangulation of the volume

shape border
It is crucial to efficiently implement Delaunay triangulation
(Monga et al., 2007) when the number of shape border points
is very high. We propose using the Delaunay triangulation
program developed at INRIA by the GAMMA project (George,
2004; George and Borouchaki, 1998; Frey, 2001).

ARTICLE IN PRESS

O. Monga et al. / Computers & Geosciences 35 (2009) 1789–18011790

Monga, O., Ngom, N.F., Delerue, J.F., 2007. Representing geometric structures in 3D tomography soil images: 
application to pore space modelling. Computers & Geosciences 33, 1040–1161.

Author's personal copy

2003). Pore space is commonly understood as a set of pores, i.e., a
set of cavities within an empty space. In this paper, we propose a
formal and rigorous scheme to define a set of pores in pore space.
Our definition is particularly well adapted to the intuitive notion
of a pore as defined in the literature.

2.2. Formal geometrical way to define pores

Definition 1. :

Let p be the pore space defined by its indicative function I.

Let M(i,j,k) be a point of the 3D affine space whose coordinates

are (i,j,k).

We have

Mði; j; kÞ 2 p3Iði; j; kÞ ¼ 1 (1)

From a practical point of view, when pore space is extracted

from a computed tomography image, the function I is directly

defined by the result of the image thresholding. In this case, each

point (i,j,k) is attached to a voxel.

Definition 2. :

Let B(C,r) be an open ball included in p whose centre is C and

whose radius is r

BðC; rÞ $ p (2)

We consider that B(C,r) is a maximal ball of p if and only if

B(M,s) refers to any open ball whose centre is M and whose

radius is s.

8BðM; sÞ=BðM; sÞ $ p; BðC; rÞ $ BðM; sÞ) BðM; sÞ ¼ BðC; rÞ (3)

Bmax(p) is the set of all maximal balls of pore space p.

This means that a maximal ball of pore space p is a ball that

cannot be contained by any other ball in p.

Definition 3. :

The skeleton of p (Sp) is defined as the set of the centres of all

maximal balls (Attali et al., 2007; Schmitt and Mattioli, 1994)

M 2 Sp39BðM; rÞ 2 Bmax (4)

Intuitively, the skeleton corresponds to the middle axes of the

shape. For example, the skeleton of a cylinder corresponds to its

axis. Figs. 10 and 11 illustrate the definition of a skeleton.

Definition 4 ((new)). Let A be a set of maximal balls of p. We
define R(p) as the finite set of maximal balls recovering the
skeleton

RðpÞ ¼ fA $ BmaxðpÞ=ððSp $ AÞLðCardAÞoþ1ÞÞg (5)

The union of all maximal balls forms the shape. We choose to
describe the shape by a minimal set of maximal balls recovering
the shape skeleton. This minimal set provides a shape approx-
imation that preserves the shape topology and accurately
describes shape cavities (Monga et al., 2007).

Theorem1 ((new)). If the skeleton of p (Sp) is a compact set, then

RðpÞa+ (6)

Proof. :

Given that the skeleton is defined by the set of all centres of

maximal balls, it follows that the set of all maximal balls b of p

(Bmax(p)) forms a recovery of open sets of the skeleton of p (Sp)

Sp & fUb=ðb 2 BmaxðpÞÞg (7)

If the skeleton is a compact set, then, by definition, we can

extract a finite recovery from each recovery of open sets.

Therefore, in particular, a finite recovery of Sp can be extracted

from Bmax(p), in other words

CardðRðpÞÞX1 (8)

&

Conjecture 6 ((new)). In most cases, the skeleton of a shape can be
approximated by a compact set. This issue will be discussed in more
detail in a forthcoming paper. We can therefore consider that from a
practical point of view, the skeleton can always be recovered by a
finite set of maximal balls.

Definition 5 ((new)). Let K and H be sets of maximal balls
recovering the skeleton. We define Rmin(p) as the element of R(p)
with a minimal cardinal, that is
RminðpÞ ¼ fK 2 RðpÞ=ð8H 2 RðpÞ;CardðKÞpCardðHÞÞg (9)

Rmin(p) then contains all minimal recoveries of the skeleton of p
by maximal balls.

In fact, due to the well-known property that the skeleton of a

shape is homotopic to the shape (Boissonnat and Yvinec, 1998),

Rmin(p) provides a description(s) of shape p that preserves the

topology of the pore space. Moreover, it provides the most

compact way to define the shape cavities referred to as pores in

the literature.

In a rigorous mathematical sense, a finite set of maximal balls

recovering the shape skeleton does not always exist (for example,

in the case of an open cone). However, from a practical point of

view, we can always consider that the skeleton can be approxi-

mated by a compact set, which implies the existence of such a

finite set.

Definition 6 ((new)). If we consider the l-skeleton instead of the
skeleton itself, Definition 5 can be directly generalised. The
l-skeleton (Chazal and Lieuthier, 2005) can be considered as all
centres of maximal balls whose radius is at least l. We can
therefore extend the above definitions to obtain the notion of
Rmin,l(p) corresponding to the minimal recovery of the l-skeleton
of p using maximal balls with a radius of more than l. Rmin,l(p) is
an accurate way to simply define pore space at different scales. In
the following, we will refer to Rmin(p) as MIRES(p) and to Rmin,l(p)
as l_MIRES(p). By doing this, we generalise Definition 5 by adding
a scale factor.

