
 

Hanoi University of SCIENCE AND Technology 

Faculty of Applied mathematics and informatics 

Advanced Training Program 

 
 
 
 
 
 
 
 
 
 
 

Lecture on 
 

INFINITE SERIES AND 
DIFFERENTIAL EQUATIONS 

 
 
 
 

Assoc. Prof. Dr. Nguyen Thieu Huy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ha Noi-2009 



Nguyen Thieu Huy 

 1 

Preface 

 
 
 
 

 
 
The Lecture on infinite series and differential equations is written for students of Advanced 
Training Programs of Mechatronics (from California State University–CSU Chico) and 
Material Science (from University of Illinois- UIUC). To prepare for the manuscript of this 
lecture, we have to combine not only the two syllabuses of two courses on Differential 
Equations (Math 260 of CSU Chico and Math 385 of UIUC), but also the part of infinite series 
that should have been given in Calculus I and II according to the syllabuses of the CSU and 
UIUC (the Faculty of Applied Mathematics and Informatics of HUT decided to integrate the 
knowledge of infinite series with the differential equations in the same syllabus). Therefore, 
this lecture provides the most important modules of knowledge which are given in all 
syllabuses.  
 
This lecture is intended for engineering students and others who require a working knowledge 
of differential equations and series; included are technique and applications of differential 
equations and infinite series. Since many physical laws and relations appear mathematically in 
the form of differential equations, such equations are of fundamental importance in 
engineering mathematics. Therefore, the main objective of this course is to help students to be 
familiar with various physical and geometrical problems that lead to differential equations and 
to provide students with the most important standard methods for solving such equations. 
 
I would like to thank Dr. Tran Xuan Tiep for his reading and reviewing of the manuscript. I 
would like to express my love and gratefulness to my wife Dr. Vu Thi Ngoc Ha for her 
constant support and inspiration during the preparation of the lecture.  
 

 
Hanoi, April 4, 2009 

 
 
 
 

Dr. Nguyen Thieu Huy 
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CHAPTER 1:    INFINITE SERIES 
 
 
 
 
 
The early developers of the calculus, including Newton and Leibniz, were well aware of the 
importance of infinite series. The values of many functions such as sine and cosine were 
geometrically obtainable only in special cases. Infinite series provided a way of developing 
extensive tables of values for them.  
 
This chapter begins with a statement of what is meant by infinite series, then the question of 
when these sums can be assigned values is addressed. Much information can be obtained by 
exploring infinite sums of constant terms; however, the eventual objective in analysis is to 
introduce series that depend on variables. This presents the possibility of representing 
functions by series. Afterward, the question of how continuity, differentiability, and 
integrability play a role can be examined.  
 
The question of dividing a line segment into infinitesimal parts has stimulated the 
imaginations of philosophers for a very long time. In a corruption of a paradox introduce by 
Zeno of Elea (in the fifth century B.C.) a dimensionless frog sits on the end of a one-
dimensional log of unit length. The frog jumps halfway, and then halfway and halfway ad 
infinitum. The question is whether the frog ever reaches the other end. Mathematically, an 
unending sum,  

                                                          
is suggested. "Common sense" tells us that the sum must approach one even though that value 
is never attained. We can form sequences of partial sums  

                                           
and then examine the limit. This returns us to Calculus I and the modern manner of thinking 
about the infinitesimal.  
In this chapter, consideration of such sums launches us on the road to the theory of infinite 
series.  
 
1. Definitions of Infinite Series and Fundamental Facts 
  
1.1 Definitions.  Let {un} be a sequence of real numbers. Then, the formal sum  

                                                                             (1)           
is an infinite series.  

Its value, if one exists, is the limit of the sequence of partial sums {Sn=
∞

=
=
∑ 1

1

} n

n

k
ku  
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If the limit exists, the series is said to converge to that sum, S. If the limit does not exist, the 
series is said to diverge.   
Sometimes the character of a series is obvious. For example, the series  

                                                                     

generated by the frog on the log surely converges, while  ∑
∞

=1n

n  diverges. On the other hand, 

the variable series  

                                                  
raises questions.  

This series may be obtained by carrying out the division 1/(1-x) . If -1 < x < 1, the sums Sn 
yields an approximations to 1/(1-x), passing to the limit, it is the exact value. The indecision 
arises for x = -1. Some very great mathematicians, including Leonard Euler, thought that S 
should be equal to 1/2, as is obtained by  
substituting -1 into 1/(1-x). The problem with this conclusion arises with examination of  
1 -1 + 1 -1+ 1 -1 + • • • and observation that appropriate associations can produce values of 1 
or 0. Imposition of the condition of uniqueness for convergence put this series in the category 
of divergent and eliminated such possibility of ambiguity in other cases.  
 
 1.2 Fundamental facts:  

1. If ∑
∞

=1n
nu  converges, then n

n
u

∞→
lim =0. The converse, however, is not necessarily true, i.e., if 

n
n

u
∞→

lim =0, ∑
∞

=1n
nu  may or may not converge. It follows that if the nth term of a series does not 

approach zero, the series is divergent.  
 
2. Multiplication of each term of a series by a constant different from zero does not affect the  
convergence or divergence.  
 
3. Removal (or addition) of a finite number of terms from (or to) a series does not affect the  
convergence or divergence.  
 
1.3 Special series:   

 
2. Tests for Convergence and Divergence of Series of Constants  
 
More often than not, exact values of infinite series cannot be obtained. Thus, the search turns  
toward information about the series. In particular, its convergence or divergence comes in 
question. The following tests aid in discovering this information. 
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2.1 Comparison test for series of non-negative terms. 
 

 
PROOF of Comparison test: 

 

 (a) Let 0≤um≤ vn, n = 1, 2, 3,... and  ∑
∞

=1n
nv converges. Then,  let Sn = u1 + u2+…+ un; 

Tn=v1+v2+…+vn.  

Since ∑
∞

=1n
nv  converges, limn->∞Tn exists and equals T, say. Also, since vn ≥ 0, Tn ≤T.  

Then Sn =u1+ u2 + •••+un  ≤  v1+ v2 + ••• + vn ≤ T  or 0 ≤ Sn ≤ T.  

Thus {Sn}  is a bounded monotonic increasing sequence and must have a limit, i.e.,  ∑
∞

=1n
nu  

converges. 
 
              (b) The proof of (b) is left for the reader as an exercise.  
 
2.2 The Limit-Comparison or Quotient Test for series of non-negative terms. 

 
PROOF:  (a)  

 
A=0 or A=∞, it is easy to prove the assertions (b) and (c). 
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EXAMPLE:   ∑
∞

=1 2

1
sin

n
n

 converges, since 
n2

1
sin >0, 

n

n

n

2

1
2

1
sin

lim
∞→

=1 and ∑
∞

=1 2

1

n
n

 converges. 

This test is related to the comparison test and is often a very useful alternative to it. In  
particular, taking vn = l/np,  we have the following theorem 

 

 
2.3 Integral test for series of non-negative terms. 
 

 
PROOF of Integral test: 

 

 



Nguyen Thieu Huy 

 7 

2.4 Alternating series test:  
 
An alternating series is one whose successive terms are alternately positive and negative. An 
alternating series ∑ nu  converges if the following two conditions are satisfied.   

 

PROOF:  Let 1

1

( 1)n
n

n

a

∞

+

=

−∑ be an alternating series (here a
n
>0 for all n) satisfying the above 

conditions (a) and (b). 

 

 
 
2.5 Absolute and conditional convergence. 
 

Definition: The series ∑
∞

=1n
nu is called absolutely convergent if ∑

∞

=1

||
n

nu  converges. If ∑
∞

=1n
nu  

converges  but ∑
∞

=1

||
n

nu  diverges, then ∑
∞

=1n
nu  is called conditionally convergent. 

Lemma: The absolutely convergent series is convergent. 
PROOF: 
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2.6 Ratio (D’Alembert) Test: 
 

  
Proof:  a) Since L<1, we can take an ε > 0 such that 0<L+ ε<1. Then there exists an n0 such 

that  
n

n

u

u 1+ <L+ ε for all n≥N. Therefore,  it follows that |un+1|<|un|(L+ ε) for all n≥N. Hence,  

|un|<|un-1|(L+ ε)< |un-2|(L+ ε)2<…<|uN|(L+ ε)n-N for all n>N.  

Since ∑
∞

=
+

1

)(||
n

n
N Lu ε  is convergent, it follows that ∑

∞

=1

||
n

nu  is convergent by comparison 

test. It means that ∑
∞

=1n
nu  is absolutely convergent. 

b) If L>1 then |un+1|>|un| for sufficiently large n. Therefore, {un} does not tend to 0 when n 

tends to infinity. This follows that ∑
∞

=1n
nu  diverges. 

 

If L=1, we take ∑
∞

=1

1

n n
 and ∑

∞

=1
2

1

n n
. Both of them satisfy L=1, but the former diverges and the 

latter converges. 
 

EXAMPLE: ∑
∞

=

−
1 !

2)1(

n

nn

n
 converges absolutely, since 0

1

2
lim

!

2)1(

)!1(

2)1(

lim

11

=
+

=
−

+
−

∞→

++

∞→ n

n

n
nnn

nn

n
<1. 

The following test can be proved by the same manner. 
 
2.7 The nth root (Cauchy) Test: 
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3. Theorem on Absolutely Convergent Series 
 
Theorem 4. (Rearrangement of Terms) The terms of an absolutely convergent series can be 
rearranged in any order, and all such rearranged series will converge to the same sum. 
However, if the terms of a conditionally convergent series are suitably rearranged, the 
resulting series may diverge or converge to any desired sum.  
 
Theorem 5. (Sums, Differences, and Products) The sum, difference, and product of two 
absolutely convergent series is absolutely convergent. The operations can be performed as for 
finite series. 
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CHAPTER 2:  INFINITE SEQUENCES AND SERIES OF                  
FUNCTIONS 

 
 

 
 

We open this chapter with the thought that functions could be expressed in series form. Such 
representation is illustrated by 

 
Observe that until this section the sequences and series depended on one element, n. Now 
there is variation with respect to x as well. This complexity requires the introduction of a new 
concept called uniform convergence, which, in turn, is fundamental in exploring the 
continuity, differentiation, and integrability of series. 
 
1. Basic Concepts of Sequences and Series of Functions 
 
1.1 Definitions: 

 
is said to be convergent in [a, b] if the sequence of partial sums {Sn(x)}, n= 1,2,3,..., where  
Sn(x) = u1(x) + u2(x)+…+un(x), is convergent in [a, b]. In such case we write n

n
S

∞→
lim =S(x)  

and call S(x) the sum of the series. 
 

 
These definitions can be modified to include other intervals besides [a, b], such as (a, b), and 
so on. 
 
The domain of convergence (absolute or uniform) of a series is the set of values of x for 
which the series of functions converges (absolutely or uniformly). 
 
EXAMPLE 1.  Suppose un(x) = xn/n and -1/2 ≤x≤ 1. Now, think of the constant function   
F(x) = 0 on this interval. For any ε> 0 and any x in the interval, there is N such that for all      
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n > N we have |un(x) - F(x)| < ε, i.e., |xn/n| < ε. Since the limit does not depend on x, the 
sequence is uniformly convergent.  

 
1.2 Special tests for uniform convergence of series  

 
1. Weierstrass M test. If sequence of positive constants M1, M2, M3….,  can be found such 
that in some interval  
(a) |un(x)|≤Mn, n= 1,2,3,... for all x in this interval  

(b) ∑
∞

=1n
nM  converges  

then ∑
∞

=1

)(
n

n xu  is uniformly and absolutely convergent in the interval.  

 
 

 
 
This test supplies a sufficient but not a necessary condition for uniform convergence, i.e., a 
series may be uniformly convergent even when the test cannot be made to apply.  
One may be led because of this test to believe that uniformly convergent series must be  
absolutely convergent, and conversely. However, the two properties are independent, i.e., a 
series can be uniformly convergent without being absolutely convergent, and conversely. 
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2. Theorems on uniformly convergent series  
 
If an infinite series of functions is uniformly convergent, it has many of the properties 
possessed by sums of finite series of functions, as indicated in the following theorems.  
 

Theorem 6. If {u n{x)}, n= 1,2, 3,... are continuous in [a, b] and if ∑ )(xun  converges 

uniformly to the sum S(x) in [a, b], then S(x) is continuous in [a, b].  
 
Briefly, this states that a uniformly convergent series of continuous functions is a continuous 
function. This result is often used to demonstrate that a given series is not uniformly 
convergent by showing that the sum function S(x) is discontinuous at some point.  
In particular if x0 is in [a, b], then the theorem states that 

                                       

 
Briefly, a uniformly convergent series of continuous functions can be integrated term by term. 
 
Considering the differentiability we have the following theorem. 
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3. Power Series  
 
3.1 Definition: 
A series having the form   

                                         
where a0, a1, a2,…., are constants, is called a power series in x. It is often convenient to 

abbreviate the above series as ∑
n

nxa .  

3.2. Abel’s theorem 

If the power series ∑
n

nxa  converges at the point x0 ≠ 0, then it converges at any point x 

satisfying |x|<| x0|. Moreover, if it diverges at the point x1, then it diverges at  any point x 
satisfying |x|>| x1|. 
 
PROOF. We prove the first assertion, and the second assertion easily follows from the first 

one. Let estimate | n
nxa |≤|anx0|

n

x

x

0

. 

Since, the series ∑
n

nxa 0  converges, we have that Limn→∞ anx0=0. Therefore, there exists 

M>0, such that |anx0| ≤ M for all n. We thus obtain that 
 

                                                             | n
nxa |≤M

n

x

x

0

 for all n.  

Since |x|<| x0|, the assertion now follows from the comparison test. 
 
General remarks: 
In general, a power series converges for |x| < R and diverges for |x| > R, where the constant R 
is called the radius of convergence of the series. For |x| = R, the series may or may not 
converge.  
The interval |x| < R or -R < x < R, with possible inclusion of endpoints, is called the interval 
of convergence of the series. Although the ratio test is often successful in obtaining this 
interval, it may fail  and in such cases, other tests may be used.  
The two special cases R = 0 and R = ∞ can arise. In the first case the series converges only for 
x = 0; in the second case it converges for all x, sometimes written —∞ < x < ∞. 
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When we speak of a convergent power series, we shall assume, unless otherwise indicated, 
that R > 0. 
 
3.3 More theorems on power series  
 
Theorem 9. A power series converges uniformly and absolutely in any interval which lies 
entirely within its interval of convergence. 
  
Theorem 10. A power series can be differentiated or integrated term by term over any 
interval lying entirely within the interval of convergence. Also, the sum of a convergent 
power series is continuous in any interval lying entirely within its interval of convergence. 
 
Theorem 11. When a power series converges up to and including an endpoint of its interval 
of convergence, the interval of uniform convergence also extends so far as to include this 
endpoint.  
 

 
 
If x0 is an end point, we must use x → x0+ or x → x0— in (10) according as x0 is a left- or 
right-hand end point. 
 
3.4 Operations with power series  
 
In the following theorems we assume that all power series are convergent in some interval.  
 
Theorem 13. Two power series can be added or subtracted term by term for each value of x 
common to their intervals of convergence. 

 
 
3.5 Expansion of Functions in Power Series  
 
This section gets at the heart of the use of infinite series in analysis. Functions are represented 
through them. Certain forms bear the names of mathematicians of the eighteenth and early 
nineteenth century who did so much to develop these ideas.  
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A simple way (and one often used to gain information in mathematics) to explore series  
representation of functions is to assume such a representation exists and then discover the 
details. Of course, whatever is found must be confirmed in a rigorous manner. Therefore, 
assume  
                  f(x) = A0+ A1(x -c) + A2(x -c)2 + …+ An(x - c)n + …  
Notice that the coefficients An can be identified with derivatives of f(x). In particular  
A0=f(c), A1 =f'(c), A2= f"(c)/2!,…,An=f(n)(c)/n!,... This suggests that a series representation of 
f(x) is  
 

f(x) =f(c) +f'(c)(x -c) + 
!2

1
f"(c)(x -c) + … +

!

