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Preface

The Lecture on infinite series and differential equations is written for students of Advanced
Training Programs of Mechatronics (from California State University—~CSU Chico) and
Material Science (from University of Illinois- UIUC). To prepare for the manuscript of this
lecture, we have to combine not only the two syllabuses of two courses on Differential
Equations (Math 260 of CSU Chico and Math 385 of UIUC), but also the part of infinite series
that should have been given in Calculus I and II according to the syllabuses of the CSU and
UIUC (the Faculty of Applied Mathematics and Informatics of HUT decided to integrate the
knowledge of infinite series with the differential equations in the same syllabus). Therefore,
this lecture provides the most important modules of knowledge which are given in all
syllabuses.

This lecture is intended for engineering students and others who require a working knowledge
of differential equations and series; included are technique and applications of differential
equations and infinite series. Since many physical laws and relations appear mathematically in
the form of differential equations, such equations are of fundamental importance in
engineering mathematics. Therefore, the main objective of this course is to help students to be
familiar with various physical and geometrical problems that lead to differential equations and
to provide students with the most important standard methods for solving such equations.

I would like to thank Dr. Tran Xuan Tiep for his reading and reviewing of the manuscript. I
would like to express my love and gratefulness to my wife Dr. Vu Thi Ngoc Ha for her
constant support and inspiration during the preparation of the lecture.

Hanoi, April 4, 2009

Dr. Nguyen Thieu Huy
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CHAPTER 1: INFINITE SERIES

The early developers of the calculus, including ewand Leibniz, were well aware of the
importance of infinite series. The values of maoyctions such as sine and cosine were
geometrically obtainable only in special casesinitd series provided a way of developing
extensive tables of values for them.

This chapter begins with a statement of what isnhbg infinite series, then the question of
when these sums can be assigned values is addréssel information can be obtained by
exploring infinite sums of constant terms; howeube eventual objective in analysis is to
introduce series that depend on variables. Thisemts the possibility of representing
functions by series. Afterward, the question of haantinuity, differentiability, and
integrability play a role can be examined.

The question of dividing a line segment into infsimal parts has stimulated the
imaginations of philosophers for a very long tinrea corruption of a paradox introduce by
Zeno of Elea (in the fifth century B.C.) a dimemdass frog sits on the end of a one-
dimensional log of unit length. The frog jumps khalf, and then halfway and halfway ad
infinitum. The question is whether the frog eveaatees the other end. Mathematically, an
unending sum,

1 1 1

E+E+"'+§+"'
is suggested. "Common sense" tells us that thensust approach one even though that value
is never attained. We can form sequences of patiak

|
S| = JS“J_:

E»

b ] —
£
Y
i
2

and then examine the limit. This returns us to @ak | and the modern manner of thinking
about the infinitesimal.

In this chapter, consideration of such sums launclseon the road to the theory of infinite
series.

1. Definitions of Infinite Series and Fundamental Facts

1.1 Definitions Let {un} be a sequence of real numbers. Then, the foromal s

(5]
SZZM,,ZH1+E¢2+"'+HH+--—
n=1 (1)
is aninfinite series.

n
Its value, if one exists, is the limit of the seqoe ofpartial sums {&:Zuk}f;l
k=1

S = lim §,

==
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If the limit exists, the series is said to convetgehat sumS If the limit does not exist, the
series is said to diverge.
Sometimes the character of a series is obviouse¥ample, the series
(e u]
1

n=1

generated by the frog on the log surely convergéde Zn diverges. On the other hand,
n=1
the variable series
l—x+x* =+ =" +-..
raises questions.

This series may be obtained by carrying out thésaim 1/(1-x) . If -1 < x < 1, the sums, S
yields an approximations to 1/(1-x), passing tolthmt, it is the exact value. The indecision
arises for x = -1. Some very great mathematicianduding Leonard Euler, thought that S
should be equal to 1/2, as is obtained by

substituting -1 into 1/(1-x). The problem with tlmgnclusion arises with examination of
1-1+1-1+1-1++++andobservation that appiate associations can produce values of 1
or 0. Imposition of the condition of uniqueness donvergence put this series in the category
of divergent and eliminated such possibility of aguiity in other cases.

1.2 Fundamental facts:

1. If Zun converges, thetimu,=0. The converse, however, is not necessarig,tr.e., if

n- oo
n=1

limu, =0, Zun may or may not converge. It follows that if th8 term of a series does not
n-o n=1

approach zero, the series is divergent.

2. Multiplication of each term of a series by astamt different from zero does not affect the
convergence or divergence.

3. Removal (or addition) of a finite number of terfrom (or to) a series does not affect the
convergence or divergence.

1.3 Special series:

[
. : ~1 2
1. Geometric series E ar" =a+ar+ar+.--, where a and r are constants, converges to
n=1 ﬂ[:i =r -"n_}

-

if |#| = 1 and diverges if |r| = 1. The sum of the first # terms is 8, =
r

: a
5=I_

1—=r

(=]
1 1 1 1 : :
2.  The p series Z v a7 AT w + ..., where p is a constant, converges for p = 1 and diverges
=] e T

for p = 1. The series with p = 1 is called the harmonic series.

2. Tests for Convergence and Divergence of Series of Constants

More often than not, exact values of infinite seiannot be obtained. Thus, the search turns
toward information about the series. In particuits,convergence or divergence comes in
guestion. The following tests aid in discovering tinformation.
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2.1 Comparisontestfor series of non-negative terms

(@) Convergence. Let v, = 0 for all n > N and suppose that Tu, converges. Then if
0=u, =wv, for all n > N, Tu, also converges. Note that n > N means from some
term onward. Often, N = 1.

EXAMPLE. Since
i

1 1 1
= 3 and Z 5 COnverges, Z 11 also converges.
(b Divergence. Letwv, = 0forall 2 > N and suppose that Zu, diverges. Thenif u, = v, for
all n = N, Tu, also diverges.
, 1 1 =1 .. — 1 >
EXAMPLE. Since o and Z G diverges, Z o also diverges.

n=2

n=2

PROOF OF COMPARISON TEST:

(@) Let Gup< vp, n =1, 2, 3,... andZvn converges. Then, letaS w + Wt...+ W;
n=1
Th=vetvot. . V.

SinceZvn converges, lims. T exists and equals T, say. Also, singe 0, T, <T.

n=1
Then § =+ U + eeotly, < Vit Vot eee +\,<T 0or0< §,<T.