2.3. Computation of a minimal set of maximal balls recovering the
pore space skeleton

2.3.1. Extraction of maximal balls and the l-skeleton using 3D
Delaunay triangulation

It can be shown that maximal balls can be considered as
Delaunay spheres of the 3D Delaunay triangulation of the shape
boundaries (Boissonnat and Yvinec, 1998; Schmitt and Mattioli,
1994). The following algorithm can then be used to extract
maximal balls:

' Computation of the volume shape border
We select all points of p having at least one neighbour that
does not belong to p. For example, 26-connectivity can be used
for this step.
' Computation of 3D Delaunay triangulation of the volume

shape border
It is crucial to efficiently implement Delaunay triangulation
(Monga et al., 2007) when the number of shape border points
is very high. We propose using the Delaunay triangulation
program developed at INRIA by the GAMMA project (George,
2004; George and Borouchaki, 1998; Frey, 2001).
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2003). Pore space is commonly understood as a set of pores, i.e., a
set of cavities within an empty space. In this paper, we propose a
formal and rigorous scheme to define a set of pores in pore space.
Our definition is particularly well adapted to the intuitive notion
of a pore as defined in the literature.

2.2. Formal geometrical way to define pores

Definition 1. :

Let p be the pore space defined by its indicative function I.

Let M(i,j,k) be a point of the 3D affine space whose coordinates

are (i,j,k).

We have

Mði; j; kÞ 2 p3Iði; j; kÞ ¼ 1 (1)

From a practical point of view, when pore space is extracted

from a computed tomography image, the function I is directly

defined by the result of the image thresholding. In this case, each

point (i,j,k) is attached to a voxel.

Definition 2. :

Let B(C,r) be an open ball included in p whose centre is C and

whose radius is r

BðC; rÞ $ p (2)

We consider that B(C,r) is a maximal ball of p if and only if

B(M,s) refers to any open ball whose centre is M and whose

radius is s.

8BðM; sÞ=BðM; sÞ $ p; BðC; rÞ $ BðM; sÞ) BðM; sÞ ¼ BðC; rÞ (3)

Bmax(p) is the set of all maximal balls of pore space p.

This means that a maximal ball of pore space p is a ball that

cannot be contained by any other ball in p.

Definition 3. :

The skeleton of p (Sp) is defined as the set of the centres of all

maximal balls (Attali et al., 2007; Schmitt and Mattioli, 1994)

M 2 Sp39BðM; rÞ 2 Bmax (4)

Intuitively, the skeleton corresponds to the middle axes of the

shape. For example, the skeleton of a cylinder corresponds to its

axis. Figs. 10 and 11 illustrate the definition of a skeleton.

Definition 4 ((new)). Let A be a set of maximal balls of p. We
define R(p) as the finite set of maximal balls recovering the
skeleton

RðpÞ ¼ fA $ BmaxðpÞ=ððSp $ AÞLðCardAÞoþ1ÞÞg (5)

The union of all maximal balls forms the shape. We choose to
describe the shape by a minimal set of maximal balls recovering
the shape skeleton. This minimal set provides a shape approx-
imation that preserves the shape topology and accurately
describes shape cavities (Monga et al., 2007).

Theorem1 ((new)). If the skeleton of p (Sp) is a compact set, then

RðpÞa+ (6)

Proof. :

Given that the skeleton is defined by the set of all centres of

maximal balls, it follows that the set of all maximal balls b of p

(Bmax(p)) forms a recovery of open sets of the skeleton of p (Sp)

Sp & fUb=ðb 2 BmaxðpÞÞg (7)

If the skeleton is a compact set, then, by definition, we can

extract a finite recovery from each recovery of open sets.

Therefore, in particular, a finite recovery of Sp can be extracted

from Bmax(p), in other words

CardðRðpÞÞX1 (8)

&

Conjecture 6 ((new)). In most cases, the skeleton of a shape can be
approximated by a compact set. This issue will be discussed in more
detail in a forthcoming paper. We can therefore consider that from a
practical point of view, the skeleton can always be recovered by a
finite set of maximal balls.

Definition 5 ((new)). Let K and H be sets of maximal balls
recovering the skeleton. We define Rmin(p) as the element of R(p)
with a minimal cardinal, that is
RminðpÞ ¼ fK 2 RðpÞ=ð8H 2 RðpÞ;CardðKÞpCardðHÞÞg (9)

Rmin(p) then contains all minimal recoveries of the skeleton of p
by maximal balls.

In fact, due to the well-known property that the skeleton of a

shape is homotopic to the shape (Boissonnat and Yvinec, 1998),

Rmin(p) provides a description(s) of shape p that preserves the

topology of the pore space. Moreover, it provides the most

compact way to define the shape cavities referred to as pores in

the literature.

In a rigorous mathematical sense, a finite set of maximal balls

recovering the shape skeleton does not always exist (for example,

in the case of an open cone). However, from a practical point of

view, we can always consider that the skeleton can be approxi-

mated by a compact set, which implies the existence of such a

finite set.