1

n
f(n)(c)(x-c)+ …  

A first step in formalizing series representation of a function, f(x), for which the first n 
derivatives exist,  is accomplished by introducing Taylor polynomials of the function.  

P0(x) =f(c); P1(x) =f(c) +f'(c)(x - c); P2(x) =f(c) +f'(c)(x -c) +  
!2

1
f’’ (c)(x -c)2; … 

Pn(x) =f(c) +f’(c)(x - c) + • • • +
!

1

n
f(n)(c)x-c)n                                                                     (12)  

 
TAYLOR'S THEOREM  
 

 
 

 
If  all the derivatives of  f  exist, then the infinite series 
  

                                                                       ∑
∞

=

−
0

)(

)(
!

)(

n

n
n

cx
n

cf
                                          (16) 

is called a Taylor series of the function f, although when c = 0, it can also be referred to as a 
MacLaurin series or expansion. 
 
The Taylor series of a function may be convergent or divergent (except at the point c) on     
[a, b]. In case it converges on [a, b], the sum may or may not equal f(x). The following 
theorem gives a sufficient condition for the Taylor (or MacLaurin) series (16) to be 
convergent to f(x). 
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THEOREM.  Let the function f have the derivatives of all orders on (-R,R) (with R>0). If 
there is an M>0 such that  
 

|f(n)(x)|≤M  for all x∈(-R,R) and all n, 
 

then the series ∑
∞

=0

)(

!

)0(

n

n
n

x
n

f
 is convergent to f(x) on (-R,R). In other words: 

 

f(x)= ∑
∞

=0

)(

!

)0(

n

n
n

x
n

f
 for all x∈(-R,R). 

PROOF. This is direct consequence of the Taylor’s formula with Lagrange’s Remainder. 
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3.6 SOME IMPORTANT POWER SERIES  
 
The following series, convergent to the given function in the indicated intervals, are 
frequently employed in practice: 
 

 
 
 
 
4. Fourier Series 
 
Mathematicians of the eighteenth century, including Daniel Bernoulli and Leonard Euler, 
expressed the problem of the vibratory motion of a stretched string through partial differential 
equations that had no solutions in terms of "elementary functions." Their resolution of this 
difficulty was to introduce infinite series of sine and cosine functions that satisfied the 
equations. In the early nineteenth century, Joseph Fourier, while studying the problem of heat 
flow, developed a cohesive theory of such series.  
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Consequently, they were named after him. Fourier series are investigated in this section. As 
you explore the ideas, notice the similarities and differences with the infinite series.   
 
4.1 Periodic functions: A function f(x) is said to have a period T or to be periodic with 
period T if for all x, f{x + T) = f(x),  where T is a positive constant. The least value of T > 0 is 
called the least period or simply the period of f(x).  
 
EXAMPLE 1. The function sinx has periods 2π, 4π, 6π,..., since sin(x + 2π), sin(x + 4π), sin 
(x +6π),... all equal sinx. However, 2π is the least period or the period of sinx.  
 
EXAMPLE 2. The period of sinnπx or cosnπx, where n is a positive integer, is 2π/n.  
 
EXAMPLE 3. The period of tanx is π.  
 
EXAMPLE 4. A constant has any positive number as period. 
  
Other examples of periodic functions are shown in the graphs of Figures 13-1 (a), (b), and (c) 
below. 
 
 

 
 
4.2 Definition of Fourier Series 

 
 
 
4.3 Orthogonality Conditions for the Sine and Cosine Functions  
 
Notice that the Fourier coefficients are integrals. These are obtained by starting with the series 
(1),  and employing the following properties called orthogonality conditions: 
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4.4 Odd and Even Functions 
 
    A function f(x) is called odd if f(-x) =-f(x). Thus, x3+ x5 - 3x3 + 2x, sin x, tan 3x are odd 
functions.  
    A function f(x) is called even if f(-x)=f(x). Thus, x2 , 2x4 -4x2 +5, cos x, ex + e-x are even  
functions.  
 
The functions portrayed graphically in Figures 13-1 (a) and 13-1 (b) are odd and even 
respectively, but that of Fig. 13-l(c) is neither odd nor even.  
In the Fourier series corresponding to an odd function, only sine terms can be present. In the 
Fourier series corresponding to an even function, only cosine terms (and possibly a constant 
which we shall consider a cosine term) can be present. 
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4.5 Half Range Fourier Sine or Cosine Series.  
  
 
A half range Fourier sine or cosine series is a series in which only sine terms or only cosine 
terms are present, respectively. When a half range series corresponding to a given function is 
desired, the function is generally defined in the interval (0, L)  [which is half of the interval   
(-L, L), thus accounting for the name half range] and then the function is specified as odd or 
even, so that it is clearly defined in the other  
half of the interval, namely, (-L, 0). In such case, we have 

 
4.6 Parseval’s Identity  
 
If an and bn are the Fourier coefficients corresponding to f(x) and if f(x) satisfies the Dirichlet 
conditions. Then 

 
 
 
4.7 Differentiation and Integration of Fourier Series. 
 
Differentiation and integration of Fourier series can be justified by using the previous 
theorems, which hold for series in general. It must be emphasized, however, that those 
theorems provide sufficient conditions and are not necessary. The following theorem for 
integration is especially useful. 
 

 
 
 
 
4.8 Complex Notation for Fourier Series  
 
Using Euler's identities: 
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     Problems 
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CHAPTER 3: BASIC CONCEPT OF DIFFERENTIAL   
                                       EQUATIONS 

 
 
In this chapter we provide the readers with some fundamental concepts of differential 
equations such as solutions and order of differential equations, initial-value problems, 
standard and differential forms, etc. We first start by considering some examples of 
differential equations arising from processes in biology, physic, and so on. 
 
 
1. Examples of Differential Equations 

 
1.1 Growth and Decay Problems 
 
Let N(t) denote the amount of substance (or population) that is either growing or decaying. If 
we assume that dN/dt, the time rate of change of this amount of substance, is proportional to 
the amount of substance present, this means that dN/dt = kN, or 
                                                                    dN/dt - kN=0     (1.1) 
where k is the constant of proportionality. 
We are assuming that N(t) is a differentiable, hence continuous, function of time. For  
population problems, where N(t) is actually discrete and integer-valued, this assumption is 
incorrect. Nonetheless, (1.1) still provides a good approximation to the physical laws 
governing such a system. 
 
1.2 Temperature Problems  
 
Newton's law of cooling, which is equally applicable to heating, states that the time rate of 
change of the temperature of a body is proportional to the temperature difference between the 
body and its surrounding medium. Let T denote the temperature of the body and let Tm 
denote the temperature of the surrounding medium. Then the time rate of change of the  
temperature of the body is dT/dt, and Newton's law of cooling can be formulated as dT/dt = -
k(T- Tm), or as  

                                                                                                                 (1.2) 
where k is a positive constant of proportionality. Once k is chosen positive, the minus sign is 
required in Newton's law to make dT/dt negative in a cooling process, when T is greater than 
Tm, and positive in a heating process, when T is less than Tm.  
 
1.3 Falling Body Problems  
 
Consider a vertically falling body of mass m that is being influenced only by gravity g and an 
air resistance that is proportional to the velocity of the body. Assume that both gravity and 
mass remain constant and, for convenience, choose the downward direction as the positive 
direction. For the problem at hand, there are two forces acting on the body: the force due to 
gravity given by the weight m of the body, which equals mg, and the force due to air 
resistance given by -kv, where k > 0 is a constant of proportionality. The minus sign is 
required because this force opposes the  
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velocity; that is, it acts in the upward, or negative, direction (see Figure  1 -1). The net force F 
on the body is, therefore, F = mg-kv. Using this result and Newton second law of motion 
(F=mdv/dt), we obtain 

                                                          
or  

                                                         

                                         
                                                                      Figure 1.1 
 
 
 
1.4 Electrical Circuits  

         
                    Figure 1-2                                                            Figure 1-3 
 
The basic equation governing the amount of current / (in amperes) in a simple RL circuit (see 
Figure 1-2) consisting of a resistance R (in ohms), an inductor L (in henries), and an 
electromotive force (abbreviated emf) E (in volts) is 

                                                            
For an RC-circuit consisting of a resistance, a capacitance C (in farads),  an emf, and no 
inductance (Figure 1-3), the equation governing the amount of electrical charge q (in 
coulombs) on the capacitor is 

                                                                     
The relationship between q and I is   q = dI/dt   
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2.  Definitions and Related Concepts 
 
2.1 Definition. A differential equation is an equation involving an unknown function and its 
derivatives. 
 
The following are differential equations involving the unknown function y. 
 

                                              
A differential equation is an ordinary differential equation  if the unknown function depends 
on only one independent variable. If the unknown function depends on two or more 
independent variables, the differential equation is a partial differential equation. 
 
The order of a differential equation is the order of the highest derivative appearing in the 
equation. 
      
2.2 Solution. A solution of a differential equation in the unknown function y and the 
independent variable x on the interval J is a function y(x) that satisfies the differential 
equation identically for all x in J.  
Example: The function y(x) = c1sin2x + c2cos2x, where c1 and c2 are arbitrary constants, is  a 
solution of y" + 4y = 0 in the interval (-∞, ∞). 
 
2.3 Particular and general solutions.  
 A particular solution of a differential equation is any one solution. The general solution of a 
differential equation is the set of all solutions. 
 
2.4 Initial-Value and Boundary-Value Problems. 
 
 A differential equation along with subsidiary conditions on the unknown function and its 
derivatives, all given at the same value of the independent variable, constitutes an initial-value 
problem. The subsidiary conditions are initial conditions. If the subsidiary conditions are 
given at more than one value of the independent variable, the problem is a boundary-value 
problem and the conditions are boundary conditions.  
 
Example: The problem y" + 2y = x; y(π) = 1,y'(π) = 2 is an initial value problem, because the 
two subsidiary conditions are both given at  x = π. The problem y" + 2y' = x; y(0) = 1, y(l) = 1 



Nguyen Thieu Huy 

 31 

is a boundary-value problem, because the two subsidiary conditions are given at x = 0 and 
x=1. 
A solution to an initial-value or boundary-value problem is a function y(x) that both solves 
the differential equation and satisfies all given subsidiary conditions. 
 
2.5 Standard and Differential Forms  
 
Standard form for a first-order differential equation in the unknown function y(x) is  
                                                                          y' = f(x, y)                                                    (2.1) 
where the derivative y' appears only on the left side of (2.1). Many, but not all, first-order 
differential equations can be written in standard form by algebraically solving for y' and then 
setting f(x,y) equal to the right side of the resulting equation. The right side of (2.1) can 
always be written as a quotient of two other functions -M(x,y) and N(x,y). Then (2.1) 
becomes dy/dx = -M(x,y)/N(x, y), which is equivalent to the differential form  
                                                                M(x,y)dx + N(x,y)dy = 0                                       (2.2)  
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CHAPTER 4:             SOLUTIONS OF FIRST-ORDER                  
                DIFFERENTIAL EQUATIONS 

 
 
In this chapter we will consider the solutions of some first-order differential equations. 
Starting form separable equations we will construct the method to solve more complicated 
equation such as homogeneous, exact, linear, and Bernoulli equations. 
 
1. Separable Equations 
 
1.1 Definition: Consider a differential equation in differential form (1.4). If M(x,y) =A(x)  
(a function only of x) and N(x,y) = B(y) (a function only of y), differential equation is 
separable, or has its variables separated. 
 
1.2 General Solution: The solution to the first-order separable differential equation 
                                                                   A(x)dx + B(y)dy = 0                                           (1.1) 
is   

                                                                                                    (1.2) 
where c represents an arbitrary constant.  

Example.     Solve the equation: 
dx

dy
=

y

x 22 +
 

This equation may be rewritten in the differential form  
(x2+2)dx-ydy = 0 

which is separable with A(x) =x2 + 2 and B(y) = -y. Its solution is  

∫∫ =−+ cydydxx )2( 2  

or   

                                                      
3

1
x3+2x -

2

1
y2 = c . 

 
The integrals obtained in Equation (1.2) may be, for all practical purposes, impossible to 
evaluate. In such case, numerical techniques are used to obtain an approximate solution. Even 
if the indicated integrations in (1.2) can be performed, it may not be algebraically possible to 
solve for y explicitly in terms of x. In that case, the solution is left in implicit form.  
 
1.3 Solutions to the Initial-Value Problem: 
 
The solution to the initial-value problem  
                                                  A(x)dx + B(y)dy = 0; y(x0) = y0                                              (1.3)  
can be obtained, as usual, by first using Equation (1.2) to solve the differential equation and 
then applying the initial condition directly to evaluate c.  
Alternatively, the solution to Equation (1.3) can be obtained from  

                                                 (1.4) 
where s and t are variables of integration. 
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2. Homogeneous Equations: 
 
2.1 Definition: A differential equation in standard form 

                                                                    
dx

dy
 = f(x, y)                                                       (2.5) 

is homogeneous if  f(tx, ty) = f(x, y) for every real number t ≠ 0. 
Consider x ≠ 0. Then, we can write f(x, y)=f(x, xy/x)=f(1, y/x):=g(y/x) for a function g 
depending only on the ratio y/x . 
 
2.2 Solution: The homogeneous differential equation can be transformed into a separable 
equation by making the substitution: 
                                                                        y = xv                                                             (2.6)    
along with its corresponding derivative:  

                                                               
dx

dy
= v+

dx

dv
x .                                                         (2.7)    

Then we obtain v+
dx

dv
x =g(v). This can be rewritten as 

x

dx

vvg

dv =
−)(

 if g(v) ≠ v. 

The resulting equation in the variables v and x is solved as a separable differential equation; 
the required solution to Equation (2.5) is obtained by back substitution. 
The case g(v) = v yields another solution of the form y = kx for any constant k. 
 

Example:  Solve y' =  
x

xy +
 for x ≠ 0.  

This differential equation is not separable. Instead it has the form y' = f(x,y),  

with f(x,y) = 
x

xy +
, where f(tx, ty) = 

tx

txty +
=

x

xy +
=f(x, y), 

so it is homogeneous. Substituting equations (2.6) and (2.7) into the equation, we obtain  

v+
x

dv
x =

x

xxv+
 

which can be algebraically simplified to  

 
This last equation is separable; its solution is  

 
which, when evaluated, yields v = ln |x | - c, or  
                                                               v = ln|kx|                                                                   (26)  
where we have set c = -ln|k|;  and have noted that ln|x| +ln|k| = ln|xk|.  
Finally, substituting v = y/x back into (26), we obtain the solution to the given differential 
equation as y = xln|kx|. 
 
3. Exact equations  
 
3.1 Definition: A differential equation in differential form 
                                                         M(x, y)dx + N(x, y)dy = 0                                              (27)             
is exact if there exists a function g(x, y) such that  
                                                   dg(x, y) = M(x, y)dx + N(x, y)dy                                         (28) 
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3.2 Test for exactness: If M(x,y) and N(x,y) are continuous functions and have continuous 
first partial derivatives on some rectangle of the xy-plane, then Equation (27) is exact if and 

only if 
x

yxN

y

yxM

∂
∂=

∂
∂ ),(),(

. 

 
3.3 Solution: To solve Equation (27), assuming that it is exact, first solve the equations  

                                                             ),(
),(

yxM
x

yxg =
∂

∂
                                                   (28) 

                                                             ),(
),(

yxN
y

yxg =
∂

∂
                                                    (29) 

for g(x, y). The solution to (27) is then given implicitly by  
                                                                 g(x,y) = c                                                                (30)  
where c represents an arbitrary constant.  
Equation (30) is immediate from Equations (26) and (27). If (27) is substituted into (26), we 
obtain dg(x, y(x)) = 0. Integrating this equation (note that we can write 0 as 0dx), we have 

∫∫ = dxxyxdg 0))(,( , which, in turn, implies (30).  