Thus {S;} is a bounded monotonic increasing sequence andhausta limit, i.e.,Zun
n=1

converges.
(b) The proof of (b) is left for tiheader as an exercise.

2.2 The Limit-Comparison or Quotient Testfor series of non-negative terms
(¢) Ifw, = O0and v, Z 0andif lim Zn = 4 # () and A # oo then Zu, and Zw, either both converge

e oo Y,

or both diverge.
(b)) If A =0 in (a) and Zw, converges, then Tu, converges.
(¢) If A=occin (a) and v, diverges, then Zu, diverges.
PROOF: (a)

By hiypotlesis, given € = 0 we can choose an integer ¥ such that
H=N+1N+2,..,

e Al < eforalln = N. Then for
U"

—€ = %— A<e or (A —e, = u, < (A+ e, (§]
Summing from N + | to oo (more precisely from N + 1 to M and then letting M — o0),
A=) =D u, S@d+Y v, (2)
N+1 N+1 N+1

There is no loss in generality in assuming 4 — e > 0. Then from the right-hand inequality of (1), Zu,
converges when v, does. From the left-hand inequality of (2), Zw, diverges when v, does. For the cases
A=0 or A=, it is easy to prove the assertions (b) and (c).
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sin—

EXAMPLE: Zsinz—ln converges, sinceinz—ln >0, lim 12n =1 and zz—ln converges.
=1 n-o _ =1
2I"I

This test is related to the comparison test amdtén a very useful alternative to it. In
particular, taking y= I/n°’, we have the following theorem

Theorem 1. Let lim n’u, = A. Then

(i) Zu, convergesif p> 1 and A 1s fimte.
(ff) Zu, diverges if p = 1 and 4 # 0 (4 may be infinite).
EXAMPLES. 1. E - converges since  lim 2’ =8 o

4 —2 —0 dr-2 4

Inn " ; . Inn
% Z diverges since lim n'/? i —0 —0x=

Jn+1 o> (n+ ]]'!3
2.3 Integral testfor series of non-negative terms.

If f(x) is positive, continuous, and monotonic decreasing for x = N and is such that
fin)=u,n=N,N +ul' N+2,..., then Zu, converges or diverges according as
r f(x)dx = J}im f(x)dx converges or diverges. In particular we may have N =1, as

N =+ IN
1s often true in practice.

This theorem borrows from the next chapter since the integral has an unbounded upper

limit. (Itis an improper integral. The convergence or divergence of these integrals is defined in
much the same way as for infinite series.)

=1 ; . M dx . 1 :
EXAMPLE: ; ~5 converges since »}Tm l — = lm?_(l _ﬂ) exists,

PROOF OF INTEGRAL TEST:
We perform the proof taking N = 1. Modifications are easily made if ¥V = 1.
From the monotonicity of f(x), we have
un+l=f(”+l)i_:f(xléf{n}=upr "=1!2!3!"'
Integrating from x =n to x = n+ 1, using Property 7, Page 92,
+1

o < | S@dcZw, n=1,23...

Summing fromn= 110 M —1,
A
'H2+H3+"'+I¢'M§l f{x]dx§u1+ug+---+uyh1 {1’)
1

If f(x) is strictly decreasing, the equality signs in (/) can be omitted.

a0

u; + iz + - -+ + uyy 18 monotonic increasing and bounded above by S, so that Tu, converges.

M
If ﬂMll'm J Slx)dx exists and is equal to S, we see from the left-hand inequality in (/) that
- |

M
If lim J f{x)dx is unbounded, we see from the right-hand inequality in (/) that Zu, diverges.

M—oo |

Thus the proof is complete.
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2.4 Alternating series test

An alternating series is one whose successive tarmslternately positive and negative. An
alternating serie§ u, converges if the following two conditions are sid.

(@) luy ;) = |u,l for n = N (Since a fixed number of terms does not affect the conver-
gence or divergence of a series, N may be any positive integer. Frequently it is chosen to
be 1.)

B) o et (o ol =0)

PROOF: Leti (-1+'e be an alternating series (herg-0 for all n) satisfying the above

n=1
conditions (a) and (b).
The sum of the series to 2M terms 1s
Sy = (@) — @) + (a3 — ag) + - + (agpg—) — o)
=a; = (@ —a3) = {ag — as) — -+ = (Gapr—2 — tops_1) — Gapy
Since the quantities in parentheses are non-negative, we have

Sy = 0, S ESESE5 = £S5y S

Therefore, [515,) is a bounded monotonic increasing sequence and thus has limit 5.
Also, Sy = Sy + dopre. Since J1f}rim Sas = 8§ and 'leim dozsoy = 0 {for, by hypothesis,
— 0 M =00

li = (), it follows that lim Sy, = lim S lim ayy., = =8S.
lim a, = 0), it follows tha Jim Spge = Hm Spy + lim aryy =5+0=3

Thus, the partial sums of the series approach the limit 5 and the series converges.

. o (_-I).'r—-] (_IJJF—| 1
EXAMPLE. For the series |—44i-1l4d—...= z — e have wu, = P |tg,| = -
| . n=| .
F7 | :m. Then for n z 1, || = |0l Also JI1_n<L luy| = 0. Hence, the series converges.

2.5Absolute and conditional convergence.

Definition: The seriesz u, is calledabsolutely convergerit Z|un | converges. Iqu

n=1 n=1 n=1

n

converges bu§1| u, | diverges, thenz u, is calledconditionally convergent.
n=1 n=1

Lemma: The absolutely convergent series is convergent.