Definition 6 ((new)). If we consider the l-skeleton instead of the
skeleton itself, Definition 5 can be directly generalised. The
l-skeleton (Chazal and Lieuthier, 2005) can be considered as all
centres of maximal balls whose radius is at least l. We can
therefore extend the above definitions to obtain the notion of
Rmin,l(p) corresponding to the minimal recovery of the l-skeleton
of p using maximal balls with a radius of more than l. Rmin,l(p) is
an accurate way to simply define pore space at different scales. In
the following, we will refer to Rmin(p) as MIRES(p) and to Rmin,l(p)
as l_MIRES(p). By doing this, we generalise Definition 5 by adding
a scale factor.

2.3. Computation of a minimal set of maximal balls recovering the
pore space skeleton

2.3.1. Extraction of maximal balls and the l-skeleton using 3D
Delaunay triangulation

It can be shown that maximal balls can be considered as
Delaunay spheres of the 3D Delaunay triangulation of the shape
boundaries (Boissonnat and Yvinec, 1998; Schmitt and Mattioli,
1994). The following algorithm can then be used to extract
maximal balls:

' Computation of the volume shape border
We select all points of p having at least one neighbour that
does not belong to p. For example, 26-connectivity can be used
for this step.
' Computation of 3D Delaunay triangulation of the volume

shape border
It is crucial to efficiently implement Delaunay triangulation
(Monga et al., 2007) when the number of shape border points
is very high. We propose using the Delaunay triangulation
program developed at INRIA by the GAMMA project (George,
2004; George and Borouchaki, 1998; Frey, 2001).
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2003). Pore space is commonly understood as a set of pores, i.e., a
set of cavities within an empty space. In this paper, we propose a
formal and rigorous scheme to define a set of pores in pore space.
Our definition is particularly well adapted to the intuitive notion
of a pore as defined in the literature.

2.2. Formal geometrical way to define pores

Definition 1. :

Let p be the pore space defined by its indicative function I.

Let M(i,j,k) be a point of the 3D affine space whose coordinates

are (i,j,k).

We have

Mði; j; kÞ 2 p3Iði; j; kÞ ¼ 1 (1)

From a practical point of view, when pore space is extracted

from a computed tomography image, the function I is directly

defined by the result of the image thresholding. In this case, each

point (i,j,k) is attached to a voxel.

Definition 2. :

Let B(C,r) be an open ball included in p whose centre is C and

whose radius is r

BðC; rÞ $ p (2)

We consider that B(C,r) is a maximal ball of p if and only if

B(M,s) refers to any open ball whose centre is M and whose

radius is s.

8BðM; sÞ=BðM; sÞ $ p; BðC; rÞ $ BðM; sÞ) BðM; sÞ ¼ BðC; rÞ (3)

Bmax(p) is the set of all maximal balls of pore space p.

This means that a maximal ball of pore space p is a ball that

cannot be contained by any other ball in p.

Definition 3. :

The skeleton of p (Sp) is defined as the set of the centres of all

maximal balls (Attali et al., 2007; Schmitt and Mattioli, 1994)

M 2 Sp39BðM; rÞ 2 Bmax (4)

Intuitively, the skeleton corresponds to the middle axes of the

shape. For example, the skeleton of a cylinder corresponds to its

axis. Figs. 10 and 11 illustrate the definition of a skeleton.

Definition 4 ((new)). Let A be a set of maximal balls of p. We
define R(p) as the finite set of maximal balls recovering the
skeleton

RðpÞ ¼ fA $ BmaxðpÞ=ððSp $ AÞLðCardAÞoþ1ÞÞg (5)

The union of all maximal balls forms the shape. We choose to
describe the shape by a minimal set of maximal balls recovering
the shape skeleton. This minimal set provides a shape approx-
imation that preserves the shape topology and accurately
describes shape cavities (Monga et al., 2007).

Theorem1 ((new)). If the skeleton of p (Sp) is a compact set, then

RðpÞa+ (6)

Proof. :

Given that the skeleton is defined by the set of all centres of

maximal balls, it follows that the set of all maximal balls b of p

(Bmax(p)) forms a recovery of open sets of the skeleton of p (Sp)

Sp & fUb=ðb 2 BmaxðpÞÞg (7)

If the skeleton is a compact set, then, by definition, we can

extract a finite recovery from each recovery of open sets.

Therefore, in particular, a finite recovery of Sp can be extracted

from Bmax(p), in other words

CardðRðpÞÞX1 (8)

&

Conjecture 6 ((new)). In most cases, the skeleton of a shape can be
approximated by a compact set. This issue will be discussed in more
detail in a forthcoming paper. We can therefore consider that from a
practical point of view, the skeleton can always be recovered by a
finite set of maximal balls.

Definition 5 ((new)). Let K and H be sets of maximal balls
recovering the skeleton. We define Rmin(p) as the element of R(p)
with a minimal cardinal, that is
RminðpÞ ¼ fK 2 RðpÞ=ð8H 2 RðpÞ;CardðKÞpCardðHÞÞg (9)

Rmin(p) then contains all minimal recoveries of the skeleton of p
by maximal balls.