 
Example:  Solve 2xydx + (l + x2)dy = 0.  
This equation has the form of Equation (26) with M(x, y) = 2xy and N(x, y) = 1 + x2. Since 

x

yxN

y

yxM

∂
∂=

∂
∂ ),(),(

 = 2x, the differential equation is exact. Because this equation is exact, 

we now determine a function g(x, y) that satisfies Equations (2.28) and (2.29). Substituting 

M(x, y) = 2xy into (2.28), we obtain 
x

yxg

∂
∂ ),(

= 2xy. Integrating both sides of this equation  

with respect to x, we find  
                                                         g(x,y) = x2y + h(y)                                                          (31)  
Note that when integrating with respect to x, the constant (with respect to x) of integration can 
depend on y. We now determine h(y). Differentiating (31) with respect to y, we obtain  

                                                      
y

yxg

∂
∂ ),(

 = x2+ h'(y).  

Substituting this equation along with N(x, y) =1 + x2 into (29), we have  
                                                 x2+h'(y) = 1 + x2 or h'(y) = 1.  
Integrating this last equation with respect to y, we obtain h(y) = y + c1 (c1 = constant). 
Substituting this expression into (31) yields g(x, y) = x2y + y + c1. The solution to the 
differential equation, which is given implicitly by (30) as g(x, y) = c, is x2y + y = c2 

 (c2 = c-c1). Solving for y explicitly, we obtain the solution as y = c2/(x
2 +1). 

 
3.4 Integrating Factors:  
 
In general, Equation (27) is not exact. Occasionally, it is possible to transform (27) into an 
exact differential equation by a judicious multiplication. A function I(x, y) is an integrating 
factor for (27) if the equation 
                                             
                                            I(x, y)[M(x, y)dx + N(x, y)dy] = 0                                              (32)  
is exact. 
         A solution to (27) is obtained by solving the exact differential equation defined by (32). 
Some of the more common integrating factors are displayed in Table 2.1 and the conditions 
that follow:  
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In general, integrating factors are difficult to uncover. If a differential equation does not have 
one of the forms given above, then a search for an integrating factor likely will not be 
successful, and other methods of solution are recommended. 
 
Example:  Solve ydx - xdy = 0. 
This equation is not exact. It is easy to see that an integrating factor is I(x)=1/x2. Therefore, 
we can rewrite the given differential equation as 

0
2

=−
x

ydxxdy
 

which is exact. This equation  can be solved using the steps described in equations (28) 
through (30). 
Alternatively, we  can  rewrite the above equation as d (y/x) = 0. Hence, by direct integration, 
we have y / x = c, or y = cx, as the solution. 
 

 
4. Linear Equations 
 
4.1 Definition: A first-order linear differential equation has the form 
                                                       y′ + p(x)y = q(x).                                                              (33) 
 
4.2 Method of Solutions: An integrating factor for Equation (2.33) is 

                                                                ∫=
dxxp

exI
)(

)(                                                          (34)  
which depends only on x and is independent of y. When both sides of (33) are multiplied by 
I(x), the resulting equation 

I(x) y′+ I(x)p(x)y = q(x)I(x)                                                  (35) 
is exact. This equation can be solved by the method described previously. 
A simpler procedure is to rewrite (23) as 

Iq
dx

Iyd =)(
, 

and integrate both sides of this last equation with respect to x,  then solve the resulting 
equation for y. The general solution for Equation (33) is 

                                            ∫ +∫∫=
−

))(()(
)()(

Cdxxqeexy
dxxpdxxp

                                          (36)        

Example: Solve  y′+(4/x)y=x4. 
Using (36) for p(x)=4/x and q(x)=x4, we obtain the general solution of the given equation as 
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9

5

4

x

x

C
y += . 

 
 

Table 2.1 

 
 
5. Bernoulli Equations 
A Bernoulli differential equation has the form 

                                                           y′ + p(x)y = q(x)yα                                              (37) 
where α is a real number (α ≠ 0; α ≠ 1). If  α > 0, then y ≡  0 is a solution of (37). Otherwise, 
if α < 0, then the condition is y ≠ 0. In both cases, we now find the solutions y ≠ 0. To do this 

we divide both sides by yα to obtain α−y y′ + p(x) α−1y  = q(x). The substitution z = α−1y  now 
transforms (37) into a linear differential equation in the unknown function z(x). 
 
Example: Solve y’+ xy= xy2. 
This equation is not linear. It is, however, a Bernoulli differential equation having the form of 

Equation (37) with p(x) = q(x) = x, and α = 2. First, we can see that y≡ 0 is a solution of the 
equation. We now find the solution y ≠ 0. To do so, we make the substitution:  z = y1−2 = y−1, 
from which follow y=1/z and y’=-z’/z2.  Substituting these equations into the given 
differential equation, we obtain the equation z’-xz = -x which is linear for the unknown 
function z(x). It has the form of Equation (2.33) with y replaced by z and p(x) = q(x) = −x. 
Using the formula (2.36) we obtain that  
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12

2

+=
x

Cez . 

The solution of the original differential equation is then:                    

1

11

2

2

+

==
x

Ce
z

y . 

 
 
 

6. Modelling: Electric Circuits 
 

Differential equations are of interest to non-mathematicians primarily because of the 
possibility of using them to investigate a wide variety of problems in the physical, biological, 
and social sciences. One reason for this is that mathematical models and their solutions lead to 
equations relating the variables and parameters in the problem. 
These equations often enable you to make predictions about how the natural process will 
behave in various circumstances. It is often easy to vary parameters in the mathematical 
model over wide ranges, whereas this may be very time-consuming or expensive in an 
experimental setting. Nevertheless, mathematical modelling and experiment or observation 
are both critically important and have somewhat complementary roles in scientific 
investigations. Mathematical models a re validated by comparison of their predictions with 
experimental results. On the other hand, mathematical analyses may suggest the most 
promising directions to explore experimentally, and may indicate fairly precisely what 
experimental data will be most helpful. In Section 1.1 we formulated and investigated a few 
simple mathematical models. We begin by recapitulating and expanding on some of the 
conclusions reached in that section. Regardless of the specific field of application, there are 
three identifiable steps that are always present in the process of mathematical modelling. 
 
6.1 Construction of the Model. This involves a translation of the physical situation into 
mathematical terms, often using the steps listed at the end of Section 1.1. Perhaps most 
critical at this stage is to state clearly the physical principle(s) that are believed to govern the 
process. For example, it has been observed that in some circumstances heat passes from a 
warmer to a cooler body at a rate proportional to the temperature difference, that objects move 
about in accordance with Newton’s laws of motion, and that isolated insect populations grow 
at a rate proportional to the current population. Each of these statements involves a rate of 
change (derivative) and consequently, when expressed mathematically, leads to a differential 
equation. The differential equation is a mathematical model of the process. It is important to 
realize that the mathematical equations are almost always only an approximate description of 
the actual process. For example, bodies moving at speeds comparable to the speed of light are 
not governed by Newton’s laws, insect populations do not grow indefinitely as stated because 
of eventual limitations on their food supply, and heat transfer is affected by factors other than 
the temperature difference. Alternatively, one can adopt the point of view that the 
mathematical equations exactly describe the operation of a simplified physical model, which 
has been constructed (or conceived of) so as to embody the most important features of the 
actual process. Sometimes, the process of mathematical modelling involves the conceptual 
replacement of a discrete process by a continuous one. For instance, the number of members 
in an insect population changes by discrete amounts; however, if the population is large, it 
seems reasonable to consider it as a continuous variable and even to speak of its derivative. 
 
6.2 Analysis of the Model. Once the problem has been formulated mathematically, one is 
often faced with the problem of solving one or more differential equations or, failing that, of 
finding out as much as possible about the properties of the solution. It may happen that this 
mathematical problem is quite difficult and, if so, further approximations may be indicated at 
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this stage to make the problem mathematically tractable. For example, a nonlinear equation 
may be approximated by a linear one, or a slowly varying coefficient may be replaced by a 
constant. Naturally, any such approximations must also be examined from the physical point 
of view to make sure that the simplified mathematical problem still reflects the essential 
features of the physical process under investigation. At the same time, an intimate knowledge 
of the physics of the problem may suggest reasonable mathematical approximations that will 
make the mathematical problem more amenable to analysis. This interplay of understanding 
of physical phenomena and knowledge of mathematical techniques and their limitations is 
characteristic of applied mathematics at its best, and is indispensable in successfully 
constructing useful mathematical models of intricate physical processes. 
 
6.3 Comparison with Experiment or Observation. Finally, having obtained the solution (or at 
least some information about it), you must interpret this information in the context in which 
the problem arose. In particular, you should always check that the mathematical solution 
appears physically reasonable. If possible, calculate the values of the solution at selected 
points and compare them with experimentally observed values. Or, ask whether the behavior 
of the solution after a long time is consistent with observations. Or, examine the solutions 
corresponding to certain special values of parameters in the problem. Of course, the fact that 
the mathematical solution appears to be reasonable does not guarantee it is correct. However, 
if the predictions of the mathematical model are seriously inconsistent with observations of 
the physical system it purports to describe, this suggests that either errors have been made in 
solving the mathematical problem, or the mathematical model itself needs refinement, or 
observations must be made with greater care. In Chapter 1 we have given some examples 
which are typical of applications in which first-order differential equations arise. In this 
section we pay our attention to a concrete model, that is a mathematical model of electric 
circuits. We start with some important facts from electric circuits. 
 
6.4 Electric circuits. The simplest electric circuit is a series circuit in which we have a source 
of electric energy (electromotive force) such as a generator or a battery, and a resistor, which 
uses the energy. Experiments show that the following law holds. 
     The voltage drop ER across a resistor is proportional to the instantaneous the current I, 
say,  
(Ohm’s law)                                             RIER= ,                                                            (L1) 
where the constant of proportional R is call the resistance of the resistor. The current I is 
measured in amperes, the resistance R in Ohms, and the voltage ER in volts.  
 
     The other two important elements in more complicated circuits are inductors and 
capacitors. An inductor opposes a change in current, having an inertia effect in electricity 
similar to that of mass in mechanics; we shall consider this analogy latter. Experiments yield 
the following law. 
     The voltage drop ER across an inductor is proportional to the instantaneous time rate of 
change of the  current I, say,  

                                                                  
dt

dI
LEL=                                                             (L2) 

where the constant of proportional L is called the inductance of the inductor and is measured 
in henrys; time t is measured in seconds. 
  A capacitor is an element which stores energy. Experiments yield the following law. 
  The voltage drop EC across an capacitor is proportional to the instantaneous electric charge 
Q on the  capacitor, say,  

                                                                 Q
C

EC

1=                                                             (L3*) 
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where C is called the capacitance and is measured in farads; the charge Q is measured in 
coulombs. Since 

                                                                 
dt

dQ
tI =)(                                                             (L3’) 

this may be written  

                                                              











+= ∫

t

t

C dItQ
C

E
0

)()(
1

0 ττ                                                        (L3) 

 
   The current I(t) in a circuit may be determined by solving the equation (or equations) 
resulting from the application of the following law. 
 
6.5 Kirchhoff’s voltage law (KVL): 
The algebraic sum of all the instantaneous voltage drops around any closed loop is zero, or 
the voltage impressed on a closed loop is equal to the sum of the voltage drops in the rest of 
the loop. 
 
6.6 Example: RL-circuit 
 

 
Fig. 2.2 

Model the “RL-circuit” in fig 2.2 and solve the resulting equation for: (A) a constant 
electromotive force; (B) a period electromotive force. 
 
Solution: 1st Step. Modeling. By  (L1) the voltage drop across the resistor is RI. By (L2) ) the 
voltage drop across the inductor is LdI/dt. By KVL the sum of the two voltage drops must 
equal the electromotive force E(t); thus 

)(tERI
dt

dI
L =+  

2nd Step. Solution of the equation. In order to use the formula (2.36) we transform the  
above equation to the standard form by deviding both side to L and obtain 

L

tE
I

L

R

dt

dI )(=+ . 

Using now formula (2.36) with x=t, y=I, p=R/L, and q=E/L we get 






 += ∫
− cdt

L

tE
eetI tt )(

)( αα      for  α = R/L. 

 

3rd Step. Case A: Constant electromotive force E=E0. The above equality for I(t) yields 

ttt ce
R

E
ce

R

E
etI ααα −− +=




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
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The last term tends to zero as t→∞; practically, after some time the current I(t) will be 
constant, equal to E0/R, the value it would have immediately (by Ohm’s law) had we no 
inductor in the circuit, and we see that this limit is independent of the initial value I(0).  

               Case B: Periodic electromotive force E=E0 Sinωt. For this E(t) we have that 








 += ∫
− cdtte

L

E
etI tt ωαα sin)( 0      for  α = R/L. 

Integration by part yields 

)sin()(
222

0 δω
ϖ

α −
+

+= − t
LR

E
cetI t ,  for δ=arctan(ωL/R). 

The exponential term will approach zero as t tends to infinity. This mean that after some time 
the current I(t) will execute practically harmonic oscillations.  
 
 
7. Existence and Uniqueness Theorem 
 
We now finish this chapter by stating the theorem on existence and uniqueness of the solution 
of an initial-value problem for a first-order differential equation. 
 
7.1 Theorem.  
Let the functions f(t,y) and ∂f/∂y be continuous in some rectangle α < t < β, γ < y < δ 
containing the point (t0,y0). Then, in some interval t0 − h < t < t0 + h contained in α < t < β, 
there is a unique solution y = φ(t) of the initial value problem 
y’ = f (t, y),     y(t0) = y0. 
 

Problems 
 
I. In each of Problems 1 through 8 solve the given differential equation. 

 
II. In each of Problems 9 through 20 find the solution of the given initial value problem in 
explicit form. 

 
 
III.  In each of Problems 31 through 38: 
(a) Show that the given equation is homogeneous. 
(b) Solve the differential equation. 
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IV. Determine whether or not each of the equations in Problems 1 through 12 is exact. If it is 
exact, Find the solution. 

 
 
V. Show that the equations in Problems 1 through 2 are not exact, but become exact when 
multiplied by the given integrating factor. Then solve the equations. 

 
VI. Show that if (N'x −  M'y)/(xM −  yN) = G, where G depends on the quantity xy only, 

then the differential equation Mdx + Ndy = 0 has an integrating factor of the form  μ(xy). 
Find a general formula for this integrating factor. 
 
VII. In each of Problems 1 through 5 find an integrating factor and solve the given equation. 

1. (3x2y + 2xy + y3)dx + (x2 + y2)dy = 0 

2. y' = e2x + y −  1 
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3. dx + (x/y −  sin y)dy = 0 

4. y dx + (2xy −  e−2y)dy = 0 

5. exdx + (excot y + 2y csc y)dy = 0 

6. [4(x3/y2) + (3/y)] dx + [3(x/y2) + 4y] dy 
 
VIII . In each of Problems 1 through 12 find the general solution of the given differential 
equation and use it to determine how solutions behave as t →∞. 

 
IX. In each of Problems 28 through 31 solve the given Bernoulli equation: 

 
X. Consider RL-circuit 

 
(a) Determine the differential equation governing the current I  (in amperes) on the 

circuit. 
(b) Solve the equation to find the current in the case of constant electromotive force 

E(t)=E, constant. Evaluate the constant of integration by using the condition 
I(0)=I0. 

(c) Determine the limit limt→∞I(t) where I(t) is obtained from (b) 
(d) Let R= 100 ohms, L=2.5 henries, E(t) = 110 cos 314t. Find the steady-state 

solution.  
XI. Consider RC-circuit 
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(a) Determine the differential equation governing the amount of electrical charge q (in 
coulombs) on the capacitor. 
(b) Solve the equation to find the charge q in the case of constant electromotive force 
E(t)=E, constant. Evaluate the constant of integration by using the condition q(0)=q0. 
(c) Determine the limit limt→∞q(t). 
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CHAPTER 5:                   SECOND-ORDER LINEAR   
                 DIFFERENTIAL EQUATIONS 

 

 
Linear equations of second order are of crucial importance in the study of differential 
equations for two main reasons. The first is that linear equations have a rich theoretical 
structure that underlies a number of systematic methods of solution. Further, a substantial 
portion of this structure and these methods are understandable at a fairly elementary 
mathematical level. In order to present the key ideas in the simplest possible context, we 
describe them in this chapter for second order equations. Another reason to study second 
order linear equations is that they are vital to any serious investigation of the classical areas of 
mathematical physics. One cannot go very far in the development of fluid mechanics, heat 
conduction, wave motion, or electromagnetic phenomena without finding it necessary to solve 
second-order linear differential equations. As an example, we discuss the oscillations of some 
basic mechanical and electrical systems at the end of the chapter. 
 