PROOF:

Given that Xju,| converges, we must show that Ty, converges.
Let Syy =1y +us+ - +uy and Tay = Juy| + || + -+ + |uyg|. Then

Sur + Thg = Quy + o ) A (uz A+ [ea |} + - - (g + |uag )
= 2egy| + 2feey| 4+ - - b 2heeny|

Since Z|u,| converges and since u, + |u,] = 0, forn=1,2,3,..., it follows that S3; + T3, is a bounded
monotonic increasing sequence, and so mfjm (S + Tay) cxists,
=0

Also, since erim Ty exists (since the series is absolutely convergent by hypothesis),
— 00

Jm Sy = lim (S + Ty = Tyy) = lim (Syy + Ty) — lim Ty

must also exist and the result is proved.
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1 1 1 1 1 1

EXAMPLE 1. F+¥ _¥_F+?+E_ .- is absolutely convergent and thus convergent, since the
1 1 1 1
series of absolute values — B —=+= 77 + = EY: + = o + -+ - converges.
EXAMPLE 2. 1 ] + S + - - - converges, but 1 + ] + = ! + = ! + --- diverges. Thus, 1 | 1 T +
S oey g 373 e SNe Sy

is conditionally convergent,

Any of the tests used for series with non-negative terms can be used to test for absolute
convergence. Also, tests that compare successive terms are common. Tests 6, 8, and 9 are of

this type.
2.6 Ratio (D’Alembert) Test:

My
I"I.'r
(@) converges (absolutely) if L <1

(b)) divergesif L = 1.
If L =1 the test fails.
PROOF: a) Sincd_<1, we can take an> 0 such that O<L#<1. Then there exists agsuch

Let lim

H—=aa

= L. Then the series Tu,

n+l
uﬂ
|l <[th- 1I(|-+ £)< Ith-2l(L+ €)*<...<|wl(L+ €)™ for all n>N.

that <L+ ¢ for all >N. Therefore, it follows that ju|<|w|(L+ €) for all i>N. Hence,

SII‘ICEZ| uy [(L+&)" is convergent, it follows thaZ| u, | is convergent by comparison
n=1 n=1

test. It means thaz u, is absolutely convergent.
n=1
b) If L>1 then |y+1/>|u| for sufficiently large n. Therefore, {pdoes not tend to O when n

tends to infinity. This follows thaz u, diverges.

n=1

If L=1, we takez and ziz Both of them satisfy L=1, but the former divergesl the
n=1 N n=1 N

latter converges.

(_1) n+l 2n+1

o n+1)! .
EXAMPLE: Z( D2 converges absolutely, sindien (n+1) =lim 2 . O<I.
n=1 n! n- oo (_1)n2n n-eo nN+1
n!

The following test can be proved by the same manner

2.7 Thenth root (Cauchy) Test:
Let lim f|u,| = L. Then the series Tu,

(a) converges (absolutely)if L < 1
by divergesif L = 1.
If L =1 the test fals.
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i, + 1
U
(a) converges (absolutely)of L > 1
(b) diverges or converges conditionally if L < 1.

=+ OO0

8. Raabe’s test. Let l{mn(l -

D = L. Then the series Zu,

If L =1 the test fails.
This test 18 often used when the ratio tests Fails.

L

C '
= 1—-=4 -2 where |¢,| < P for all n > N, then the series Tu,
n n

U

n+l

N

9. Gauss' test. [f

]

{a) converges (absolutely) if L > 1
(b) diverges or converges conditionally if L = 1.
This test 15 often used when Raabe’s test fails.

3. Theorem on Absolutely Convergent Series

Theorem 4.(Rearrangement of Terms) The terms of an absgletivergent series can be
rearranged in any order, and all such rearrangeéssavill converge to the same sum.
However, if the terms of a conditionally convergesgries are suitably rearranged, the
resulting series may diverge or converge to anyresum.

Theorem 5. (Sums, Differences, and Products) The sum, dift@emnd product of two
absolutely convergent series is absolutely converdéne operations can be performed as for
finite series.
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CHAPTER 2: INFINITE SEQUENCES AND SERIES OF
FUNCTIONS

We open this chapter with the thought that functioould be expressed in series form. Such
representation is illustrated by

3 5 2n—1
.il’lx:x—x—+i_+.__+(_]jrr~l'—'+
3 - (2n = 1)!
where
: : : X " o xd
snx=lm S, with Si=x&=x—30.. %= V" G

k=1

Observe that until this section the sequences andssdepended on one element, n. Now
there is variation with respect to x as well. Ttwsnplexity requires the introduction of a new
concept called uniform convergence, which, in tuis, fundamental in exploring the
continuity, differentiation, and integrability oéses.

1. Basic Concepts of Sequences and Series of Functions

1.1 Definitions:

Let {u,(x)},n=1,2,3,... be a sequence of functions defined in [a, ). The sequence is said to
converge to F(x), or to have the limit F(x) in [a, b], if for each ¢ > 0 and each x in [a, b] we can find
N = 0such that Ju,(x) — F(x)| < eforalln = N. Insuch case we write irll!-[n]\. t,(x) = F(x). The number
N may depend on x as well as e. Tf il depends only on € and not on x, the sequence is said to converge Lo
F(xy uniformly in [a, b] or to be uniformly convergent in [a, b].

The infinite series of functions

i 1, (xX) = v (x) + w2 (X) +rz(x) + - - - (3)

=1

is said to be convergent in [a, b] if the sequesfgeartial sums &(xX)}, n=1,2,3,..., where
Si(X) = wi(X) + w(X)+...+un(X), is convergent in [a, b]. In such case we wiliteS =S(x)

n- oo

and call S(x) the sum of the series.

It follows that Zu,(x) converges to S(x) in [a, 5] if for each € = 0 and each x in [a, b] we can find
N = 0such that |S,(x) — S(x)| < eforalln = N. If N depends only on € and not on x, the series is called
uniformiy convergent in [a, b].

Since S(x) — S,(x) = R,(x), the remainder after » terms, we can equivalently say that Zu,(x) is
uniformly convergent in [a, b] if for each € = 0 we can find N depending on € but not on x such that
|R,(x)| <€ forall n = N and all x in [a, b).

These definitions can be modified to include otihézrvals besides [a, b], such as (a, b), and
SO on.

The domain of convergence(absolute or uniform) of a series is the set dties of x for
which the series of functions converges (absolutelyniformly).

EXAMPLE 1. Suppose ax) = X/n and -1/2<x< 1. Now, think of the constant function
F(x) = 0 on this interval. For ang> 0 and any x in the interval, there is N such foatall

10
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n > N we have jix) - F(x)| <g, i.e., |X/n| <e. Since the limit does not depend on x, the
sequence is uniformly convergent.
EXAMPLE 2. Ifu, =x" and 0 £ x £ 1, the sequence is not uniformly convergent because (think of the function
Fx)=0,02x<1, F(1)=1)

[¥" — 0] < € when X" < ¢,
thus

nlnx < Ine.

S
On the mterval 0 £ x < 1, and for 0 < € < 1, both members

. . . Ine .
of the inequality are negative, therefore, n > _—. Since

M Inx
ln_e: Inl-—lne = In(/€) , it follows that we must choose N
Inx Inl—nnx In(l/x)

such that

Inl/e 2 3
Inl/x 5

n>~N>

. . 1
From this expression we see that € — 0 then lng — co and x

1
also as x — 1 from the left In— — 0 from the right; thus, in either
X

case, N must increase without bound. This dependency on both Fig. 11-1
€ and x demonstrations that the sequence is not uniformly
convergent. For a pictorial view of this example, see Fig. 11-1.