In fact, due to the well-known property that the skeleton of a

shape is homotopic to the shape (Boissonnat and Yvinec, 1998),

Rmin(p) provides a description(s) of shape p that preserves the

topology of the pore space. Moreover, it provides the most

compact way to define the shape cavities referred to as pores in

the literature.

In a rigorous mathematical sense, a finite set of maximal balls

recovering the shape skeleton does not always exist (for example,

in the case of an open cone). However, from a practical point of

view, we can always consider that the skeleton can be approxi-

mated by a compact set, which implies the existence of such a

finite set.

Definition 6 ((new)). If we consider the l-skeleton instead of the
skeleton itself, Definition 5 can be directly generalised. The
l-skeleton (Chazal and Lieuthier, 2005) can be considered as all
centres of maximal balls whose radius is at least l. We can
therefore extend the above definitions to obtain the notion of
Rmin,l(p) corresponding to the minimal recovery of the l-skeleton
of p using maximal balls with a radius of more than l. Rmin,l(p) is
an accurate way to simply define pore space at different scales. In
the following, we will refer to Rmin(p) as MIRES(p) and to Rmin,l(p)
as l_MIRES(p). By doing this, we generalise Definition 5 by adding
a scale factor.

2.3. Computation of a minimal set of maximal balls recovering the
pore space skeleton

2.3.1. Extraction of maximal balls and the l-skeleton using 3D
Delaunay triangulation

It can be shown that maximal balls can be considered as
Delaunay spheres of the 3D Delaunay triangulation of the shape
boundaries (Boissonnat and Yvinec, 1998; Schmitt and Mattioli,
1994). The following algorithm can then be used to extract
maximal balls:

' Computation of the volume shape border
We select all points of p having at least one neighbour that
does not belong to p. For example, 26-connectivity can be used
for this step.
' Computation of 3D Delaunay triangulation of the volume

shape border
It is crucial to efficiently implement Delaunay triangulation
(Monga et al., 2007) when the number of shape border points
is very high. We propose using the Delaunay triangulation
program developed at INRIA by the GAMMA project (George,
2004; George and Borouchaki, 1998; Frey, 2001).

ARTICLE IN PRESS

O. Monga et al. / Computers & Geosciences 35 (2009) 1789–18011790

Minimum skeleton recovering



mini-workshop on partial differential equations: 
analysis & applications

Biological Dynamics, PDEs, Decomposition of Organic Matter, 3D Soil19/8/2014 /30

School&of&Applied&Mathematics&and&
Informatics&

Domain:

17

Author's personal copy

2003). Pore space is commonly understood as a set of pores, i.e., a
set of cavities within an empty space. In this paper, we propose a
formal and rigorous scheme to define a set of pores in pore space.
Our definition is particularly well adapted to the intuitive notion
of a pore as defined in the literature.

2.2. Formal geometrical way to define pores

Definition 1. :

Let p be the pore space defined by its indicative function I.

Let M(i,j,k) be a point of the 3D affine space whose coordinates

are (i,j,k).

We have

Mði; j; kÞ 2 p3Iði; j; kÞ ¼ 1 (1)

From a practical point of view, when pore space is extracted

from a computed tomography image, the function I is directly

defined by the result of the image thresholding. In this case, each

point (i,j,k) is attached to a voxel.

Definition 2. :

Let B(C,r) be an open ball included in p whose centre is C and

whose radius is r

BðC; rÞ $ p (2)

We consider that B(C,r) is a maximal ball of p if and only if

B(M,s) refers to any open ball whose centre is M and whose

radius is s.

8BðM; sÞ=BðM; sÞ $ p; BðC; rÞ $ BðM; sÞ) BðM; sÞ ¼ BðC; rÞ (3)

Bmax(p) is the set of all maximal balls of pore space p.

This means that a maximal ball of pore space p is a ball that

cannot be contained by any other ball in p.

Definition 3. :

The skeleton of p (Sp) is defined as the set of the centres of all

maximal balls (Attali et al., 2007; Schmitt and Mattioli, 1994)

M 2 Sp39BðM; rÞ 2 Bmax (4)

Intuitively, the skeleton corresponds to the middle axes of the

shape. For example, the skeleton of a cylinder corresponds to its

axis. Figs. 10 and 11 illustrate the definition of a skeleton.

Definition 4 ((new)). Let A be a set of maximal balls of p. We
define R(p) as the finite set of maximal balls recovering the
skeleton

RðpÞ ¼ fA $ BmaxðpÞ=ððSp $ AÞLðCardAÞoþ1ÞÞg (5)

The union of all maximal balls forms the shape. We choose to
describe the shape by a minimal set of maximal balls recovering
the shape skeleton. This minimal set provides a shape approx-
imation that preserves the shape topology and accurately
describes shape cavities (Monga et al., 2007).