1. Definitions and Notations 
 
A second order ordinary differential equation has the form 
                                                                             y’’(t)=f(t,y,y’)                                         (DE2) 
where f is some given function. Usually, we will denote the independent variable by t since 
time is often the independent variable in physical problems, but sometimes we will use x 
instead. Equation (DE2) is said to be linear if the function f has the form 

f (t, y, y’)= r(t) − q(t)y − p(t)y’ 
that is, if f is linear in y and y’. In this expression, r, p, and q are specified functions of the 
independent variable t but do not depend on y. In this case we usually rewrite Eq. (DE2) 
as y’’ + p(t)y’ + q(t)y = r(t), and make the following precise definition. 
 
1.1 Definition. A second-order differential equation is called linear if it can be written in the 
form 
                                                           y’’ + p(t)y’ + q(t)y = r(t).                                               (1) 
 
Instead of Eq. (1), we often see the equation 
                                                       P(t)y’’ + Q(t)y’ + G(t)y = R(t).                                           
Of course, if P(t) ≠ 0, we can divide this Eq. by P(t) and thereby obtain Eq. (1) with   
p(t) =Q(t)/P(t),  q(t) =G(t)/P(t), r(t) =R(t)/P(t). 
 
In discussing Eq. (1) and in trying to solve it, we will restrict ourselves to intervals in which 
p, q, and r are continuous functions on some open interval I, that is forα < t < β. The cases α 
= −∞, or β =∞, or both, are included. The function p(t) and q(t) are called the coefficients of 
the Eq. (1). 
 
A second-order linear equation is said to be homogeneous if the term r(t) in Eq. (1),  is zero 
for all t. Otherwise, the equation is called nonhomogeneous. As a result, the term r(t) is 
sometimes called the nonhomogeneous term. 
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Examples: The following equations: y’’+4y=e -t sin t and  y’’-2ty’+ 6(1-t2)y=0 are examples 
of  nonhomogeneous and homogeneous second-order linear equations, respectively.  
 
1.2 Solution. A solution of a second-order linear differential equation on some interval I is a 
function y=h(t) that is twice differentiable and satisfies the differential equation for all t∈I. 
 
 
2. Theory for Solutions of Linear Homogeneous Equations 
 
In this section we give a general theory for solutions to Linear Homogeneous Equations on 
some interval I of the form  
                                                           y’’ + p(t)y’ + q(t)y = 0.                                                  (2) 
with continuous coefficients p, q and initial conditions  
                      y(t0)=y0; y’(t0)=y1 for given  y0, y1, and some fixed t0∈I.                                  (3)    
 
We accept the following theorem on existence and uniqueness theorem of the solution to the 
initial-value problem (2), (3).  
 
2.1 Existence and Uniqueness Theorem: Consider the initial-value problem 
                              y’’ + p(t)y’ + q(t)y = r(t), y(t0) = y0, y’(t0) = y1                                                      (IVP) 
where p, q, and r are continuous on an open interval I . Then there is exactly one solution  
y = φ(t) of this problem, and the solution exists throughout the interval I. 
 
2.3 Linearity Principle. If y1 and y2 are two solutions of the differential equation (2), then the 
linear combination c1y1 + c2 y2 is also a solution for any values of the constants c1 and c2. 
 
PROOF.  The assertion follows from the following direct substitution: 
(c1y1 + c2 y2)’’+ p(c1y1 + c2 y2)’+q(c1y1 + c2 y2)= c1(y1’’ + py1’+qy1)+ c2(y2’’ + py2’+qy2) = 0. 
 
2.4 Linear Independence of Solutions: 
The two solutions y1 and y2 are called linearly independent on I if  

k1 y1(t) + k2 y2(t)=0 for all t∈ I   implies   k1 = k2=0; 
and we call y1, y2  linearly dependent  on I if there exist k1,  k2 not both zero such that  
k1 y1(t) + k2 y2(t)=0 for all t∈I.  In this case (and only in this case) y1, y2  are proportional, that 
is y1=ky2 if k1≠0, or y2=ly1 if k2≠0. Since,   y1 and  y2 are linearly independent if and only if 
they are not linearly dependent,  we obtain that, two solutions y1 and y2 are linearly 
independent if and only if they are not proportional. 
 
Example. y1(t) =et and  y2(t)=e-2t are linearly independent, because they are not proportional. 
 
The following notion of Wronski determinant is very helpful in characterizing the linear 
independence of solutions. 
 
2.5 Definition. The Wronski Determinant (or Wronskian) of the two solutions y1, y2  of the 
equation (2) is defined by  

W(y1, y2)= 
'' 21

21

yy

yy
= y1y2’- y1’y2 

 
The following theorems connect the linear dependence and independence of the two solutions 
of Eq. (2) with the properties of their Wronskian. 
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2.6 Theorem. Two solutions y1 and y2 of Eq. (2) are linearly dependent on I if and only if 
their Wronskian W(y1, y2) is zero at some point t0∈I. 

PROOF. If  y1 and y2 are linearly dependent on I, then they are proportional, say, y1=k y2 on I. 
This follows that W(y1, y2)(t)=0 for all t∈I.  
Conversely, if there is t0∈ I such that W(f,g)(t0)=0, we prove that  f and g are linearly 
dependent on I. In fact,  since W(y1, y2)(t0) = 0 we have that the system of equations 

c1y1(t0) + c2y2(t0)   = 0 
(4) 

  c1y1’ (t0) + c2y2’ (t0) = 0 
for the unknowns  c1 and c2 has a nontrivial solution. Using these values of c1 and c2,  
let φ(t) = c1y1(t) + c2 y2(t). Then φ is a solution of Eq. (2), and by system (3) φ also satisfies 
the initial conditions 

φ(t0) = 0, φ’ (t0) = 0. 
Therefore, by the existence and uniqueness theorem 2.1, φ(t) = 0 for all t in I. Since φ(t) = 
c1y1(t) + c2y2(t) with c1 and c2 not both zero, this means that y1 and y2 are linearly dependent. 
 
Remark: The above proof also shows that two solutions y1 and y2 of Eq. (2) are linearly 
dependent on I if and only if their Wronskian W(y1, y2) is zero for all t∈I. 
 
2.7 Theorem. Let y1 and y2 be two solutions of the equation (2) on an interval I . Then,  
the following assertions are equivalent. 
(i) y1 and y2 are linearly independent. 
(ii)  W(y1, y2)(t0) ≠0 for some point t0 in I. 
(iii)  W(y1, y2)(t) ≠0 for every t in I. 
 

PROOF. “(i) ⇒  (ii)”: For the purpose of contradiction let  W(y1, y2)(t) =0 for all t in I. Then, 
by Theorem 2.6, y1 and y2 are linearly dependent. This contradicts to (i). 
 
“(ii)  ⇒  (iii)”: Again,  for the purpose of contradiction suppose that W(y1, y2)(t1) =0 for some 
t1 in I. Then, by theorem 2.6,  y1 and y2 are linearly dependent. This yields that W(y1, y2) is 
zero for all t∈I (see Remark after theorem 2.6). This contradicts to (ii). 
 
“(iii)  ⇒  (i)”: If  y1 and y2 are linearly dependent, then, by theorem 2.6, there exists t0 such 
that W(y1, y2)(t0) =0. This contradicts to (iii). 
 
2.8 Theorem (Existence of Linearly Independent Solutions). 
Consider Eq. (2) with continuous coefficients p, q on I. Then there exists two linearly 
independent solutions y1, y2 on I of Eq. (2). 
 
PROOF. By theorem 2.1, there exists solution y1 of Eq. (2) satisfying y1(t0)=1,  y1’( t0)=0 for 
some t0 in I. Also, there exists solution y2 of Eq. (2) satisfying y2(t0)=0,  y2’( t0)=1. Therefore, 
W(y1, y2)(t0)=1 ≠0. Hence, y1 and  y2 are linearly independent. 
  
2.9 Theorem (Structure of Solutions to Homogeneous Equations). 
Consider Eq. (2) with continuous coefficients p, q on I. Let y1, y2 be two linearly independent 
solutions on I of Eq. (2). Then the general solution (the set of all solutions) of Eq. (2) is 
                               {c1 y1+c2 y2 |  c1 and c2 are arbitrary constants }                                  (5) 
  
PROOF. Clearly, for any fixed constants  c1 and c2,  the formula in (5) represents a solution of 
Eq. (2) on I. Let now Y be an arbitrary solution of (2) on I. Put Y(t0)=k1, Y’(t0)=k2 for some 
fixed t0 in I. 
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Consider y=c1 y1+c2 y2. We will find c1, c2 such that  y(t0)=k1, y’(t0)=k2. These conditions are 
equivalent to  

c1y1(t0) + c2y2(t0)   = k1 

(6) 
c1y1’ (t0) + c2y2’ (t0) = k2 

This system of linear equations (6) has a solution (c10 , c20) since its determinant of 
coefficients  is W(y1,y2)(t0) ≠0 (because  y1, y2 are linearly independent). 
The theorem 2.1 now yields that Y(t)= c10 y1(t)+c20 y2(t) for all t in I. Therefore, Y has a form 
represented in the set (5).   
 
2.10 Definition. A basis (or a fundamental set) of solutions of Eq. (2) on an interval I is a 
pair y1, y2 of linearly independent solutions on I of Eq. (2).  
 
Remark.  
(i) To solve the homogeneous equation (2) is to find a basic of solutions y1,y2  of Eq. (2). 

Then, the general solution is  y=c1 y1+c2 y2.   
(ii)  However, for most problems of the form (2), it is not possible to write down a useful 

expression for the solution. This is a major difference between first order and second 
order linear equations. 

Example.     Solve            y’’-3y’+2y =0                                                                                 (7) 
To solve this equation, we remember from chapter 2 that a first-order linear differential 
equation y’+ky=0 with constant coefficient k has an exponential function as a solution, y=e-kt. 
This gives us the idea to try as a solution of  (7) the function  
                                                                       y=ect.                                                                  (8) 
Substituting (8) into (7) we obtain (c2-3c+2) ect=0, this is equivalent to c=1 or c=2. We then 
obtain the two following linearly independent solutions of (7): y1= et and y2= e2t

.  Therefore, 
the general solution of (7) is y= c1 e

t +c2e
2t

 

 
2.11. Reduction of Order.  
 
If a nontrivial solution y1 is known, then we can find the solution y2 linearly independent with 
y1 by the following procedure which is called the method of reduction of order. 
 
Putting y2=u. y1 and substituting it to Eq (2), we obtain 

u’’  y1 +u’(2 y1’+p y1)=0. 

Setting U=u’, it follows that U’ y1+U(2 y1’+p y1)=0, this yields U=
2
1y

e
pdt∫−

. Returning to u we 

have that 
2
11

2'
y

e

y

y
u

pdt∫
=

′









=

−

. Therefore,  

                                                               dt
y

e
yy

pdt

∫
∫

=
−

2
1

12                                                        (9) 

Example: Solve  (t2-1)y’’-2ty’+2y=0 given a solution y1=t. 
To use the formula (9) we write the equation in the standard form  

y’’-2ty’/(t 2-1)+2y/(t2-1)=0. 

Applying (9) we have  dt
t

e
ty

dt
t

t

∫
∫

=
−

2

1

2

2

2

=t2+1. Therefore, the general solution of given 

equation is y=c1t+c2(t
2+1). 
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3. Homogeneous Equations with Constant Coefficients 
 
In this section we consider the homogeneous equations with constant coefficients of the form 
                                                               y’’ + ay’ + by = 0                                                     (10) 
which has arbitrary (real) constant coefficients. Based on our experience with Eq. (7), let us 
also seek exponential solutions of Eq. (10). Thus we suppose that y = ekt, where k  is a 
parameter to be determined. Then it follows that y’ = kekt and y’’ = k2ekt. By substituting these 
expressions for y, y’’, and y’’ in Eq. (10), we obtain 
(k2 + ak + b)ekt = 0 or, since ekt is never zero, 
                                                                    k2 + ak + b = 0.                                                 (11) 
Equation (11) is called the characteristic equation for the differential equation (10). Its 
significance lies in the fact that if k is a root of the polynomial equation (11), then y = ekt is a 
solution of the differential equation (10). Since Eq. (11) is a quadratic equation with real 
coefficients, it has two roots, which may be real and different, real but repeated, or complex 
conjugates. We now consider each case in detail. 
 
1st Case: Distinct real roots. 
Assuming that the roots of the characteristic equation (11) are real and different, let them be 
denoted by k1 and k2, where  k1 ≠ k2. Then y1(t) = tke 1  and y2(t) = tke 2  are two linearly 
dependent solutions of Eq. (11). Therefore, by Theorem 2.9 in the previous section, we obtain 
the general solution of Eq. (11): 
                                                          y = c1

tke 1 + c2
tke 2                                                           (12) 

 
Example.  Find the general solution of  
                                                             y’’ + 5y’ + 6y = 0.                                                      (13) 
The characteristic equation is 

k2 + 5k + 6  = 0. 
It has two distinct real roots: k1 = −2 and k2 = −3; then the general solution of Eq. (13) is 

y = c1e
−2t + c2e

−3t
 . 

 
2nd Case: Double real root. 
We consider the second possibility, namely, that the two real roots k1 and k2 are equal. This 
case occurs when the discriminant ∆=a2 − 4b is zero, and it follows from the quadratic 
formula that 
                                                             k1 = k2 = −a/2.                                                            (14) 
The difficulty is immediately apparent; both roots yield the same solution. 
                                                           y1(t) =

tke 1 = e−at/2                                                          (15) 
of the differential equation (11). We now find a second solution y1 which is linearly 
independent to y2. Using formula (9) we obtain that  

dt
e

e
ey

at

adtat

∫ −

−
− ∫

= 2
2  =t 2

at

e
−

 

Therefore, the general solution of Eq. (11) in this case is  

y=(c1+c2t) 2

at

e
−

. 
 
Example. Solve the differential equation  y’’ + 4y’ + 4y = 0.  

The characteristic equation is k2 + 4k + 4  = 0, which has a double real root k1 = k2= -2. 
Therefore, the general solution of given differential equation is y=(c1+c2t) e

−2t. 
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3rd Case: Complex conjugate roots. 
Suppose now that a2 − 4b is negative. Then the roots of characteristic Eq. (3)  are conjugate 
complex numbers; we denote them by k1 = λ + iµ, k2 = λ − iµ,  where λ and µ are real and µ ≠0. 
We obtain two linearly independent (complex-value) solutions of Eq. (2) as   
                                                  Y1(t) = e(λ + iµ)t;    Y2(t) = e(λ − iµ)t.                                            (16) 

To find real-value solutions we will recall the Euler Formula: 
e it = cos t + i sin t for every real number t. 

Using this formula for Y1(t),  Y2(t) we obtain  

2

1
[Y1(t) + Y2(t)] = 

2

1
(eλt (cosµt + i sinµt) + eλt (cosµt − i sinµt))= eλtcosµt 

i2

1
[Y1(t) - Y2(t)] =

i2

1
( eλt (cosµt + i sinµt) - eλt (cosµt − i sinµt))= eλtsinµt. 

Since, a linear combination of two solutions of  Eq.(2) is again a solution of Eq. (2), we obtain 
the two following linearly independent (real-value) solutions of Eq. (2): 

y1= eλtcosµt and y2= eλtsinµt. 
Therefore, the general solution of Eq. (2) is  

y= c1e
λtcosµt + c2e

λtsinµt. 
Example 1. Find the general solution of 
                                                              y’’+ y’ + y = 0.                                                          (17) 

The characteristic equation is k2 + k + 1 = 0, and its roots are k = −
2

1
 ± i

2

3
 

Thus λ = −1/2 and µ = 3 /2, so the general solution of Eq. (17) is 

y = c1e
−t/2 cos( 3 t/2) + c2e

−t/2 sin( 3 t/2). 
Example 2. Find the general solution of y’’+ 9y = 0.  
The characteristic equation is k2 + 9 = 0 with the roots k = ±3i ; thus λ = 0 and µ = 3. The 
general solution is  y = c1cos3t + c2sin3t.  
Note that if the real part of the roots is zero, as in this example, then there is no exponential 
factor in the solution. 
 