1.2 Special tests for uniform convergence of series

1. Weierstrass M test. If sequence of positive constakts M,, Ms...., can be found such
that in some interval
(@) Un(¥X)EM,, n=1,2,3,... for all x in this interval

(b) DM, converges

n=1

then ZUn(x) is uniformly and absolutely convergent in the .

n=1

COsS X
3
n-

is uniformly and absolutely convergent in [(), 25] since

EXAMPLE. i

n=|

COS X
ne

1 1
= Fand an

CONVErges.

This test supplies a sufficient but not a necessangdition for uniform convergence, i.e., a
series may be uniformly convergent even when tsec@nnot be made to apply.

One may be led because of this test to believeutliédrmly convergent series must be
absolutely convergent, and conversely. However,twee properties are independent, i.e., a
series can be uniformly convergent without beingpéitely convergent, and conversely.

11
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2. Dirichlet’s test. Suppose that

() the sequence {ag,} is & monotonic decreasing sequence of positive constants having limit
ZET0,

(b) there exists a constant P such that fora < x < b
log(x) + 2p(x)+ - -+, (x)] < P foralln= N.

Then the series

a1y (X) + @ua(x) + - = Y au,(x)

=1

is uniformly convergentina = x = b.

2. Theorems on uniformly convergent series

If an infinite series of functions is uniformly ceergent, it has many of the properties
possessed by sums of finite series of functions)disated in the following theorems.

Theorem 6. If {u,{x)}, n= 1,2, 3,... are continuous in [a, b] andEun(x) converges
uniformly to the sum S(x) in [a, b], then S(x) @ntinuous in [a, b].

Briefly, this states that a uniformly convergentie® of continuous functions is a continuous
function. This result is often used to demonstrdiat ta given series is not uniformly
convergent by showing that the sum function S(xissontinuous at some point.

In particular if % is in [a, b], then the theorem states that

(s o0 [s.]
lim § ) § : lim u,(x) = § u,(xp)
X=Xy A—>Xg

=1 =1 n=1

Theorem 7. If {u,(x)},n=1,2,3,..., are continuous in [a, &] and if Zu,(x) converges uniformly to the
sum S(x) in [a, ], then

r S(x)dx = i r u, (x) dx (4)

n=|
ar
bl oS oZ b
[ uﬂ(x)] dr= 3 [ () ds )
; 1

a | a= H=1+a

Briefly, a uniformly convergent series of contingdunctions can be integrated term by term.

Considering the differentiability we have the folimg theorem.

12
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Theorem 8. Tf {u,(x)},n=1,2,3, ..., are continuous and have continuous derivatives in [a, #] and if
Tu,(x) converges to S(x) while Zu,(x) is uniformly convergent in [a, ], then in [a, b]

S =Y up(x) (6)
n=1
or
d | & > d
o H"()C) o e ”u(x) (7)
3. Power Series
3.1 Definition:
A series having the form
[ 0]
ap + ax+ a4 .= Za”f
=()

whereay, &, &,...., are constants, is called a power series. ift is often convenient to

abbreviate the above seriesEsanx“ :

3.2. Abel’s theorem

If the power seriesz a,x" converges at the poing # O, then it converges at any poirt

satisfying X|<| x|. Moreover, if it diverges at the poirt then it diverges at any poimnt
satisfying X|>| x4|.

PROOF. We prove the first assertion, and the seessdrtion easily follows from the first
X

one. Let estimateg) X" [<|anXo|

0

Since, the serieianxg converges, we have that Lim, a%=0. Therefore, there exists

M>0, such thatgxo| < M for all n. We thus obtain that

n
X

X" <M for all n.

0
Since X|<| x|, the assertion now follows from the comparisat. te

General remarks:

In general, a power series converges for |x| <dRdiwerges for |x| > R, where the constant R
is called the radius of convergence of the seif@s. |x| = R, the series may or may not
converge.

The interval |x] < R or -R < x < R, with possiblelusion of endpoints, is called tieterval

of convergence of the series. Although the ratio test is oftewcassful in obtaining this
interval, it may fail and in such cases, othetst@say be used.

The two special cases R = 0 and R san arise. In the first case the series converglsfor

x = 0; in the second case it converges for albryetimes written —s < x <oo.

13
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When we speak of a convergent power series, wé assilime, unless otherwise indicated,
that R > 0.

3.3 More theorems on power series

Theorem 9. A power series converges uniformly and absoluielgny interval which lies
entirely within its interval of convergence.

Theorem 10. A power series can be differentiated or integraiun by term over any
interval lying entirely within the interval of corwgence. Also, the sum of a convergent
power series is continuous in any interval lyingrefy within its interval of convergence.

Theorem 11.When a power series converges up to and inclugimgndpoint of its interval
of convergence, the interval of uniform convergeats® extends so far as to include this
endpoint.

o3
Theorem 12, Abel's limit theorem. If Z a,x" converges at x = x;, which may be an interior point or an

3 . r=(}
endpoint of the interval of convcrgen&; then

_\11,113&[ Za,,x"} -y {_ﬁ!ij_}@ awf’} =Y 0 (10)

n=0 ti=() n=0

If Xo is an end point, we must usex Xo+ or X — Xo— in (10) according aspxs a left- or
right-hand end point.

3.4 Operations with power series
In the following theorems we assume that all posezies are convergent in some interval.

Theorem 13.Two power series can be added or subtracted tertarbyy for each value of x
common to their intervals of convergence.

o) 00 e
Theorem 14. Two power series, for example, Za”x" and Z b,x", can be multiplied to obtain Zc,,_x"

n=0 n=0 n=0
where

&y = anf}u + Hlbﬂ_] + ﬂ:z!’? i i v ﬂ‘.”bu (‘”I}

fi—a

the result being valid for each x within the common interval of convergence.

L]
Theorem 15, 1f the power series Z a,x" is divided by the power series Th, x" where by # 0, the quotient
=0

can be written as a power series which converges for sufficiently small values of x.

oo oo
Theorem 16, If yp = Za,,.a"', then by substituting x = Zb,, ¥, we can obtain the coefficients b, in
n=0 n=0

terms of a,. This process is often called reversion of series.