Theorem1 ((new)). If the skeleton of p (Sp) is a compact set, then

RðpÞa+ (6)

Proof. :

Given that the skeleton is defined by the set of all centres of

maximal balls, it follows that the set of all maximal balls b of p

(Bmax(p)) forms a recovery of open sets of the skeleton of p (Sp)

Sp & fUb=ðb 2 BmaxðpÞÞg (7)

If the skeleton is a compact set, then, by definition, we can

extract a finite recovery from each recovery of open sets.

Therefore, in particular, a finite recovery of Sp can be extracted

from Bmax(p), in other words

CardðRðpÞÞX1 (8)

&

Conjecture 6 ((new)). In most cases, the skeleton of a shape can be
approximated by a compact set. This issue will be discussed in more
detail in a forthcoming paper. We can therefore consider that from a
practical point of view, the skeleton can always be recovered by a
finite set of maximal balls.

Definition 5 ((new)). Let K and H be sets of maximal balls
recovering the skeleton. We define Rmin(p) as the element of R(p)
with a minimal cardinal, that is
RminðpÞ ¼ fK 2 RðpÞ=ð8H 2 RðpÞ;CardðKÞpCardðHÞÞg (9)

Rmin(p) then contains all minimal recoveries of the skeleton of p
by maximal balls.

In fact, due to the well-known property that the skeleton of a

shape is homotopic to the shape (Boissonnat and Yvinec, 1998),

Rmin(p) provides a description(s) of shape p that preserves the

topology of the pore space. Moreover, it provides the most

compact way to define the shape cavities referred to as pores in

the literature.

In a rigorous mathematical sense, a finite set of maximal balls

recovering the shape skeleton does not always exist (for example,

in the case of an open cone). However, from a practical point of

view, we can always consider that the skeleton can be approxi-

mated by a compact set, which implies the existence of such a

finite set.

Definition 6 ((new)). If we consider the l-skeleton instead of the
skeleton itself, Definition 5 can be directly generalised. The
l-skeleton (Chazal and Lieuthier, 2005) can be considered as all
centres of maximal balls whose radius is at least l. We can
therefore extend the above definitions to obtain the notion of
Rmin,l(p) corresponding to the minimal recovery of the l-skeleton
of p using maximal balls with a radius of more than l. Rmin,l(p) is
an accurate way to simply define pore space at different scales. In
the following, we will refer to Rmin(p) as MIRES(p) and to Rmin,l(p)
as l_MIRES(p). By doing this, we generalise Definition 5 by adding
a scale factor.

2.3. Computation of a minimal set of maximal balls recovering the
pore space skeleton

2.3.1. Extraction of maximal balls and the l-skeleton using 3D
Delaunay triangulation

It can be shown that maximal balls can be considered as
Delaunay spheres of the 3D Delaunay triangulation of the shape
boundaries (Boissonnat and Yvinec, 1998; Schmitt and Mattioli,
1994). The following algorithm can then be used to extract
maximal balls:

' Computation of the volume shape border
We select all points of p having at least one neighbour that
does not belong to p. For example, 26-connectivity can be used
for this step.
' Computation of 3D Delaunay triangulation of the volume

shape border
It is crucial to efficiently implement Delaunay triangulation
(Monga et al., 2007) when the number of shape border points
is very high. We propose using the Delaunay triangulation
program developed at INRIA by the GAMMA project (George,
2004; George and Borouchaki, 1998; Frey, 2001).
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2003). Pore space is commonly understood as a set of pores, i.e., a
set of cavities within an empty space. In this paper, we propose a
formal and rigorous scheme to define a set of pores in pore space.
Our definition is particularly well adapted to the intuitive notion
of a pore as defined in the literature.

2.2. Formal geometrical way to define pores

Definition 1. :

Let p be the pore space defined by its indicative function I.

Let M(i,j,k) be a point of the 3D affine space whose coordinates

are (i,j,k).

We have

Mði; j; kÞ 2 p3Iði; j; kÞ ¼ 1 (1)

From a practical point of view, when pore space is extracted

from a computed tomography image, the function I is directly

defined by the result of the image thresholding. In this case, each

point (i,j,k) is attached to a voxel.

Definition 2. :

Let B(C,r) be an open ball included in p whose centre is C and

whose radius is r

BðC; rÞ $ p (2)

We consider that B(C,r) is a maximal ball of p if and only if

B(M,s) refers to any open ball whose centre is M and whose

radius is s.

8BðM; sÞ=BðM; sÞ $ p; BðC; rÞ $ BðM; sÞ) BðM; sÞ ¼ BðC; rÞ (3)

Bmax(p) is the set of all maximal balls of pore space p.

This means that a maximal ball of pore space p is a ball that

cannot be contained by any other ball in p.

Definition 3. :

The skeleton of p (Sp) is defined as the set of the centres of all

maximal balls (Attali et al., 2007; Schmitt and Mattioli, 1994)

M 2 Sp39BðM; rÞ 2 Bmax (4)

Intuitively, the skeleton corresponds to the middle axes of the

shape. For example, the skeleton of a cylinder corresponds to its

axis. Figs. 10 and 11 illustrate the definition of a skeleton.