4. Modelling: Free Oscillation (Mass-spring problem) 
 
We will study the motion of a mass on a spring in detail because an understanding of the 
behaviour of this simple system is the first step in the investigation of more complex vibrating 
systems. Further, the principles involved are common to many problems. Consider a mass m 
hanging on the end of a vertical spring of original length l, as shown in Figure 4.1. The mass 
causes an elongation L of the spring in the downward (positive) direction. There are two 
forces acting at the point where the mass is attached to the spring; see Figure 4.2. The 
gravitational force, or weight of the mass, acts downward and has magnitude mg, where g is 
the acceleration due to gravity. There is also a force Fs , due to the spring, that acts upward. If 
we assume that the elongation L of the spring is small, the spring force is very nearly 
proportional to L; this is known as Hooke’s law. Thus we write Fs = −kL, where the constant 
of proportionality k is called the spring constant, and the minus sign is due to the fact that the 
spring force acts in the upward (negative) direction.  
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Fig 4.1 A spring–mass system. 

 
 

 
Fig 4.2 Force diagram for a spring–mass system. 

 
Since the mass is in equilibrium, the two forces balance each other, which means that 
                                                                   mg − kL = 0.                                                           (1) 
 
For a given weight w = mg, one can measure L and then use Eq. (2) to determine k. Note that 
k has the units of force/length. In the corresponding dynamic problem we are interested in 
studying the motion of the mass when it is acted on by an external force or is initially 
displaced. Let u(t), measured positive downward, denote the displacement of the mass from 
its equilibrium position at time t; see Figure 4.1. Then u(t) is related to the forces acting on the 
mass through Newton’s law of motion, 

mu’’ (t) = f (t),                                                            (2) 
where u’’ is the acceleration of the mass and f is the net force acting on the mass. Observe that 
both u and f are functions of time. In determining f, we consider the following cases. 
 
4.1 Undamped Systems.  In this case there are two separate forces that must be considered: 
 
1. The weight w = mg of the mass always acts downward. 
2. The spring force FS is assumed to be proportional to the total elongation L + u of the 
spring and always acts to restore the spring to its natural position. If L + u > 0, then the spring 
is extended, and the spring force is directed upward. In this case 

Fs = −k(L + u).                                                            (3) 
On the other hand, if L + u < 0, then the spring is compressed a distance |L + u|, and the 
spring force, which is now directed downward, is given by Fs = k|L + u|. However, when        
L + u < 0, it follows that |L + u| = −(L + u), so Fs is again given by Eq. (3). Thus, regardless of 
the position of the mass, the force exerted by the spring is always expressed by Eq. (3). 
 
Taking account of these forces, we can now rewrite Newton’s law (2) as 

mu’’ (t) = mg + Fs(t)= mg − k[L + u(t)] 
Since mg − kL = 0 by Eq. (1), it follows that the equation of motion of the mass is 

mu’’ (t) + ku(t) = 0,                                                         (4) 
where the constants m and k are positive. Note that Eq. (4) has the same form as Eq. (1). 
It is important to understand that Eq. (4) is only an approximate equation for the displacement 
u(t). In particular,  Eq. (3)  should be viewed as approximations for the spring force. In our 
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derivation we have also neglected the mass of the spring in comparison with the mass of the 
attached body. 
 
The general solution of Eq. (4) is 

u = Acosω0t + Bsinω0t,                                                   (5) 
where 2

0ω = k/m.  

The arbitrary constants A and B can be determined if initial conditions of the form  
u(0) = u0, u’(0) = v0.                                                       (6) 

are given. 
 
In discussing the solution of Eq. (4) it is convenient to rewrite Eq. (5) in the form 

u = R cos(ω0t − δ),                                                         (7)  
where  

R = 22 BA + , tan δ = B/A.  
In calculating δ care must be taken to choose the correct quadrant; this can be done by 
checking the signs of cos δ and sin δ in Eqs. (5). 
The graph of Eq. (7), or the equivalent Eq. (5), for a typical set of initial conditions is shown 
in Figure 4.3. The graph is a displaced cosine wave that describes a periodic, or simple 
harmonic, motion of the mass. The period of the motion is 

T =
2

1

0

2
2








=
k

mπ
ω
π

                                                        (8) 

The circular frequency ω0 = 
k

m
, measured in radians per unit time, is called the natural 

frequency of the vibration. The maximum displacement R of the mass from equilibrium is the 
amplitude of the motion. The dimensionless parameter δ is called the phase, or phase angle, 
and measures the displacement of the wave from its normal position corresponding to δ = 0. 
Note that the motion described by Eq. (7) has a constant amplitude that does not diminish 
with time. This reflects the fact that in the absence of damping there is no way for the system 
to dissipate the energy imparted to it by the initial displacement and velocity. Further, for a 
given mass m and spring constant k, the system always vibrates at the same frequency ω0, 
regardless of the initial conditions. However, the initial conditions do help to determine the 
amplitude of the motion. Finally, observe from Eq. (8) that T increases as m increases, so 
larger masses vibrate more slowly. On the other hand, T decreases as k increases, which 
means that stiffer springs cause the system to vibrate more rapidly. 
 
 

 
 

FIG. 4.3 Simple harmonic motion; u = R cos(ω0t − δ). 
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4.2 Damped Systems. In this case, beside the two forces (1. The weight and 2. The spring 
force) as above, we have to consider one more force, that is:  
3. The damping or resistive force Fd always acts in the direction opposite to the direction of 
motion of the mass. This force may arise from several sources: resistance from the air or other 
medium in which the mass moves, internal energy dissipation due to the extension or 
compression of the spring, friction between the mass and the guides (if any) that constrain its 
motion to one dimension, or a mechanical device (dashpot) that imparts a resistive force to the 
mass. In any case, we assume that the resistive force is proportional to the speed |du/dt| of the 
mass; this is usually referred to as viscous damping. If du/dt > 0, then u is increasing, so the 
mass is moving downward. Then Fd is directed upward and is given by 
                                                                  Fd (t) = −γ u’(t),                                                      (8) 
where γ is a positive constant of proportionality known as the damping constant. On the other 
hand, if du/dt < 0, then u is decreasing, the mass is moving upward, and Fd is directed 
downward. In this case, Fd = γ |u’ (t)|; since |u’ (t)| = −u’ (t), it follows that Fd (t) is again given 
by Eq. (8). Thus, regardless of the direction of motion of the mass, the damping force is 
always expressed by Eq. (8). 
The damping force may be rather complicated and the assumption that it is modelled 
adequately by Eq. (8) may be open to question. Some dashpots do behave as Eq. (8) states, 
and if the other sources of dissipation are small, it may be possible to neglect them altogether, 
or to adjust the damping constant γ to approximate them. An important benefit of the 
assumption leading to Eq. (8) is that it leads to a linear (rather than a nonlinear) differential 
equation. In turn, this means that a thorough analysis of the system is straightforward, as we 
will show in this section and the next. 
Taking account of these forces, we can now rewrite Newton’s law  as 

mu’’ (t) = mg + FS(t) + Fd (t) = mg − k[L + u(t)] − γ u’ (t) 
Since mg − kL = 0, it follows that the equation of motion of the mass is 

mu’’ (t) + γ u’ (t) + ku(t) = 0,                                                (9)    
where the constants m, γ , and k are positive. Note that Eq. (9) has the same form as Eq. (2). 
 
We are especially interested in examining the effect of variations in the damping coefficient γ 
for given values of the mass m and spring constant k. The roots of the corresponding 
characteristic equation are 

 
Depending on the sign of γ 2 − 4km, the solution u has one of the following forms: 

                     

              (10)   
Since m, γ , and k are positive, γ2 − 4km is always less than γ2. Hence, if γ2 − 4km ≥ 0, then the 
values of r1 and r2 given by above formulae are negative. If γ2 − 4km < 0, then the values of r1 

and r2 are complex, but with negative real part. Thus, in all cases, the solution u tends to zero 
as t →∞; this occurs regardless of the values of the arbitrary constants A and B, that is, 
regardless of the initial conditions. This confirms our intuitive expectation, namely, that 
damping gradually dissipates the energy initially imparted to the system, and consequently the 
motion dies out with increasing time. 
The most important case is the third one, which occurs when the damping is small. 
If we let A = R cos δ and B = R sin δ in Eq. (10), then we obtain 

u = Re−γt/2mcos(µt − δ). 
The displacement u lies between the curves u = ±Re−γt/2m; hence it resembles a cosine wave 
whose amplitude decreases as t increases. A typical example is sketched in Figure 3.8.5. The 
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motion is called a damped oscillation, or a damped vibration. The amplitude factor R depends 
on m, γ , k, and the initial conditions. 
Although the motion is not periodic, the parameter µ determines the frequency with which the 
mass oscillates back and forth; consequently, µ is called the quasi frequency. By comparing 
µ with the frequency ω0 of undamped motion, we find that 

                          (11) 
 

 
FIG. 4.4 Damped oscillation; u = Re−γt/2mcos(µt − δ). 

 
The last approximation is valid when γ

2/4km is small; we refer to this situation as “small 
damping.” Thus, the effect of small damping is to reduce slightly the frequency of the 
oscillation. The quantity Td = 2π/µ is called the quasi period. It is the time between 
successive maxima or successive minima of the position of the mass, or between successive 
passages of the mass through its equilibrium position while going in the same direction. The 
relation between Td and T is given by 

                                    (12) 
where again the last approximation is valid when γ

2/4km is small. Thus, small damping 
increases the quasi period. 
Equations (11) and (12) reinforce the significance of the dimensionless ratio γ

2/4km. 
It is not the magnitude of γ alone that determines whether damping is large or small, but the 
magnitude of γ2 compared to 4km. When γ2/4km is small, then we can neglect the effect of 
damping in calculating the quasi frequency and quasi period of the motion. On the other hand, 
if we want to study the detailed motion of the mass for all time, then we can never neglect the 
damping force, no matter how small. 
 
5. Nonhomogeneous Equations: Method of Undetermined Coefficients 
 
We now return to the nonhomogeneous equation 

y’’ + p(t)y’+ q(t)y = g(t),                                                   (1) 
where p, q, and g are given (continuous) functions on the open interval I . The equation 

 y’’+ p(t)y’ + q(t)y = 0,                                                      (2) 
in which g(t) = 0 and p and q are the same as in Eq. (1), is called the homogeneous equation 
corresponding to Eq. (1). The following two results describe the structure of solutions of the 
nonhomogeneous equation (1) and provide a basis for constructing its general solution. 
 
5.1. Theorem. If Y1 and Y2 are two solutions of the nonhomogeneous equation (1), then their 
difference Y1 − Y2 is a solution of the corresponding homogeneous equation (2). If, in addition,  
y1 and y2 are a fundamental set of solutions of Eq. (2), then  

Y1(t) − Y2(t) = c1 y1(t) + c2 y2(t),                                         (3) 
where c1 and c2 are certain constants. 
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Proof. To prove this result, note that Y1 and Y2 satisfy the equations (1), this means that  

''
1Y  + p(t) '

1Y + q(t)Y1= g(t) and ''
1Y  + p(t) '

1Y + q(t)Y1= g(t)                                (4) 
Subtracting the second of these equations from the first, we have 

(Y1- Y2)
’’ +p(t)(Y1- Y2)

’+q(t)(Y1- Y2)=  0.                          (5) 
Equation (5) states that Y1 − Y2 is a solution of Eq. (2). Finally, since all solutions of Eq. (2) can 
be expressed as linear combinations of a fundamental set of solutions by Theorem 2.9, it follows 
that the solution Y1 − Y2 can be so written. Hence Eq. (3) holds and the proof is complete. 
 
5.2 Theorem.  The general solution of the nonhomogeneous equation (1) can be written in the 
form 

y = φ(t) = c1 y1(t) + c2 y2(t) + Y (t),                                (6) 
where y1 and y2 are a fundamental set of solutions of the corresponding homogeneous equation 
(2), c1 and c2 are arbitrary constants, and Y is some specific solution of the nonhomogeneous 
equation (1). 
The proof of Theorem 5.2 follows quickly from the preceding theorem. Note that Eq. (3) holds if 
we identify Y1 with an arbitrary solution φof  Eq. (1) and Y2 with the specific solution Y . From 
Eq. (3) we thereby obtain 

φ(t) − Y (t) = c1y1(t) + c2y2(t),                                    (7) 
which is equivalent to Eq. (6). Since φ is an arbitrary solution of Eq. (1), the expression on the 
right side of Eq. (7) includes all solutions of Eq. (1); thus it is the general solution of Eq. (1). 
 
In somewhat different words, Theorem 5.2 states that to solve the nonhomogeneous equation (1), 
we must do three things: 
 
1. Find the general solution c1y1(t) + c2y2(t) of the corresponding homogeneous equation. This 
solution is frequently called the complementary solution and may be denoted by yc(t). 
 
2. Find some single solution Y(t) of the nonhomogeneous equation. Often this solution is referred 
to as a particular solution. 
 
3. Add together the functions found in the two preceding steps. 
 
We have already discussed how to find yc(t), at least when the homogeneous equation (2) has 
constant coefficients. Therefore, in the remainder of this section and in the next, we will focus 
on finding a particular solution Y (t) of the nonhomogeneous equation (1). There are two 
methods that we wish to discuss. They are known as the method of undetermined coefficients 
and the method of variation of parameters, respectively. Each has some advantages and some 
possible shortcomings. 
 
5.3 Method of Undetermined Coefficients. The method of undetermined coefficients requires 
that we make an initial assumption about the form of the particular solution Y (t), but with the 
coefficients left unspecified. We then substitute the assumed expression into Eq. (1) and attempt 
to determine the coefficients so as to satisfy that equation. Then we have found a solution of the 
differential equation (1) and can use it for the particular solution Y (t). The main advantage of the 
method of undetermined coefficients is that it is straightforward to execute once the assumption 
is made as to the form of Y (t). Its major limitation is that it is useful primarily for equations for 
which we can easily write down the correct form of the particular solution in advance. For this 
reason, this method is usually used only for problems in which the homogeneous equation has 
constant coefficients and the nonhomogeneous term is restricted to a relatively small class of 
functions. In particular, we consider only nonhomogeneous terms that consist of polynomials, 
exponential functions, sinus, and cosines. Despite this limitation, the method of undetermined 
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coefficients is useful for solving many problems that have important applications. Precisely, we 
will consider the second-order linear differential equations with constant coefficients: 

  y’’ + ay’+ by = g(t)                                                       (8) 
 and with the following forms of the nonhomogeneous term g(t): 
 
FORM 1: g(t)=eαtPn(t), where Pn(t) is a polynomial of order n. For g(t) of this form we consider 
the following cases:  

            Case I:  The constant α is not a root of the characteristic equation k2+ak+b = 0. In this case, 
we choose Y= eαtQn(t) with Qn(t) being a polynomial of degree n whose 
coefficients  are found by substituting Y to Eq. (8). 

 
            Case II:  The constant α is a single root of the characteristic equation k2+ak+b = 0. In this 

case, we choose Y= teαtQn(t) with Qn(t) being a polynomial of degree n whose 
coefficients  are found by substituting Y to Eq. (8). 

 
            Case III: The constant α is the double root of the characteristic equation k2+ak+b = 0. In 

this case, we choose Y= t2eαtQn(t) with Qn(t) being a polynomial of degree n 
whose coefficients  are found by substituting Y to Eq. (8). 