3.5 Expansion of Functions in Power Series
This section gets at the heart of the use of irfigéries in analysis. Functions are represented

through them. Certain forms bear the names of madheians of the eighteenth and early
nineteenth century who did so much to develop tiobeses.

14
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A simple way (and one often used to gain informatiomathematics) to explore series
representation of functions is to assume such eeseptation exists and then discover the
details. Of course, whatever is found must be cowd in a rigorous manner. Therefore,
assume

f(X) = A+ Ag(X -C) + Ap(X -C)P + ...+ Af(x - ) + ...
Notice that the coefficientsAcan be identified with derivatives of f(x). In paular
Ag=f(c), A. =f'(c), A= f'(c)/2!,..., A=f"(c)/n!,... This suggests that a series representafio
f(x) is

f(x) =f(c) +f(c)(x -c) + % f'(c)(x -C) + ... +%f(”>(c)(x-c)+

A first step in formalizing series representatidnaofunction, f(x), for which the first n
derivatives exist, is accomplished by introduciraylor polynomials of the function.

Po(x) =F(0); PL0X) =H(0) +F(©) - 0); BX) =) +F(OX ) + > F" (OO 0% ..

Pa(X) =F(C) +F(C)(x - C) + + = » %f(”)(c)x-c)“ (12)

TAYLOR'S THEOREM

Let f and its derivatives /', /", ..., /" exist and be continuous in a closed interval a < x < b and
suppose that /" exists in the open interval a < x < b. Then for ¢ in [a, ],

J(X) = Py(x) + Ry(x),

where the remainder R,(x) may be represented in any of the three following ways.
For each n there exists £ such that

| ;
£, Antl) rpng r PO !
R (x) = ) JE e =) {Lagrange form) (i3)
(€ 15 between ¢ and x))
(The theorem with tns remainder 1s 4 mean value theorem.  Also, it 15 called Taylor's formula.)
For each n there exists & such that

I :
R.(x) = i j{”**'[;f}[x - &)'(x-¢) (Cauchy form) (14)
I A
R, (x) = = [ (x=0"/"Nde  (Integral form) (15)
If all the derivatives off exist, then the infinite series

o f(n)

Z—,(C) (x=c)" (16)

o It
is called a Taylor series of the functiralthough when ¢ = 0, it can also be referredsta a
MacLaurin series or expansion.

The Taylor series of a function may be convergendivergent (except at the poin} on
[a, b]. In case it converges on [a, b], the somay or may not equal f(x). The following
theorem gives a sufficient condition for the Tayl@r MacLaurin) series (16) to be
convergent to f(x).

15
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THEOREM. Let the functionf have the derivatives of all orders on (-R,R) (WRRO). If
there is arM >0 such that

f"(x)|<M for all xLI(-R,R) and alh,

o (n)
then the seriei% x" is convergent tf(x) on (-R,R). In other words:
n=0 -
o0 (n)
f(x)= zf—l(o)x” for all xLI(-R,R).
no It

PROOF. This is direct consequence of the Taylarmtila with Lagrange’s Remainder.

EXAMPLE. The value of sinx may be determined geometrically for l],%, and an infinitc number of other

arguments. To obtain values for other real number arguments, a Tavlor series may be expanded about any of
these points. For example, let ¢ = 0 and evaluate several derivatives there, i.e., f{0) =sin0 =0, f () =cosl =1,
70y = =sin0 =0, 77(0) = —cos0 = =1, £'(0) = sin0 = 0, £'(0) = cos0 = 1.

Thus, the MacLaurin expansion to five terms is

: B i
smx—0+x—ﬂ—i;«: +|J_5_]x—+...

Since the fourth term is 0 the Taylor polynomials Py and P4 are equal, i.e.,
X
Py(x) = Pylx) = x =5
and the Lagrange remainder is

1
Ry(x) = 7y ©0s Exs

Suppose an approximation of the value of sin .3 is required. Then

Py3)=3- %(.3}-” ~ 2045,

The accuracy of this approximation can be determined from examination of the remainder. In
particular, (remember |cos&] < 1)

24
S cos £(.3)° ?

= B = 000021

Rl = 120 10°

16
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Thus, the approximation P£,4(.3) for sin .3 1s correct to four decimal
places.

Additional insight to the process of approximation of functional
values results by constructing a graph of P4(x) and comparing it to
y=sinx. (See Fig. 11-2))

The roots of the equation are 0, /6. Examination of the first and
second derivatives reveals a relative maximum at x = +/2 and a relative
minimum at x = —/2. The graph is a local approximation of the sin

curve. The reader can show that Py(x) produces an even better approximation.

Pyx)

Fig. 11-2

(For an example of series approximation of an integral see the example below.)

3.6 SOME IMPORTANT POWER SERIES

The following series, convergent to the given fumetiin the indicated intervals, are

frequently employed in practice:

¢ a 13+x5 f-l— ! s 7
. Sinx K= bt ( T
IR U -2
X X X X
b = ¢ e e L gt T T _”_-u—l
AP it i R R e i
3 ety g
RN - = B e o shoreeedis LR
217 3t (n— 1!
Fi 3 4 N
s S J
4 hnjl+x =x—-"4—-="+ )+
| | p. I 4 i
14 x o X X
5. ghle—— =x+4+ct+e+S+-+ +--
L | = < el e 2n— 1
4 —1 -1-3 'ts ..'-I."jl et J.'EH_ l
6. tan " Xx =xXx=——t ==t (=) —F

n=1

-0 <X <00

-0 < X < 00

-0 < X <00

-] cx <]

-1 = x

A

p—]]x:_'_l“_l_mﬂ_“-'-[ﬁ-“'i'l}xﬂ_i_..‘;

3 TE o
7. (1+x) =l+px+ 5 =

4. Fourier Series

Mathematicians of the eighteenth century, includidagniel Bernoulli and Leonard Euler,
expressed the problem of the vibratory motion sfratched string through partial differential
equations that had no solutions in terms of "elgargnfunctions.” Their resolution of this
difficulty was to introduce infinite series of sirend cosine functions that satisfied the
equations. In the early nineteenth century, Josepltier, while studying the problem of heat

flow, developed a cohesive theory of such series.

17
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Consequently, they were named after him. Fourieesare investigated in this section. As
you explore the ideas, notice the similarities difitrences with the infinite series.