Definition 4 ((new)). Let A be a set of maximal balls of p. We
define R(p) as the finite set of maximal balls recovering the
skeleton

RðpÞ ¼ fA $ BmaxðpÞ=ððSp $ AÞLðCardAÞoþ1ÞÞg (5)

The union of all maximal balls forms the shape. We choose to
describe the shape by a minimal set of maximal balls recovering
the shape skeleton. This minimal set provides a shape approx-
imation that preserves the shape topology and accurately
describes shape cavities (Monga et al., 2007).

Theorem1 ((new)). If the skeleton of p (Sp) is a compact set, then

RðpÞa+ (6)

Proof. :

Given that the skeleton is defined by the set of all centres of

maximal balls, it follows that the set of all maximal balls b of p

(Bmax(p)) forms a recovery of open sets of the skeleton of p (Sp)

Sp & fUb=ðb 2 BmaxðpÞÞg (7)

If the skeleton is a compact set, then, by definition, we can

extract a finite recovery from each recovery of open sets.

Therefore, in particular, a finite recovery of Sp can be extracted

from Bmax(p), in other words

CardðRðpÞÞX1 (8)

&

Conjecture 6 ((new)). In most cases, the skeleton of a shape can be
approximated by a compact set. This issue will be discussed in more
detail in a forthcoming paper. We can therefore consider that from a
practical point of view, the skeleton can always be recovered by a
finite set of maximal balls.

Definition 5 ((new)). Let K and H be sets of maximal balls
recovering the skeleton. We define Rmin(p) as the element of R(p)
with a minimal cardinal, that is
RminðpÞ ¼ fK 2 RðpÞ=ð8H 2 RðpÞ;CardðKÞpCardðHÞÞg (9)

Rmin(p) then contains all minimal recoveries of the skeleton of p
by maximal balls.

In fact, due to the well-known property that the skeleton of a

shape is homotopic to the shape (Boissonnat and Yvinec, 1998),

Rmin(p) provides a description(s) of shape p that preserves the

topology of the pore space. Moreover, it provides the most

compact way to define the shape cavities referred to as pores in

the literature.

In a rigorous mathematical sense, a finite set of maximal balls

recovering the shape skeleton does not always exist (for example,

in the case of an open cone). However, from a practical point of

view, we can always consider that the skeleton can be approxi-

mated by a compact set, which implies the existence of such a

finite set.

Definition 6 ((new)). If we consider the l-skeleton instead of the
skeleton itself, Definition 5 can be directly generalised. The
l-skeleton (Chazal and Lieuthier, 2005) can be considered as all
centres of maximal balls whose radius is at least l. We can
therefore extend the above definitions to obtain the notion of
Rmin,l(p) corresponding to the minimal recovery of the l-skeleton
of p using maximal balls with a radius of more than l. Rmin,l(p) is
an accurate way to simply define pore space at different scales. In
the following, we will refer to Rmin(p) as MIRES(p) and to Rmin,l(p)
as l_MIRES(p). By doing this, we generalise Definition 5 by adding
a scale factor.

2.3. Computation of a minimal set of maximal balls recovering the
pore space skeleton

2.3.1. Extraction of maximal balls and the l-skeleton using 3D
Delaunay triangulation

It can be shown that maximal balls can be considered as
Delaunay spheres of the 3D Delaunay triangulation of the shape
boundaries (Boissonnat and Yvinec, 1998; Schmitt and Mattioli,
1994). The following algorithm can then be used to extract
maximal balls:

' Computation of the volume shape border
We select all points of p having at least one neighbour that
does not belong to p. For example, 26-connectivity can be used
for this step.
' Computation of 3D Delaunay triangulation of the volume

shape border
It is crucial to efficiently implement Delaunay triangulation
(Monga et al., 2007) when the number of shape border points
is very high. We propose using the Delaunay triangulation
program developed at INRIA by the GAMMA project (George,
2004; George and Borouchaki, 1998; Frey, 2001).
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2003). Pore space is commonly understood as a set of pores, i.e., a
set of cavities within an empty space. In this paper, we propose a
formal and rigorous scheme to define a set of pores in pore space.
Our definition is particularly well adapted to the intuitive notion
of a pore as defined in the literature.

2.2. Formal geometrical way to define pores

Definition 1. :

Let p be the pore space defined by its indicative function I.

Let M(i,j,k) be a point of the 3D affine space whose coordinates

are (i,j,k).

We have

Mði; j; kÞ 2 p3Iði; j; kÞ ¼ 1 (1)

From a practical point of view, when pore space is extracted

from a computed tomography image, the function I is directly

defined by the result of the image thresholding. In this case, each

point (i,j,k) is attached to a voxel.

Definition 2. :

Let B(C,r) be an open ball included in p whose centre is C and

whose radius is r

BðC; rÞ $ p (2)

We consider that B(C,r) is a maximal ball of p if and only if

B(M,s) refers to any open ball whose centre is M and whose

radius is s.

8BðM; sÞ=BðM; sÞ $ p; BðC; rÞ $ BðM; sÞ) BðM; sÞ ¼ BðC; rÞ (3)

Bmax(p) is the set of all maximal balls of pore space p.

This means that a maximal ball of pore space p is a ball that

cannot be contained by any other ball in p.