 
EXAMPLES 

1. Consider                                  y’’ +3y’ − 4y = t; (α=0; n=1)                                         (9) 
The corresponding homogeneous equation is y’’+3y’ −4 y =0 with the characteristic equation  

k2+3k-4=0 ⇔ k=1 or -4. 
Therefore,  the general solution of the corresponding homogeneous equation is c1e

t+c2e
-4t. Since 

α=0 is not a root of characteristic equation, we find a particular solution of Eq. (9) of the form 
Y=At+B; Substituting this form into (9) we obtain that -4At+3A-4B=t. Identifying the 
corresponding coefficients of t we have that A=-1/4 and B=-3/16. This yields a particular 

solution of Eq. (9) as Y=
16
3

4
1 −− t  and hence, the general solution of (9): 

y= c1e
t+c2e

-4t

16
3

4
1 −− t  

  
2. Consider                                  y’’ - y’  = et(t+1); (α=1; n=1)                                      (10) 

The corresponding homogeneous equation is y’’ - y’=0 having the general solution as c1e
t+c2e

-t. 
Since α=1 is a single root of the characteristic equation, we find a particular solution of Eq. (10) 
of the form Y=tet(At+B); Substituting this form into (10) we obtain that et (2At+B+2A)=et(t+1) 
⇒ A=1/2 and B=0. Therefore, the general solution of (10) is  

y= c1e
t+c2e

-t 2

2
1

t+ et 

 
3. Consider                                  y’’ - 2y’+y  = et; (α=1; n=0)                                        (11) 

The corresponding homogeneous equation is y’’ - 2y’+y=0 having the general solution as 
(c1+c2t)e

t. Since α=1 is the double root of the characteristic equation, we find a particular 
solution of Eq. (11) of the form Y=At2et; Substituting this form into (11) we obtain that A=1/2 . 

Therefore, the general solution of (11) is y= (c1+c2t)e
t 2

2
1

t+ et
 

 
FORM 2: g(t)=Pm(t)cosβt + Qn(t)sinβt, where Pm(t) and Qn(t) are known polynomials of order 
m and n, respectively. For g(t) of this form we consider following cases: 
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            Case  I:  The constant iβ is not a root of the characteristic equation k2+ak+b = 0. In this 
case, we choose Y= R

l
 (t)cosβt+S

l
(t)sinβt with R

l
(t) and S

l
(t) being polynomials of 

degree l  = max{m, n} whose coefficients are found by substituting Y to Eq. (8). 
            Case II:  The constant iβ is a root of the characteristic equation k2+ak+b = 0. In this case, 

we choose Y= t(R
l
(t)cosβt+S

l
(t)sinβt) with R

l
(t) and S

l
(t) being polynomials of 

degree l  whose coefficients  are found by substituting Y to Eq. (8). 
 

EXAMPLE 
 
Consider   

y’’ + 4y = 3 cos 2t;                 (β=2, l = 0 )                          (12) 
Firstly, solve the homogeneous equation 

y’’+ 4y = 0                                                           (13) 
that corresponds to Eq. (12).  The characteristic equation k2+4=0 has two complex conjugate 
root k = ±2i. Therefore, the general solution of Eq. (13) is c1cos 2t + c2sin 2t.  
Since the nonhomogeneous term is 3 cos 2t, and 2i  is a root of the characteristic equation, we 
will find a particular of the form Y (t) = At cos 2t + Bt sin 2t. Then, upon calculating Y’(t) and 
Y’’(t) , substituting them into Eq. (12), and collecting terms, we find that 

−4A sin 2t + 4B cos 2t = 3 cos 2t. 

Therefore A = 0 and B = 
4
3

, so a particular solution of Eq. (20) is Y (t) = 
4
3

t sin 2t. Hence,  

The general solution of (12) is y(t)= c1cos 2t + c2sin 2t+
4
3

t sin 2t. 

 
FORM 3: g(t) = eαt[Pm(t)cosβt+Qn(t)sinβt]; In this case, we use the substitution y= eαtz with that 
the equation (8) becomes 

eαt [z’’+(2α+a)z'+(α2+aα+b)z] = eαt[Pm(t)cosβt+Qn(t)sinβt] 
dividing by eαt on both sides we obtain that  

z’’+(2α+a)z'+(α2+aα+b)z = Pm(t)cosβt+Qn(t)sinβt                             (14) 
This equation has the form 2 and hence can be solved for z. Returning to y by using the above 
formula of substitution we obtain the solution of (8). 
 
Note on the case of Form 3: An alternative way to solve (8) in this case is to find a particular 
solution of (8) of the form Y(t)= eαt[R

l
(t)cosβt+S

l
(t)sinβt] if α + iβ is not a root of the 

characteristic equation k2+ak+b = 0, or of the form Y(t)= teαt[R
l
(t)cosβt+S

l
(t)sinβt] if α + iβ is a 

root of the characteristic equation. 
 
EXAMPLE 
 
Solve the equation                            y’’− 2y’ +5y = 3etcos 2t.                                                  (15) 
Substituting y= etz to (15) we obtain: z’’+4z=3cos 2t. 
This equation is precisely the Eq. (12) above and has the general solution as 

z(t)= c1cos 2t + c2sin 2t+
4
3

t sin 2t. 

Then, the general solution of (15) is y= etz=et(c1cos 2t + c2sin 2t+
4
3

t sin 2t). 

5.4 Superposition of solutions 
 
Now suppose that g(t) is the sum of two terms, g(t) = g1(t) + g2(t), and suppose that Y1 and Y2 are 
solutions of the equations 
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y’’+ ay’+ by = g1(t)                                                      (16) 
and 

y’’ + ay’ + by = g2(t),                                                     (17) 
respectively. Then Y1 + Y2 is a solution of the equation 

y’’+ ay’+ by = g(t).                                                        (18) 
To prove this statement, substitute Y1(t) + Y2(t) for y in Eq. (18) and make use of Eqs. (16) and 
(17). A similar conclusion holds if g(t) is the sum of any finite number of terms. 
 
The practical significance of this result is that for an equation whose nonhomogeneous function 
g(t) can be expressed as a sum, one can consider instead several simpler equations and then add 
the results together. The following example is an illustration of this procedure. 
 
EXAMPLE 
 
Find a particular solution of 

y’’ − 3y’ − 4y = 3e2t + 2 sint − 8et cos 2t.                                          (19) 
By splitting up the right side of Eq. (19), we obtain the three equations 

y’’− 3y’− 4y = 3e2t , 
y’’ − 3y’ − 4y = 2 sint, 

and 
y’’ − 3y’ − 4y = −8et cos 2t. 

Solutions of these three equations are Y1=-e2t/2, Y1=(3 cos t − 5 sin t)/17, and  
Y3=et(10 cos2t+ 2 sin  2t)/13, respectively. 

Therefore a particular solution of Eq. (19) is their sum, namely, 

 
 
6. Variation of Parameters 
 
In this section we describe another method of finding a particular solution of a nonhomogeneous 
equation. This method, known as variation of parameters, is due to Lagrange and complements 
the method of undetermined coefficients rather well. The main advantage of variation of 
parameters is that it is a general method; in principle at least, it can be applied to any equation, 
and it requires no detailed assumptions about the form of the solution. In fact, later in this 
section we use this method to derive a formula for a particular solution of an arbitrary second 
order linear nonhomogeneous differential equation. On the other hand, the method of variation 
of parameters eventually requires that we evaluate certain integrals involving the 
nonhomogeneous term in the differential equation, and this may present difficulties. 
 
Again we consider the nonhomogeneous equation  

y’’+p(t)y’+q(t)y=g(t)                                                       (20) 
and the corresponding homogeneous equation  

     y’’+p(t)y’+q(t)y=0.                                                         (21) 
As a starting point, we assume that we know the general solution 

y(t) = c1 y1(t) + c2 y2(t)                                                       (22) 
of the corresponding homogeneous equation (21). 
 
This is a major assumption because so far we have shown how to solve Eq. (21) only if it has 
constant coefficients. If Eq. (21) has coefficients that depend on t, then usually the methods 
described in previous sections must be used to obtain y(t). 
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The crucial idea is to replace the constants c1 and c2 in Eq. (22) by functions u1(t) and u2(t), 
respectively; this gives 

y = u1(t)y1(t) + u2(t)y2(t).                                                    (23) 
Then we try to determine u1(t) and u2(t) so that the expression in Eq. (23) is a solution 
of the nonhomogeneous equation (20) . 
Thus we differentiate Eq. (23), obtaining 

y’ = u1’ (t)y1(t) + u1(t)y1’ (t) + u2’ (t)y2(t) + u2(t)y2’ (t).                           (24) 
To determine u1 and u2 we need to substitute for y from Eq. (23) in Eq. (20). However, even 
without carrying out this substitution, we can anticipate that the result will be a single equation 
involving some combination of u1, u2, and their first two derivatives. 
Since there is only one equation and two unknown functions, we can expect that there are many 
possible choices of u1 and u2 that will meet our needs. Alternatively, we may be able to impose a 
second condition of our own choosing, thereby obtaining two equations for the two unknown 
functions u1 and u2. We will soon show (following Lagrange) that it is possible to choose this 
second condition in a way that makes the computation markedly more efficient. 
 
We now set the terms involving u1’ (t) and u2’ (t) in Eq. (24) equal to zero; that is, we require that 

 u1’ (t)y1(t) + u2’ (t)y2(t) = 0.                                              (25) 
Then, we have 

y’=  u1(t)y1’ (t) + u2(t)y2’ (t).                                           (26) 
Further, by differentiating again, we obtain 

y’’ = u1’ (t)y1’ (t) + u1(t)y1’’ (t) + u2’ (t)y2’ (t) + u2(t)y2’’ (t).                     (27) 
Now we substitute for y, y’, and y’’ in Eq. (20) from Eqs. (23), (26), and (27), 
respectively. After rearranging the terms in the resulting equation we find that 

u1(t)[y1’’ (t) + p(t)y1(t) + q(t)y1(t)]+ u2(t)[y2’’ (t) + p(t)y2’ (t) + q(t)y2(t)] + 
                                                     + u1’ (t)y1’ (t) + u2’ (t)y2’ (t) = g(t).                                          (28) 
Each of the expressions in square brackets in Eq. (28) is zero because both y1 and y2 
are solutions of the homogeneous equation (21). Therefore Eq. (28) reduces to 

u1’ (t)y1’ (t) + u2’ (t)y2’ (t) = g(t).                                         (29) 
Equations (25) and (29) form a system of two linear algebraic equations for the derivatives u1’(t) 

and u2’ (t) of the unknown functions. The coefficient matrix is 







,
2

,
1

21

yy

yy
 whose determinant is 

Wronskian W(y1,y2)≠0 since y1, y2 are linearly independent. By solving the system (25), (29) we 
obtain 

u1’(t)=  
),(

)()(

21

2

yyW

tgty− ;  u2’ (t) =
),(

)()(

21

1

yyW

tgty
                                       (30)   

By integrating Eqs. (30) we find the desired functions u1(t) and u2(t), namely,  

u1(t) = −∫ dt
yyW

tgty

),(

)()(

21

2 ;   u2(t) = ∫ dt
yyW

tgty

),(

)()(

21

1 .                                    (31) 

Therefore, we obtain a particular solution of (20) given by formula (23) with u1(t) and u2(t) 
being determined by (31). 
 
We state the result as a theorem. 
Theorem 6.1. If the functions p, q, and g are continuous on an open interval  I, and if the 
functions y1 and y2 are linearly independent solutions of the homogeneous equation (21) 
corresponding to the nonhomogeneous equation (20), 

y’’ + p(t)y’ + q(t)y = g(t), 
then a particular solution of Eq. (20) is 

Y(t) = −y1(t) ∫ dt
yyW

tgty

),(

)()(

21

2 + y2(t) ∫ dt
yyW

tgty

),(

)()(

21

1 .                                    (32) 
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and the general solution is 
y = c1y1(t) + c2y2(t) + Y (t).                                               (33) 

 
By examining the expression (32) and reviewing the process by which we derived it, we can see 
that there may be two major difficulties in using the method of variation of parameters. As we 
have mentioned earlier, one is the determination of y1(t) and y2(t), a fundamental set of solutions 
of the homogeneous equation (21), when the coefficients in that equation are not constants. The 
other possible difficulty is in the evaluation of the integrals appearing in Eq. (32). This depends 
entirely on the nature of the functions y1, y2, and g. In using Eq. (32), be sure that the differential 
equation is exactly in the form (20); otherwise, the nonhomogeneous term g(t) will not be 
correctly identified. 
A major advantage of the method of variation of parameters is that Eq. (32) provides an 
expression for the particular solution Y (t) in terms of an arbitrary forcing function g(t). This 
expression is a good starting point if you wish to investigate the effect of variations in the 
forcing function, or if you wish to analyze the response of a system to a number of different 
forcing functions. 
 
EXAMPLE 
 
Find a particular solution of 

y’’ + 4y = 3 csc t.                                                          (33) 
Observe that this problem does not fall within the scope of the method of undetermined 
coefficients because the nonhomogeneous term g(t) = 3 csc t=1/sin t involves a quotient (rather 
than a sum or a product) of sint and cost. The homogeneous equation corresponding to Eq. (33) 
is 

y’’ + 4y = 0, 
having the general solution as 

y(t) = c1 cos 2t + c2 sin 2t.  
Replacing the constants c1 and c2 in this equation by functions u1(t) and u2(t), respectively, and 
then to determine these functions so that the resulting expression 

y = u1(t) cos 2t + u2(t) sin 2t                                                (34) 
is a solution of the nonhomogeneous equation. 
With the additional requirement 

u1’(t) cos 2t + u2’(t) sin 2t = 0,                                                (35) 
and substituting y(t) from (34) into (33) we obtain that u1 and u2 must satisfy 

−2u1’ (t) sin 2t + 2u2’ (t) cos 2t = 3 csc t.                                         (36) 
Solving the system of linear equations for the two unknown quantities u1’ (t) and u2’ (t) we find  

               u1’(t) = −3 csc t sin 2t = −3 cos t. 

u2’(t) =
2
3

csc t − 3 sin t. 

Having obtained u1’ (t) and u2’(t) , the next step is to integrate so as to obtain u1(t) and u2(t). The 
result is 

u1(t) = −3 sint + c1 
and 

u2(t) = 
2
3

ln | csc t − cot t| + 3 cos t + c2. 

Finally, on substituting these expressions in Eq. (34), we obtain the general solution of (33) as 

y = -3 sint + 
2
3

ln | csc t − cot t| sin 2t + c1 cos 2t + c2 sin 2t.  
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7. Modelling: Forced Oscillation 
 
We have already known that the equation governed the mechanical system of  free oscillation 
(Mass-spring problem) is  

mu’’+ γ u’ + ku=0, 
where the term mu’’ represents the force of inertia, γ u’-the damping force, and  ku-spring 
force.  
Now, forced motions are obtained if we let an external force g(t) act on the body. To get the 
model, we simply have to add our new force g(t) to these forces to obtain  

mu’’+ γ u’ + ku = g(t). 
Then, g(t) is called the input or driving force, and the corresponding solutions are called an 
output or a response of the system to the driving force. 
 
Of particular interest are  periodic input, say g(t)=F0 cos ωt with ω > 0. Then the equation of 
motion is 

mu’’+ γ u’ + ku = F0 cos ωt.                                                    (1) 
 
Forced Vibrations without Damping: First suppose that there is no damping (γ=0); then Eq. (1) 
reduces to 

mu’’+ ku = F0 cos ωt.                                                    (2) 

Ifω0= mk /  ≠ω then the general solution of Eq. (2) is 

                                (3) 
The constants c1 and c2 are determined by the initial conditions. The resulting motion is, in 
general, the sum of two periodic motions of different frequencies (ω0 and ω) and 
amplitudes. There are two particularly interesting cases. 
 