4.1 Periodic functions: A function f(x) is said to have a period T or to periodic with
period T if for all x, f{x + T) = f(x), where T is positive constant. The least value of T >0 is
called the least period or simply the period 0j.f(x

EXAMPLE 1. The function sinx has periods, 2, 6r,..., since sin(x +), sin(x + 4), sin
(x +6m),... all equal sinx. Howeverzds the least period or the period of sinx.

EXAMPLE 2. The period o$inntx or cosmx, wheren is a positive integer, isin.
EXAMPLE 3. The period of tanx is.
EXAMPLE 4. A constant has any positive number asggeri

Other examples of periodic functions are showrhendraphs of Figures 13-1 (a), (b), and (c)
below.

o) & ol 7 70 ﬁg*
/ /. ~ ) [/ [ 1 1.
/ /’ /S S ’

(@) (& (©

4.2 Definition of Fourier Series

Let f(x) be defined in the interval (—L, L) and outside of this interval by f{x + 2L) = f(x), i.e., f(x)
is 2L-periodic. TUis through this avenue that a new function on an infinite set of real numbers is created
from the image on (—L, L). The Fourier series or Fourier expansion corresponding to f(x) is given by

b P ¢ bysin ™)
>+ 2. (a” cos 3 + b, sin I (1)
where the Fourier coefficients a, and b, are
1" ;
a, =IJ f(x)cos ? dx
i n=0,12... (2)

I o . ATX
b, = I l[“f_f(x} sin = dax

4.3 Orthogonality Conditions for the Sine and Cosia Functions

Notice that the Fourier coefficients are integralsese are obtained by starting with the series
(1), and employing the following properties cal@thogonality conditions:

18
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i

(a) casmf‘wsﬁdx Oiftm#nand Lifm=n
J-r
oL 3
(& sm%sm%a‘x—ﬂlfm?&nandl,lfm_n (3
J-r
oL
(c) Sin =~ cos ? dx = (0. Where m and n can assume any positive integer values.
Jor

EXAMPLE 1. To determine the Fourier coefficient 4, integrate both sides of the Fourier series (/), i.e.,

L = L oa nx =
J_lf{x)dx_l_z cix+J E{a”cos + by si ‘Ia‘x

L o L
a—”dx:q}f_,-[ sin —Idx:[l_.j cos =
2 L o

L
MNow J
—

= dx = 0, therefore, gy = : I f{x)dx
=L «J—L

L
EXAMPLE 2. To deiermine @, multiply b?th sides of (f) by cos ? and then integrate. Using the orthogonality
conditions {3), and (3)., we oblain 4; = %J ) fix)cos % dx. Now see Problem 13.4.
-L

If L = m, the series (/) and the coefficients (2) or (3) are particularly simple. The function in this
case has the period 2.
DIRICHLET CONDITIONS

Suppose that

(1) f(x)is defined except possibly at a finite number of points in (—L, L)

(2) fi(x)is periodic outside (=L, L) with period 2L

(3) f(x) and f'(x) are piecewise continuous in (—L, L).

Then the series (/) with Fourier coefficients converges to

{a) [fi(x)if x is a point of continuity

@ (GO0

i

if x is a point of discontinuity

Here f(x + 0) and f{x — 0) are the right- and lefi-hand limits of /'(x) at x and repreaenl |ITI'l fix+¢)and
]II‘]}'l Jlx — €), respectively. For a proof sge Problems 13.18 through 13.23.

The conditions (1), (2), and (3) imposed on f(x) are sufficient but not necessary, and are generally
satisfied in practice. There are at present no known necessary and sufficient conditions for convergence
of Fourier series. It is of interest that continuity of f(x) does not alore ensure convergence of a Fourier
series.

4.4 Odd and Even Functions

A function f(x) is called odd if f(-x) =-f(x)Thus, X+ x° - 3x¢ + 2x, sin x, tan 3x are odd
functions.

A function f(x) is called even if f(-x)=f(x). Tus, X , 2X* -4x% +5, cos x, &+ € are even
functions.

The functions portrayed graphically in Figures 18a) and 13-1 (b) are odd and even
respectively, but that of Fig. 13-I(c) is neitheldonor even.

In the Fourier series corresponding to an odd fanconly sine terms can be present. In the
Fourier series corresponding to an even functioty oosine terms (and possibly a constant
which we shall consider a cosine term) can be ptese
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4.5 Half Range Fourier Sine or Cosine Series.

A half range Fourier sine or cosine series is &sen which only sine terms or only cosine
terms are present, respectively. When a half raeges corresponding to a given function is
desired, the function is generally defined in thieival (0, L) [which is half of the interval
(-L, L), thus accounting for the name half rangedl dhen the function is specified as odd or
even, so that it is clearly defined in the other

half of the interval, namely, (-L, 0). In such case have

S x . HITX 2
dii=nhees Ij f(x)sin = dx  for half range sine series
2 E nx @
b,=0, a,= %j f(x) cos -5 dx for half range cosine series
1]

4.6 Parseval’s Identity

If a, andb, are the Fourier coefficients correspondind() and iff(x) satisfies the Dirichlet
conditions. Then

o0

1 L i " 2 .
| vera=2+> @+ )

=l

4.7 Differentiation and Integration of Fourier Series.

Differentiation and integration of Fourier serieancbe justified by using the previous
theorems, which hold for series in general. It mbetemphasized, however, that those
theorems provide sufficient conditions and are netessary. The following theorem for
integration is especially useful.

Theorem, The Fourier series corresponding to f(x) may be integrated term by term from a to x, and the
11
resulting series will converge uniformly to | Jf{x)dx provided that f(x) is piecewise continuous in

i
—L = x £ L and both ¢ and x are in this interval.

4.8 Complex Notation for Fourier Series

Using Euler's identities:
e = cos@+isin6, e = cos® — isin@ ()
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where i = +/—1 , the Fourier series for f(x) can be written as

fx)= i N g (7)
where
l # =i xfL
c..=ELf (x)e™ """ dx (8)

In writing the equality (7) we are supposing that the Dirichlet conditions are satisfied and further
that f(x) is continuous at x. If f(x) is discontinuous at x, the left side of (7) should be replaced by
([(x+0) +/(x—0)3

3 ;
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Problems

CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS

1

1 1 1
(a) Prove that the series——+—+-+-——+-

1 .
st it ;m converges and (b) find its sum.
Ans. (b)) 1/12 B

Prove that the convergence or divergence of a series is not affected by («) multiplying each term by the
same non-zero constant, (b) removing (or adding) a finite number of terms.