Definition 3. :

The skeleton of p (Sp) is defined as the set of the centres of all

maximal balls (Attali et al., 2007; Schmitt and Mattioli, 1994)

M 2 Sp39BðM; rÞ 2 Bmax (4)

Intuitively, the skeleton corresponds to the middle axes of the

shape. For example, the skeleton of a cylinder corresponds to its

axis. Figs. 10 and 11 illustrate the definition of a skeleton.

Definition 4 ((new)). Let A be a set of maximal balls of p. We
define R(p) as the finite set of maximal balls recovering the
skeleton

RðpÞ ¼ fA $ BmaxðpÞ=ððSp $ AÞLðCardAÞoþ1ÞÞg (5)

The union of all maximal balls forms the shape. We choose to
describe the shape by a minimal set of maximal balls recovering
the shape skeleton. This minimal set provides a shape approx-
imation that preserves the shape topology and accurately
describes shape cavities (Monga et al., 2007).

Theorem1 ((new)). If the skeleton of p (Sp) is a compact set, then

RðpÞa+ (6)

Proof. :

Given that the skeleton is defined by the set of all centres of

maximal balls, it follows that the set of all maximal balls b of p

(Bmax(p)) forms a recovery of open sets of the skeleton of p (Sp)

Sp & fUb=ðb 2 BmaxðpÞÞg (7)

If the skeleton is a compact set, then, by definition, we can

extract a finite recovery from each recovery of open sets.

Therefore, in particular, a finite recovery of Sp can be extracted

from Bmax(p), in other words

CardðRðpÞÞX1 (8)

&

Conjecture 6 ((new)). In most cases, the skeleton of a shape can be
approximated by a compact set. This issue will be discussed in more
detail in a forthcoming paper. We can therefore consider that from a
practical point of view, the skeleton can always be recovered by a
finite set of maximal balls.

Definition 5 ((new)). Let K and H be sets of maximal balls
recovering the skeleton. We define Rmin(p) as the element of R(p)
with a minimal cardinal, that is
RminðpÞ ¼ fK 2 RðpÞ=ð8H 2 RðpÞ;CardðKÞpCardðHÞÞg (9)

Rmin(p) then contains all minimal recoveries of the skeleton of p
by maximal balls.

In fact, due to the well-known property that the skeleton of a

shape is homotopic to the shape (Boissonnat and Yvinec, 1998),

Rmin(p) provides a description(s) of shape p that preserves the

topology of the pore space. Moreover, it provides the most

compact way to define the shape cavities referred to as pores in

the literature.

In a rigorous mathematical sense, a finite set of maximal balls

recovering the shape skeleton does not always exist (for example,

in the case of an open cone). However, from a practical point of

view, we can always consider that the skeleton can be approxi-

mated by a compact set, which implies the existence of such a

finite set.

Definition 6 ((new)). If we consider the l-skeleton instead of the
skeleton itself, Definition 5 can be directly generalised. The
l-skeleton (Chazal and Lieuthier, 2005) can be considered as all
centres of maximal balls whose radius is at least l. We can
therefore extend the above definitions to obtain the notion of
Rmin,l(p) corresponding to the minimal recovery of the l-skeleton
of p using maximal balls with a radius of more than l. Rmin,l(p) is
an accurate way to simply define pore space at different scales. In
the following, we will refer to Rmin(p) as MIRES(p) and to Rmin,l(p)
as l_MIRES(p). By doing this, we generalise Definition 5 by adding
a scale factor.

2.3. Computation of a minimal set of maximal balls recovering the
pore space skeleton

2.3.1. Extraction of maximal balls and the l-skeleton using 3D
Delaunay triangulation

It can be shown that maximal balls can be considered as
Delaunay spheres of the 3D Delaunay triangulation of the shape
boundaries (Boissonnat and Yvinec, 1998; Schmitt and Mattioli,
1994). The following algorithm can then be used to extract
maximal balls:

' Computation of the volume shape border
We select all points of p having at least one neighbour that
does not belong to p. For example, 26-connectivity can be used
for this step.
' Computation of 3D Delaunay triangulation of the volume

shape border
It is crucial to efficiently implement Delaunay triangulation
(Monga et al., 2007) when the number of shape border points
is very high. We propose using the Delaunay triangulation
program developed at INRIA by the GAMMA project (George,
2004; George and Borouchaki, 1998; Frey, 2001).
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! Computation of Delaunay spheres
Delaunay spheres are computed from Delaunay tetrahedra. The
Delaunay sphere attached to a tetrahedron is the sphere
passing through its four vertices.
! Pruning of Delaunay spheres

If the shape volume is explicitly defined by its indicative
function (Definition 1), we can select only Delaunay spheres
included within the shape. In this way, we obtain the set of
maximal balls.
! Computing the l-skeleton

We select all centres of Delaunay spheres included within the
shape with a radius of at least l. This set of points defines the
shape’s l-skeleton (Chazal and Lieuthier, 2005).

2.3.2. From maximal balls to minimum skeleton recovery
The computation of a minimal recovery of the skeleton using

maximal balls leads to a complex optimisation problem. The
existence of a reasonable algorithm (in terms of computing costs)
to achieve this goal does not seem obvious. We therefore propose
to use the following heuristic algorithm that works well from a
practical point of view:

I. Set j to NIL; where j is the final list of spheres.
II. INTMAX ¼ 0.

III. Enter a list S all Delaunay spheres included within the shape
with a radius of at least l, not included in list j, and which
are not marked.