Beats. Suppose that the mass is initially at rest, so that u(0) = 0 and u’’ (0) = 0. Then 
it turns out that the constants c1 and c2 in Eq. (3) are given by 

                                       (4) 
and the solution of Eq. (2) is 
 

                                   (5) 
This is the sum of two periodic functions of different periods but the same amplitude. 
Making use of the trigonometric identities for cos(A ± B) with A = (ω0 + ω)t/2 and 
B = (ω0 − ω)t/2, we can write Eq. (5) in the form 

                     (6) 
If |ω0 − ω| is small, then ω0 + ω is much greater than |ω0 − ω|. Consequently, sin(ω0 + ω)t/2 is 
a rapidly oscillating function compared to sin(ω0 − ω)t/2. Thus the motion is a rapid 
oscillation with frequency (ω0 + ω)/2, but with a slowly varying sinusoidal amplitude 
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Fig. 6.1: A beat; solution of u’’ + u = 0.5 cos0.8t, u(0) = 0, u’(0) = 0; 

u = 2.77778 sin 0.1t sin 0.9t. 
This type of motion, possessing a periodic variation of amplitude, exhibits what is called 

a beat. Such a phenomenon occurs in acoustics when two tuning forks of nearly equal 
frequency are sounded simultaneously. In this case the periodic variation of amplitude is quite 
apparent to the unaided ear. In electronics the variation of the amplitude with time is called 
amplitude modulation. The graph of u as given by Eq. (6) in a typical case is shown in the 
Figure 6.1. 
 
Resonance. As a second example, consider the case ω = ω0; that is, the frequency of the 
forcing function is the same as the natural frequency of the system. Then the 
nonhomogeneous term F0 cos ωt is a solution of the homogeneous equation. In this case the 
solution of Eq. (2) is 

                            (7) 
Because of the term t sin ω0t, the solution (7) predicts that the motion will become 
unbounded as t →∞ regardless of the values of c1 and c2; see Figure 3.9.2 for a 
typical example. Of course, in reality unbounded oscillations do not occur. As soon 
as u becomes large, the mathematical model on which Eq. (1) is based is no longer 
valid, since the assumption that the spring force depends linearly on the displacement 
requires that u be small. If damping is included in the model, the predicted motion 
remains bounded; however, the response to the input function F0 cos ωt may be quite 
large if the damping is small and ω is close to ω0. This phenomenon is known as 
resonance. 
 
Resonance can be either good or bad depending on the circumstances. It must be taken very 
seriously in the design of structures, such as buildings or bridges, where it can produce 
instabilities possibly leading to the catastrophic failure of the structure. For example, soldiers 
traditionally break step when crossing a bridge to eliminate the periodic force of their 
marching that could resonate with a natural frequency of the bridge. Another example 
occurred in the design of the high-pressure fuel turbopump for the space shuttle main engine. 
The turbopump was unstable and could not be operated over 20,000 rpm as compared to the 
design speed of 39,000 rpm. This difficulty led to a shutdown of the space shuttle program for 
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6 months at an estimated cost of $500,000/day. On the other hand, resonance can be put to good 
use in the design of instruments, such as seismographs, intended to detect weak periodic 
incoming signals. 

 
Forced Vibrations with Damping. The motion of the spring–mass system with damping (γ≠0) 
and the forcing function F0 cos ωt can be determined in a straightforward manner, although 
the computations are rather lengthy. The solution of Eq. (1) is 

                          (8) 
where 

                       (9) 
and  

                                       (10) 
In Eq. (8),  r1 and r2 are the roots of the characteristic equation associated with Eq. (1); they 
may be either real and negative or complex conjugates with negative real part. In either case, 
both exp(r1t) and exp(r2t) approach zero as t →∞. Hence, as t →∞, 

                        (11) 
For this reason uc(t) = c1exp(r1t) + c2exp(r2t) is called the transient solution; U(t), which 
represents a steady oscillation with the same frequency as the external force, is called the 
steady-state solution or the forced response. The transient solution enables us to satisfy 
what ever initial conditions are imposed; with increasing time the energy put into 
the system by the initial displacement and velocity is dissipated through the damping 
force, and the motion then becomes the response of the system to the external force. 
Without damping, the effect of the initial conditions would persist for all time. 
It is interesting to investigate how the amplitude R of the steady-state oscillation 
depends on the frequency ω of the external force. For low-frequency excitation, that is, 
as ω → 0, it follows from Eqs. (9) and (10) that R → F0/k. At the other extreme, for 
very high-frequency excitation, Eqs. (9) and (10) imply that R → 0 as ω→∞. At an 
intermediate value of ω the amplitude may have a maximum. To find this maximum 
point, we can differentiate R with respect to ω and set the result equal to zero. In this 
way we find that the maximum amplitude occurs when ω = ωmax, where 
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                                (12) 
Note that ωmax < ω0 and that ωmax is close to ω0 when γ is small. The maximum 
value of R is 

                                   (13) 
where the last expression is an approximation for small γ . If γ2/2km > 1, then ωmax as given 
by Eq. (12) is pure imaginary; in this case the maximum value of R occurs for ω = 0 and R is 
a monotone decreasing function of ω. For small γ it follows from Eq. (13) that Rmax F0/γω0. 
Thus, for small γ, the maximum response is much larger than the amplitude F0 of the external 
force, and the smaller the value of γ , the larger the ratio Rmax/F0. Figure 6.3 contains some 
representative graphs of Rk/F0 versus ω/ω0 for several values of γ . 
The phase angle δ also depends in an interesting way on ω. For ω near zero, it follows 
from Eqs. (9) and (10) that cos δ 1 and sinδ 0. Thus δ 0, and the response is nearly in 
phase with the excitation, meaning that they rise and fall together, and in particular, assume 
their respective maxima nearly together and their respective minima nearly together. For ω = 
ω0, we find that cos δ = 0 and sinδ = 1, so δ = π/2. In this case the response lags behind the 
excitation by π/2; that is, the peaks of the response occur π/2 later than the peaks of the 
excitation, and similarly for the valleys. Finally, for ω very large, we have cos δ −1 and 
sinδ 0. Thus δ π, so that the response is nearly out of phase with the excitation; this 
means that the response is minimum when the excitation is maximum, and vice versa. 

 
FIGURE 6.3: Forced vibration with damping: amplitude of steady-state response versus 

frequency of driving force;  
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FIGURE 6.4 A forced vibration with damping; solution of u’’+ 0 .125u’ + u = 3 cos2t,  

u(0) = 2, u'(0) = 0. 
 

 
In Figure 6.4 we show the graph of the solution of the initial value problem 

u’’+ 0 .125u’ + u = 3 cos 2t,   u(0) = 2, u'(0) = 0. 
The graph of the forcing function is also shown for comparison. Observe that the initial 
transient motion decays as t increases, that the amplitude of the steady forced response is 
approximately 1, and that the phase difference between the excitation and response is 
approximately π. 

More precisely, we find that ∆ = 145/4 ≈ 3.0104, so R = F0/∆ ≈ 0.9965. Furthermore, 
cos δ = −3/∆ ≈ −0.9965 and sin δ = 1/4∆ ≈ 0.08305, so that δ ≈3.0585. Thus the calculated 
values of R and δ are close to the values estimated from the graph. 
 
8. Power Series Solutions 

 
8.1. Definition: The function f(x) is called real analytic at a point x0 if it coincides with its 

Taylor’s series of some neighbourhood (x0-R, x0 + R) of x0, i.e., f(x) = n
0

0n

0
(n)

)x-x(
n!

)(xf
∑

∞

=

 for 

all x ∈ (x0-R, x0 + R). 
The positive number R normally coincides with the radius of convergence of the Taylor’s 
series. 
 
Examples: ex, sin x, cos x are real analytic functions at any point  x0 ∈ R. 
 
The following theorem connects the real analyticity of coefficients of second order 
differential equations with their solutions. 
 
8.2. Theorem: Consider equation  

h(t)y’’+p(t)y’+q(t)y=r(t)                                                    (8.1) 
If h(t), p(t), q(t), and r(t) are analytic at t=t0 with radius convergence R>0, then every 
solutions of (8.1) is also analytic at t=t0 and can be represented by a power series in powers of 
(t-t0) with the same radius of convergence R. 
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Using Theorem 8.2 we have the following algorithm to find power series solutions of  
Equation (8.1): 
 
Step 1: Represent h(t), p(t), q(t)  and r(t) by power series in powers of t (or of (t-t0) if 
solutions in powers of  (t-t0) are wanted). Often, h(t), p(t), q(t), r(t) are polynomials, then 
nothing needs to be done in this step. 
 
Step 2: Write  

y=∑
∞

=0m

m
mta (or y=∑

∞

=
−

0
0)(

m

m
m tta ),                                           (8.2) 

then compute y’ and y’’. 
 
Step 3: Substitute y, y’ and y’’ obtained from Step 2 into (8.1). Then, collect the like powers 
of t and equate the sum of the coefficients of each occurring power of t to zero, starting from    
the constant terms, then the terms containing t, the terms containing t2, …etc. This gives the 
relations from which we can determine the unknown coefficients in (8.2) successively.  
 
Example: Consider                          (1-t2)y’’-2ty’+2y=0.                                                     (8.4) 
In this example, h(t)= (1-t2), p(t)=-2t, q(t)=2, r(t)=0 are already polynomials. We now write  

y=∑
∞

=0m

m
mta , then compute y’= ∑

∞

=

−

1

1

m

m
mtma , and y’’=∑

∞

=

−−
2

2)1(
m

m
mtamm . 

Next, we substitute y, y’, y’’ into Equation (8.4) to obtain 

(1-t2) ∑
∞

=

−−
2

2)1(
m

m
mtamm -2t∑

∞

=

−

1

1

m

m
mtma +2∑

∞

=0m

m
mta =0. 

This is equivalent to 

∑
∞

=
+++

0
2)1)(2(

n

n
n tann -∑

∞

=
−

2

)1(
n

n
ntann -∑

∞

=1

2
n

n
ntna +2∑

∞

=0n

n
nta =0. 

Collecting the like powers of t we have that: 

2(a0 + a2)+6a3t+ [ ]∑
∞

=
+ −+++

2
2 )1()1)(2(

n

n
nn tannann = 0. 

Equating the coefficients of each occurring power of t to zero, we obtain that 

a0 +a2=0; a3=0; an+2=
)1)(2(

)1(
++

−−
nn

ann n  for n≥2. Therefore, by induction, we derive  

a2k+1=0 and a2k=
)12(

)1( 0

−
−

kk

ak

 for all k≥1. 

Hence, we obtain the general solution of  (8.4) as  

y =  a1t+ ∑
∞

= −
−

1

0

)12(
)1(

k

k
k

t
kk

a
 for arbitrary a0 and a1. 
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Problems 
 
Consider the homogeneous equation  y’’ + p(t)y’ + q(t)y = 0.                                                (1)      
with the coefficients being continuous on the interval I.  
 
1. Show that two solutions of (1) on I that are zero at the same point in I cannot be linearly 
independent on I. 
 
2. Show that two solutions of (1) on I that have maxima or minima at the same point in I 
cannot be linearly independent on I. 
 
3. Suppose that y1 and y2 are two linearly independent solutions of (1) on I. Show that 
z1=a11y1+a12y2 and z2=a21y1+a22y2 (for some constants ajk) form a basis of the solutions of (1) 
if and only if the determinant of the coefficients ajk is not zero. 
 
4. Show that the equation t2y’’ -4 ty’ + 6y=0 has y1=t2 and y2=t3 as a basis of the solutions for 
all t. Show that W(t2, t3)=0 at t=0. Does this contradicts with Theorem 2.7 ? 
 
Reduction of order: In each of Problems 5 through 9 show that the given function y1 is a 
solution of the given equation. Using the method of reduction of the order, find y2 such that 
y1, y2 form a basis. Caution! First write the equation in the standard form if you want to use 
the formula (9) in Section 2.11. 
5. (t+1)2y’’- 2( t+1)y’ + 2y=0, y1 = t +1. 
6. (t-1)y’’- 2ty’ + y=0, y1 = et. 
7. (t-1)2y’’- 4(1-t)y’ + 2y=0, y1 = 1/(1-t). 

8. t2y’’+ ty’ + (t2-
4
1

)y=0, y1 = t -1/2cos t. 

9. ty’’+ 2y’ + ty=0, y1 = t -1sin t. 
 
In each of Problems 10 through 16 find the general solution of the given differential equation. 

 
In each of Problems 17 through 24 find the solution of the given initial value problem. Sketch 
the graph of the solution and describe its behavior as t increases. 
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In each of Problems 31 through 34 find the Wronskian of two solutions of the given 
differential equation without solving the equation. 

 
In each of Problems 35 through 44 find the general solution of the given differential equation. 

 
In each of Problems 45 through 47 find the solution of the given initial value problem. Sketch 
the graph of the solution and describe its behavior for increasing t. 

 
48. Consider the initial value problem 3u’’ − u’ + 2u = 0, u(0) = 2, u’ (0) = 0. 
(a) Find the solution u(t) of this problem. 
(b) Find the first time at which |u(t)| = 10. 
  
49. Consider the initial value problem 5u’’ + 2u’ + 7u = 0, u(0) = 2, u’ (0) = 1. 
(a) Find the solution u(t) of this problem. 
(b) Find the smallest T such that |u(t)| ≤ 0.1 for all t > T . 
 
50. Euler Equations. An equation of the form 

t2y’’ + αty’ + βy = 0, t > 0, 
where α and β are real constants, is called an Euler equation. Show that the substitution 
x = ln t transforms an Euler equation into an equation with constant coefficients. Then, using 
this substitution to solve the following equations 
a)  t2 y’’ − 3 ty’ + 4y = 0, t > 0.           b) t2 y’’ + 2 ty’+ 0.25y = 0, t > 0. 
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In each of Problems 51 through 60 find the general solution of the given differential equation. 

 
 
In each of Problems 61 through 64 solve the given initial value problem. Sketch the graph of 
the solution and describe its behavior for increasing t. 

 
65. If a, b, and c are positive constants, show that all solutions of ay’’ + by’ + cy = 0 approach 
zero as t →∞. 
 
66. (a) If a > 0 and c > 0, but b = 0, show that the result of Problem 65 is no longer true, 
but that all solutions are bounded as t →∞. 
(b) If a > 0 and b > 0, but c = 0, show that the result of Problem 65 is no longer true, 
but that all solutions approach a constant that depends on the initial conditions as t →∞. 
Determine this constant for the initial conditions y(0) = y0,y’ (0) = y1. 
 
In each of Problems 67 through 78 find the general solution of the given differential equation. 

 
In each of Problems 74 through 80: 
(a) Determine a suitable form for Y(t) if the method of undetermined coefficients is to be 
used. 
(b) Find a particular solution of the given equation. 
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In each of Problems 81 through 88 find the general solution of the given differential equation. 
In Problems 11 and 12, g(t) is an arbitrary continuous function.  

 
89. A mass weighing 2 lb stretches a spring 6 in. If the mass is pulled down an additional 3 in. 
and then released, and if there is no damping, determine the position u of the mass at any 
time t. Plot u versus t. Find the frequency, period, and amplitude of the motion. 
 
90. A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium 
position with a downward velocity of 10 cm/sec, and if there is no damping, determine the 
position u of the mass at any time t. When does the mass first return to its equilibrium 
position? 
 
91. A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting 
the spring a distance of 1 in., and then set in motion with a downward velocity of 2 ft/sec, 
and if there is no damping, find the position u of the mass at any time t. Determine the 
frequency, period, amplitude, and phase of the motion. 
 
92. A series circuit has a capacitor of 0.25 × 10−6 farad and an inductor of 1 henry. If the 
initial charge on the capacitor is 10−6 coulomb and there is no initial current, find the charge Q 
on the capacitor at any time t. 
 
93. A mass of 20 g stretches a spring 5 cm. Suppose that the mass is also attached to a 
viscous damper with a damping constant of 400 dyne-sec/cm. If the mass is pulled down an 
additional 2 cm and then released, find its position u at any time t. Plot u versus t. Determine 
the quasi frequency and the quasi period. Determine the ratio of the quasi period to the 
period of the corresponding undamped motion. Also find the time τ such that |u(t)| < 0.05 
cm for all t > τ. 
 
94. A mass weighing 4 lb stretches a spring 1.5 in. The mass is displaced 2 in. in the positive 
direction from its equilibrium position and released with no initial velocity. Assuming that 
there is no damping and that the mass is acted on by an external force of 2 cos 3t lb, 
formulate the initial value problem describing the motion of the mass. 
(a) Find the solution. 
(b) Plot the graph of the solution. 
(c) If the given external force is replaced by a force 4 sin ωt of frequency ω, find the value 
of ω for which resonance occurs. 
 
95. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of 
10 sin(t/2) N (newtons) and moves in a medium that imparts a viscous force of 2 N when 
the speed of the mass is 4 cm/sec. If the mass is set in motion from its equilibrium position 
with an initial velocity of 3 cm/sec, formulate the initial value problem describing the 
motion of the mass. 
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(a) Find the solution of the initial value problem. 
(b) Identify the transient and steady-state parts of the solution. 
(c) Plot the graph of the steady-state solution. 
(d) If the given external force is replaced by a force 2 cos ωt of frequency ω, find the value 
of ω for which the amplitude of the forced response is maximum. 
 
96. If an undamped spring–mass system with a mass that weighs 6 lb and a spring constant 
1 lb/in. is suddenly set in motion at t = 0 by an external force of 4 cos 7t lb, determine the 
position of the mass at any time and draw a graph of the displacement versus t. 
 
97. A mass that weighs 8 lb stretches a spring 6 in. The system is acted on by an external 
force of 8 sin 8t lb. If the mass is pulled down 3 in. and then released, determine the position 
of the mass at any time. Determine the first four times at which the velocity of the mass is 
zero. 
 
98. Find the power series solutions (in powers of x) of the following equations: 
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CHAPTER 6:                Laplace Transform 

 
Many practical engineering problems involve mechanical or electrical systems acted on by 
discontinuous or impulsive forcing terms. For such problems the methods described in 
previous chapters are often rather awkward to use. Another method that is especially well 
suited to these problems, although useful much more generally, is based on the Laplace 
transform. In this chapter we describe how this important method works, emphasizing 
problems typical of those arising in engineering applications. 

 
1. Definition and Domain 
 
1.1. Definition: Let f(t) be a given function defined on R+=[0, ∞) and be piecewise 
continuous on every finite interval. If the following integral exists (i.e. it has a finite value) 

∫
∞

−

0

)( dttfe st  

 
for s in some domain D, then we define a function F(s) by 

F(s) =  ∫
∞

−

0

)( dttfe st  for s∈D,                                               (1) 

and call it the Laplace transform of the function f(t). In this case, the function f(t) is called the 
original function. The operator L,  which assigns each original function f(t) to its Laplace 

transform F(s), is called the Laplace transform. Therefore,  the Laplace transform F of f is 
F=L(f). Note that, sometimes, especially in physical problems, we use the notation  

f(t) F(s) to indicate the fact that F=L(f).   

Example: 1) f(t)=1 for all t≥0, then F(s)= L(f)(s) = ∫
∞

− =
0

1
s

dte st  for s>0. So, in other notation 

we can write: 1
s

1
.  

Here, the domain of definition of F(s) is (0, ∞) 

2) f(t)=eat for all t≥0 (a-constant), then the Laplace transform of f is F(s)= ∫
∞

−−

−
=

0

)( 1
as

dte tas  

for s>a. Or,  eat 
as−

1
 

From the above examples we remark that the domain of definition of the Laplace transform 
contains a half infinite interval. This remark is true in more general situations as we have the 
following theorem   
 
1.2 Theorem: Let f(t) be a function that is defined and piecewise continuous on every finite 
intervals on the range t≥0, and satisfies  
|f(t)|≤Meγt  ∀ t≥0                                                        (2) 
for some constants M and γ. Then, the Laplace transform of f(t) exists for all s>γ. (In this 
case, f(t) is called exponentially bounded; and γ is called the growth bound of f(t).) 
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Proof: The integral ∫
∞

−

0

)( dttfe st  exists if the integral∫
∞

−

0

|)(| dttfe st  does. We now see that  

|)(| tfe st− ≤ Me(γ-s)t,  and also the integral∫
∞

−

0

)( dtMe tsγ  is convergent for s>γ. Therefore, for s>γ  

∫
∞

−

0

|)(| dttfe st  exists and hence so does ∫
∞

−

0

)( dttfe st . 

1.3 Theorem: Let f(t) and g(t) be functions that are defined and piecewise continuous on the 
range t≥0. Suppose that they are exponentially bounded with the growth bounds γ1, γ2, 
respectively. Then, if L(f)(s) = L(g)(s) for all s>max{γ1, γ2}, we have that f(t) = g(t) at every 

continuous points of f and g. 
Therefore, if two continuous functions have the same Laplace transforms, they are completely 
identical. 
 
This means that, omitted the discontinuous points of the functions, we have that the relation 
between an original function and its Laplace transform is one-to-one. 
 
Thus, the original function f(t) in (1) is called the inverse Laplace transform of F and is 
denoted by L -1(F). It is proved that, under some conditions, the original function f(t) can be 

reconstructed from F(s) by the formula 

∫
+∞

+∞−

=
σ

σπ

i

i

stdsesF
i

tf )(
2
1

)(   for some large enough σ. 

 
We note that the original functions are denoted by lowercase letters, and their Laplace 
transforms--by the same letters in capitals, e.g.,  F= L(f), G= L(g), etc.  

 
2. Properties 
 

2.1. Linearity:  For all piecewise continuous functions f, g, and constants a, b we have 
L(af+bg)= aL(f)+bL(g). 

Physically, one writes:            af(t)+bg(t) aF(s)+bG(s). 

 

Examples: 1) Let f(t)=cosh(at)=(eat+ e-at)/2. Find F= L(f). 

We already have  eat

as−
1

   and   e-at

as+
1

. Therefore, 

2
1
(eat+ e-at )  

2
1
(

as−
1

+
as+

1
). 

Hence, F(s)= 
2
1
(

as−
1

+
as+

1
)= 22 as

s

−
. 

2) Let F(s)= 
))((

1
bsas −−

; a ≠ b. Find f=L -1(F). 

We first write F(s)= 
))((

1
bsas −−

= )
11

(
)(

1
bsasba −

−
−−

. Therefore, by the linearity, we 

obtain                      
ba −

1
(eat-ebt )  

ba −
1

(
as−

1
-

bs−
1

). Thus, f(t)= 
ba −

1
(eat-ebt ). 
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2.2. Laplace transform of the derivative of f(t): 

Theorem 1: Let f be differentiable and exponentially bounded.  

                    If  f(t) F(s), then f´(t) sF(s)-f(0) for s>0. 

Proof: (L f´)(s) = ∫ ∫
∞ ∞

−∞−− +=
0 0

0
)(f)('f dtetsedtet ststst =sF(s)-f(0).                          (qed) 

If the second derivative f´´exists, applying the above formula for f´we obtain that 

f´´(t) s2F(s)-sf(0)-f´(0). 
Generally, by induction we have the following theorem. 
 
Theorem 2: In case the nth derivative of f exists and exponentially bounded, we obtain the 

formula 

f
(n)
(t) snF(s)-sn-1f(0)-sn-2f´(0)-…-f(n-1)(0). 

Examples: 1) For f(t)=t2 we find F= L f. To do so, we observe that f´(t)=2t; f´´(t)=2. 

We already have 2=f´´(t) 2/s. Therefore, 2/s = s2F(s)-sf(0)-f´(0). It follows that 
F(s)=2/s3. 

2) Similarly, we easily obtain that  sinwt 22 ws

w

+
. 

 
2.3. Laplace transform of the integral of f(t):  

Theorem 3: If   f(t) F(s), then ∫
t

duu
0

)(f
s

1
F(s). 

Proof: Put g(t)= ∫
t

duu
0

)(f . Then, g´(t)=f(t) and g(0)=0. Let F = L f and G= L g. By 

Theorem 1, we obtain that  g´(t)  sG(s)-g(0)=F(s). Therefore, G(s)=F(s)/s. (qed) 
 

Example: For F(s) = 
)(

1
22 wss +
 let find f(t). We already have 

w

wtsin
22

1
ws +

. 

By Theorem 3, we then derive ∫
t

du
w

wu

0

sin
)(

1
22 wss +
. Thus, 

2

cos1
w

wt−
)(

1
22 wss +
. 

2.4. Inverse Laplace transform of the derivative of F(s):  

For f(t) F(s) we can easily prove that – tf(t) F´(s). 

Example: Since sinwt 22 ws

w

+
 we have, by the above formula, that 

tsinwt
222 )(

2
ws

sw

+
. 

2.5. Inverse Laplace transform of the integral of F(s): 

For f(t) F(s) it can be proved that 
t

tf )(
∫
∞

s

duuF )( . 
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Example: Let compute the inverse Laplace transform of G(s) = ln(1+ )2

2

s

w
. To do that, we 

first write ln(1+ )2

2

s

w
=- ∫∫

∞∞

+
=+

ss

du
wuu

w

u

w
d

)(
2

)1ln( 22

2

2

2

. Since 2

cos1
w

wt−
)(

1
22 wss +
 

and applying the above formula we obtain 
t

wt)cos1(2 −
ln(1+ )2

2

s

w
. 

2.6. Shifting properties: 

 

(1) s-shifting: For f(t) F(s) we have that 
tse 0 f(t) F(s-s

0
) 

 

Example: From sinwt 22 ws

w

+
 we obtain that 

tse 0 sinwt 22
0)( wss

w

+−
 

(2) t-shifting: If we shift the function f(t), t≥0, to the right (i.e., we replace t by t-a for 
some a>0), then we encounter a problem that the function f(t-a) is no longer defined 

for a>t≥0. To come over this problem, we put  




≥−
<≤

=
atifatf

atif
tf

)(

00
)(

~

. 

using the step function u(t)=




≥
<

01

00

tif

tif
 we can rewrite )(

~

tf =f(t-a)u(t-a). Then, for 

f(t) F(s) it can be proved that  f(t-a)u(t-a) sae−
F(s). 

Example: Let compute the inverse Laplace transform of 3

2

s

e s−

.  From the relation 

t2/2 1/s3 we can derive that 
2

)2( 2−t
u(t-2) 3

2

s

e s−

.  

3. Convolution 

 

3.1. Lemma: Let f(t) and g(t), t≥0, be piecewise continuous and exponentially bounded 

functions. Then, the function h(t) = ∫ −
t

duutguf
0

)()(  is also exponentially bounded. 

PROOF: Since f(t) and g(t) are piecewise continuous and exponentially bounded, we can 

estimate |h(t)|≤ ∫
−

t
utu dueeM

0

)(
1

21 γγ
= ||

||
21

21

21 γγ

γγ
tt ee

MM −
−

=
},max{

21

21 21

||

2 γγ

γγ
te

MM

−
. Therefore, h(t) is 

exponentially bounded. 
 

3.2. Definition: Let f(t) and g(t), t≥0, be piecewise continuous and exponentially bounded 

functions. Then the function h(t) = ∫ −
t

duutguf
0

)()(  is called convolution of f and g. Also, we 

denote by h=f∗g. So, h(t)=(f∗g)(t). However, sometimes, physically we write h(t)=f(t)∗g(t). 
 

3.3. Theorem: Let f(t) and g(t), t≥0, be piecewise continuous and exponentially bounded 

functions. Suppose F = L f and G= L g. Then,  f(t)∗g(t)  F(s) G(s). 

Shortly, one can say that Laplace transform turns a convolution to a normal product. 

PROOF: Let compute ∫ ∫∫ ∫∫
∞ ∞

−
∞

−
∞

− −=−=∗
00 00

)()()()())((
u

st
t

stst dtdueutgufdudteutgufdtetgf  
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                                       = )()(
0

sGdueuf su











∫
∞

− = F(s)G(s) 

here, we used Fubini’s Theorem for the domain described by following figure:   

 

Example: Let compute L -1 








+ 222 )(
1
ws

.  Since we already have 
w

wtsin
22

1
ws +

, 

using the convolution property we obtain 
w

wtsin ∗
w

wtsin
222 )(

1
ws +

. 

3.4. Some other properties:   

1) Associative:  (f∗g)∗k = f∗(g∗k) 
2) Commutative: f∗g = g∗f 
3) Distributive: f∗(g + k) = f∗g + f∗k 
 

4. Applications to Differential Equations 
 
We have the following algorithm of using Laplace transform to solve differential equations of 
the order n: f(t, y, …, y(n))=r(t). 
 
Step 1: Apply the Laplace transform to both sides of the differential equation to obtain the 
simpler equation called subsidiary equation. 
Step 2: Solve the subsidiary equation. 
Step 3: Apply the inverse Laplace transform to obtain the solution of the original differential 
equation. 
 
Example 1:  y’’-y=t; with the initial conditions y(0)=1; y’(0)=1; 

Applying Laplace transform to the above equation and putting Y = Ly we obtain  
s2Y(s)-sy(0)-y’(0)-Y(s)=1/s2 

⇔Y(s)=
2222

1
1

1
1

1
)1(

1
1

1
ssssss

−
−

+
−

=
−

+
−

 

Using the table of Laplace transforms we easily obtain that 

y(t)= L-1Y=et + sinht-t. 

Before continuing with further examples of applications of Laplace transform, we now 
introduce here a scheme for solving a differential equation using Laplace transform: 
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Example 2: Consider the general linear second-order differential equation with constant 

coefficients:    
y’’ + ay’ + by=r(t); with initial conditions y(0) = y0, y’(0) = y1.                      (4.1)  

Applying Laplace transform to both sides of the given equation and putting Y= L y, R= L r, 

we obtain the subsidiary equation: (s2 + as + b)Y(s)=R(s) + (s+a)y0 + y1. Therefore, we have 
that the solution of subsidiary equation is  

Y(s) = 
b  as  s

y  a)y(s  R(s)
2

10

++
+++

. 

 Therefore, we obtain the solution of the given differential equation by taking the inverse 

Laplace transform of Y(s), i.e., the solution is y= L -1Y. 

We now put Q(s) = 
b  as  s

1
2 ++

 and call it the transfer function. This name comes from the 

fact that, for some (mechanic or electric) systems, the function r(t) in equation (4.1) is called 
the  input and the solution y(t) is called the output of the system, and in the special case when 

y(0)=0 and y’(0)=0, then Y(s)=R(s)Q(s). Therefore, Q(s)= L (output)/ L (input)   explaining 

the name of Q(s). Also, in this case, the output is y(t)=r(t)∗q(t), where q(t) is inverse Laplace 
transform of Q(s).  
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Tables of Laplace Transform:  
Table 1: General Formulae 
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Table 2: Laplace Transform 
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Table 3: Laplace Transform (continued) 

 
 
 
 



                                                                                                                     Lecture on Infinite Series and Differential Equations 

 80 

 

 
 
Problems 
 
In each of Problems 1 through 10 find the inverse Laplace transform of the given function. 

 
 
In each of Problems 11 through 23 use the Laplace transform to solve the given initial value 
problem. 
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In each of Problems 24 through 36 find the solution of the given initial value problem. 

 
26. y’’+ 4y = sin t − u(t-2π) sin(t − 2π); y(0) = 0, y’ (0) = 0 
27. y’’+ 4y = sin t + u(t-π) sin(t − π); y(0) = 0, y’ (0) = 0 
28. y’’ + 3y’ + 2y = f (t); y(0) = 0, y’ (0) = 0; f (t) =  1 for  0 ≤ t < 10 and f (t) =0  for t ≥ 10 
29. y’’ + 3y’ + 2y = u(t-2); y(0) = 0, y’ (0) = 1 
30. y’’ + y = u(t-3π); y(0) = 1, y’ (0) = 0 

31. y’’ + y’ + 
4
5

y = t − u(t - π/2)(t − π/2); y(0) = 0, y’ (0) = 0 

32. y’’ + y = g(t); y(0) = 0, y’ (0) = 1; g(t) =  t/2 for 0 ≤ t < 6 and g(t) = 3 for  t ≥ 6, 

33. y’’ + y’ + 
4
5

y = g(t); y(0) = 0, y’ (0) = 0; g(t) =  sin t for 0 ≤ t < π and g(t) = 0 for  t ≥ π 

34. y’’ + 4y = u(t-π) − u(t-3π); y(0) = 0, y’ (0) = 0 
35. y(4) − y = u(t-1) − u(t-2); y(0) = 0, y’ (0) = 0, y’’ (0) = 0, y’’’ (0) = 0 
36. y(4) + 5y’’ + 4y = 1 − u(t-π); y(0) = 0, y’ (0) = 0, y’’ (0) = 0, y’’’ (0) = 0 
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