If Xu, and Xu, converge to A and B, respectively, prove that X(u, + v,) converges to 4 + B.

Prove that the series 3 + ()" + ()’ +--- = ()" diverges.

Find the fallacy: Let S=1-14+1—-1+1—-14-... Then S=1-(1-1)—-(1-1)—---=1 and
S=1-D+d-1)+0—-1)+-.-=0. Hence, 1 =0.

COMPARISON TEST AND QUOTIENT TEST

.

&

{a]'

Test for convergence:

o w o o il

nt2 , e
- e -1 ,
=L +' ;4” = §£n+wn+3 @)% @ )5

n=l n=1

i _
) Z n _lﬁ

473
«(3n+ 2",

Ans, {a) conv., (b) div., (c) div., (d) conv., (e) div., (f) conv.

oAl sn=2 & [a=lnn N
Investigate tl erg f . Ans. 3 Iv.
nvestigate the convergence of (a) Z T ® ) ) |\j" i ns. (a) conv., (b) diy

Establish the comparison test for divergence:
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o Use the comparison test to prove that
() diverges il p = 1 (b ilan" = diverges {c) Z COnverges
£ 4 =1 n - n=l 2'1
1. Establish the results (8) and (¢) of the guotient test

Test lor convergence:

@ 30 6 $ feanram, © oS @) Y nsin'/n)
w=l )

tre= ] =] =]

Ans. {a) conv., (b) div., (¢} div., {d) div.

it If Lu, converges, where 11, = 0 for n = N, and if lim nu, exists, prove that lim snu, = 0.
M= H—-00

(=]
1 :
{z) Test for convergence E T {#) Does vour answer to (&) contradict the statement about the p
n
n=1
series that £1/#" converges for p > 17

Ans.  {a) div,

INTEGRAL TEST

" = . o=t lrm
LE LN, P —
Test for convergence:  (a) ;2 s © ";”(mn):. () gz,,, (d) ; 77~ (e) Z
oz lnglna e
) 1
4 ; wlnm’ & ; "

Ans. (a) div., (B) conv.,, (¢) conv.,, (d) conv., (&) div., (f) div. (g} conv ifp=1,div ifp =1

I3 Prove that 2 where p is a constant, {¢) converges if p= 1 and (b) divergesifp = 1.

|
< nln )™

= 5
Prove 1hal —< } — <=
SPI-EH
.lrnl
oo tan"n
; e
u Investigate the convergence of E —_—

o n+ 1

Ans. conv.

(@) Provethat 3 4L < VT+ V2434 4 g In/ 4l -1

{b) Use (4) 10 estimae the value of VT4 2+ +3+ -+« + +/100, giving the maximum error.

{¢) Show how the accuracy in (b) can be improved by estimating, for example, v10 4+ /11 4 - - + /100
and adding on the value of +/T+ /2 + .- -+ +/9 computed to some desired degree of accuracy.

Ans. (b) 671.5+45

ALTERNATING SERIES

. Oy S Gl
Is. Test for convergence: (a) g , () ;m. {€) ; =1
= " -l:I I) "'/_
(d) ;(—l} sin”™' =, (&) E S,

Ans. (a) conv., (b) conv,, (c) div.,, {d) conv., (&) div,
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it (a) What is the largest absolute error made in approximating the sum of the series E;gﬂ{ o n by the sum
of the first 5 terms? 2 tnt1)
Ans. 1/192
{#) What is the least number of terms which must be taken in order that 3 decimal place accuracy will
result?
Ans, 8 terms
I 1 1 41 1 1
7 () Prove thaiS—1-+23+3 -—;(1—3—§+¥—---)_
(/) How many terms of the series on the right are needed in order o calculale 8 1o six decimal place
accuracy?

Ans.  (b) at least 100 terms

ABSOLUTE AND CONDITIONAL CONVERGENCE

4 Test for absolute or conditional convergence:
(=1 (=1)" o N e
(a) gnl-l—l () annn (e) ,}Z Sm?
oo {'_])Jr—ln (_])Jrn.?- { ]rJ l .1
(B) ZL— T () Z T () Z e

Ans. {a) abs. conv., (b) cond. conv., (¢) cond. conv., (d) div.,, (e) abs. conv., (f) abs. conv.

Prove that ZCOS st converges absolutely for all real x and a.

If 1—4+4%—§+--- converges to 5, prove that the rearranged series 1 +{—J+¢+4—§+4§+
_3S Explaln

mel Take 1/2 of the first serics and write it as 0 + +0-—5+0 +é Fi
series. MNote that S = In2, as shown in Problem Il ]UU}

—

«; then add term by ierm to the first

Prove that the terms of an absolutely convergent series can always be rearranged without altering the sum.,

RATIO TEST
20 Test for convergence:
l) H UTH ) L] 3:! { |)n23u ‘.\-'fg— 1]"
(«) ;erk,,,, (b ;[M m © ;H—g (d) Z o (@ E ‘

Ans. (a) conv. {abs)), (b) conv., (¢) div., (d) conv. (abs.), (&) div.

Show that the ratio test cannot be used to establish the conditional convergence of a series.

o= ! o cono fF
Prove that  {(a) ;F converges and (&) ,}iﬂl ;ﬂ—:[!.

MISCELLANEOUS TESTS

b2] Establish the validity of the ath root test
23 Apply the nih root test to work Problems 20 (a), (c), {d), and (e).
2 Prove that 1+ @)2 + (%)3 + [%_]4 + l%}'s + @)6 + .-+ converges.
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1 1.4 1-4.7 2. 2e5 2:-5.8
513 Test for convergence: (z) §+ﬁ+m+ N )] §+m+m+ 4
Ans. (g) div., () conv.
2. If @, b, and d are positive numbers and b = g, prove that

a ala+d)  ala+ dia+ 2d)
st etra) T2

converges if b —a > d, and diverges if h — g = 4.

SERIES OF FUNCTIONS

cd Find the domain of convergence of the series:

oo tz.' g

: fr i ( Ij{ "
# E}ﬁ— ) Z e Iy 2 E”(l+t3}" ) Z (1+ ) BB

n=I n=| =l

Ans. {a) =1 =2x=1, ) —1=x=23 {gallxz20 @ x>0, {dx=0

l1-3:5 2n—1
L ]x” converges for —1 < x < 1.