IV. If S is empty, go to XII.
V. Sort all spheres of S according to their radius in decreasing

order.
VI. Take out the head of S that is the sphere with the highest

radius. This sphere will be referred to as T.
VII. If S is empty, go to XII

VIII. Compute the intersection of T with all spheres of j. For each
intersection, compute the ratio between the intersection
volume and the minimum of the volumes of the two spheres.
Compute the maximal value for this ratio, which will be
referred to as Rmax(T).

IX. If Rmax(T) is less than a given threshold INTMAX, then put T
in the list j and go to III.

X. If Rmax(T) is greater than INTMAX, then mark T and go to VI.
XI. If S is not empty, go to IV.

XII. If the union of spheres (balls) of j includes all points of the
l-skeleton, the process is terminated.

XIII. INTMAX ¼ INTMAX+0.1.
XIV. Go to II.

The basic principle of the above algorithm is to repeatedly
choose the biggest ball by adding the constraint that it should be
either tangent or disjoint to the other ones. If the skeleton is not
completely recovered in the end, the constraint (defined by the
INTMAX value) is then relaxed.

2.4. Describing pore space (p) using the adjacency graph of the
minimal recovery of the skeleton by maximal balls (l_MIRES_graph
(p))

The algorithm described in the previous section provides a set
of balls forming a compact description of the cavities (pores) of
the pore space. We propose using the adjacency graph of this set
of balls to describe pore space. We define this graph as follows:

Definition 7 ((new)). If p is the pore space defined by an
indicative function (see Definition 1) or a set of voxels, we define

the l_MIRES_graph of p as follows:

l_MIRES_graphðpÞ ¼ GðN;AÞ

where G is a graph, N is its set of nodes and A is its set of arcs.

N corresponds to a set of maximal balls (bi) forming a minimal

recovery of the skeleton, in other words

N ¼ fb1;b2; . . . ; bng 2 l_MIRESðpÞ (10)

A defines the adjacency relationships between the balls

attached to nodes, that is

ðbi; bjÞ 2 A3bi \ bja+ (11)

In the general case, for any shape p, more than one minimal

recovery of the skeleton using maximal balls (Card(l_MIRES(p))41))

exists. However, except for some degenerated cases, all these

minimal recoveries are very close to each other. That is why we

refer to ‘‘the’’ l_MIRES_graph of p instead of ‘‘a’’ l_MIRES_graph of p.

2.5. Computation of the l_MIRES_graph of a pore space p

In this section, we describe a practical way to compute the
l_MIRES_graph (p).

The steps of our method are as follows:

1. Extraction of a set of voxels corresponding to pore space (p) by
thresholding soil 3D computed tomography (Delerue and
Perrier, 2002; Monga et al., 2007).

2. Computation of l_MIRES(p) using the method described in
Section 2.3.

3. Computation of the l_MIRES_graph of p using the method
described in Section 2.4.

We will use the following notation for the l_MIRES_graph:

l_MIRES_graphðpð¼ÞB;AÞ (12)

where B and A are the set of nodes and the set of arcs of the graph,
respectively.

B ¼ fb1; b2; . . . ; bng (13)

bi ¼ ðCi; riÞ (14)

where bi is the ball whose centre is Ci and whose radius is ri

A ¼ fðbk; blÞ 2 B% B=ðbk \ bla+Þg (15)

We also attach a set of features F to each ball of the graph,
which provides information about the pore filling (water or air,
organic matter biomass, microbial biomass, etc.). For each ball bi,
fi(k) is the kth co-ordinate of feature vector Fi.
F ¼ fF1; F2; . . . . . . . . . ; Fng

Fi ¼ ðf ið1Þ; f ið2Þ; . . . . . .Þ
(16)

Therefore, the l_MIRES_graph (p) can be seen as a valuated
graph representing the biological exchanges in the 3D pore space
at a given time.

3. Using pore space modelling to simulate biological activity

3.1. Principle

The aim of our method is to simulate microbial soil organic
matter decomposition by:

(i) Using the l_MIRES_graph of pore space p to spatialise water
content distribution, organic matter and microbial decom-
poser masses;
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! ! ! !
Fig. 1 bis: Successive slices (1650 x 1650) of CT image of a sand soil sample
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Fig. 2bis: successive slices (400 x 400) of the (400 x 400 x 400) 3D image extracted
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Fig. 3bis: cross section representing pore space (white color), the porosity is 35%. 
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! !

Fig. 4bis: perspective views of the ball based pore space representation, we display only the 
balls whose radius is at leat 10
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Simulation: 3R
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Simulation: 3R
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Simulation
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 Biological problem

 PDE model

 Simulating the model

 Conclusions and Perspectives
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 Using PDE modeling approach in order to simulate the biological 
system.

  Investigate the quality properties of the model

  Generating more complicated models to the biological system

   Other biological systems...
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of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@n

@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx
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Thank you very much for your attention!