28 Prove that Z-—-ﬂ—dl—ﬁ—"‘f—)—“

=1

UNIFORM CONVERGENCE

24 By use of the definition, investigate the uniform convergence of the series

Z[1 + {n — I]J»][i + nx]

s

. . ; 3 : . 1
[Hlnt: Resolve the nth term into partial fractions and show that the nth partial sum is S,{x) =1 — 3 ]
= X
Ang. Not uniformly convergent in any interval which includes x = 0; uniformly convergent in any other
interval,
£ Investigate by any method the convergence and uniform convergence of the series:

(@ Z( } ) Eqm_ﬂ;" © ;ﬁ,xgﬂ.

n=I1

Ans.  (a) conv. for |x| = 3; unif. conv. for |x| £ r = 3. {h) unil. conv. forall x. (¢} conv. for x = 0; not
unif. cony. for x = 0, but unif. conv. for x Z ¥ = (.

L
a1, If F{x) = Z%, prove that;
n

=l ) ; A - COS X :
{z) F(x)is continuous for all x, (&) lmlaj Flx)=0, () Fiix)= Z —— s continous everywhere.
L n=1 ]

Treos2x  cosdx  cosh
3 Prove that J ( o B b= O
oh\ 1.3 3.5 5.7
" =, sinnx L
3. Prove that F(x) = Z . has derivatives of all orders for any real x
= sinh mw
: 1 )
, Examine the sequence w,(x) = T n=1,23,..., for uniform convergence.
a dx
3f. Prove that Inm I e e
(14 x/n)
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POWER SERIES

RIS

3%

Er3

an

il

1

44

H4

2 xi X‘

X
(a) Prove that In(] +x)_x~3+?—-z+.i._
(6) Prove that In2=1—-4+4—4+....
[Him: Use the fact that ; :

=1=x+x —x 4+ and integrale.]

5 7
s ad reae, aey

1A

345
s I 1 A B B

Prove that sin™

172 2 & . .

Evaluate () J e dx, (d) J de to 3 decimal places, justifying all steps.
0 0

Ans. {(a) 0461, (b) 0.486

Evaluate (g) sind0®, (&) cos65®, () tan12® correct to 3 decimal places.
Ang. (a) 0,643, (b) 0.423, {(¢) 0.213

By multiplying the series for sinx and cos x, verify that 2 sin xcosx = sin2x.

¥ 4 A
Show that ¢°=* = e(] A 4x’ _3la

AT +) e EmE s

Obtain the expansions

3 5 T
-1 T e A W s N T _
{) tanh™ x —x+3+5+?+ l<x=<1
1x 1:3x%x 1-3.5%
{2 i T e B :
(&) Inix+vx+1)=x 23+2.45 2_4“3.",+ 1=x=1

~lfct
Let f(x) = g tox f 0 Prove that the formal Taylor series about x = { corresponding 10 f(x) exists

but that it does not converge to the given function for any x £ (L

Prove that

In(l1+x) | R | B
{a) s __r—(]+§):c +(I+E+§)x — for =l =x <=1
(5) {In{1 + )E'?—xgu(l+-l~)—2fi+(l+-]-+l)g~x:- for —1 <1
{Inn x) = 3)73 Frgl = T = x =

MISCELLANEOUS PROBLEMS

3.

ik

48

Prove that the series for J,(x) converges {a) forallx, (p) absolutely and uniformly in any finite interval,

Prove that  (a) %[Ju(x}]z—.!,(x), () %{x"..fp(x)lzxwp_l{x), (© JJ,H(_x}:z?pJP(x)—Jp_](x).

Assuming that the result of Problem 11.111(c) holds for p=10, -1, -2, ..., prove that
(@) Joix) = = i{x),  (B) Jox) = La(x), (@) Joulx) = (=1)'"Ju(x), m=1,2,3,....

(s v}
Prove that "> = 3 p(x) ¢

p=—nc
[Hint: Write the left side as */?¢™*, expand and use Problem 11.112.]
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FOURIER SERIES

s, Graph each of the following functions and find their corresponding Fourier series using properties of even
and odd functions wherever applicable.
§ Dex<2 -x —4=x=0
a) flx)= Period 4 b fix)= Sy Period B
(@) /) {—3 2aex<d ®) /&) [ D=x=4
2x 0=x<3
(e} fix) =4x,0 = x < 10, Period 10 (d) fix)= = Period 6
—3<x=0
16 = (I — €035 P!.IT} . MTX {1 CGSJ’!;‘T} nix
Ans.  (a) ;Zf sin —— (h) 2——2§7 c0s — =
40241 HITX 3 S (6lcosar—1) mx  beosmw |, BmX
I — LN o i et B ool Db
() 20 K;ﬁ sin — @ 3 Zl{ S C0s i
38, In gach part of Problem ** | tell where the discontinuities of f{x) are located and to what value the series

converges at the discontunities.
Ans. (@) x=0,%2,+4,...;0 {5 no discontinuities {c) x=0,+10, £20,...; 20
(d) x=43, 49,415 ...;3

51 Expand f(x) = [ —x O=x<4

T T . Fourier series of period 8.

An 14 +l 3mc+l S;rzx+
'S‘?_? T b e

sz (a) Expand f{x) = cosx, 0 < x =, in a Fourier sine series.
(b} How should f(x) be defined at x = 0 and x = s0 that the series will converge to f(x) for 0 = x = =7

& S nsin2nx
Ans. (a) = a1
=1

(&) f(0) =f(m) =

s+ (4) Expand in a Fourier series f{x) = cosx, 0 < x = if the period is 7; and  {b) compare with the result of
Problem s , explaining the similarities and differences if any.

55 Expand f(x) = [3 . S:iz‘; in a series of (a) sines, (b) cosines.
21 . HEX 16 (2cosnm/2 —cosmr — | HITX
Ans. ﬂ., Z;ﬂz sin =~ sin g (B) ;;( = ) cos —

is. Prove thatfor 0 = x = m,

@) —r)—H—z— cos2x  cosdx  cos6x

A FFE—X= 12 22 32 T
sinx  sin3x  sin3

(0) x(m—x)= ( = + Fe +_53 % )

s6.  Use the preceding problem to show that
)

=] I_;Tr: { ]}J‘EI T " e ("_]}H—J _:1T3
@ ) == ©® Z 5 @ X v=m

=] e n=l

E.E F ¥ .1 1 3nt2
$7 Showthatl;+——?——+93 T
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Lecture on Infinite Series and Differential Equations

CHAPTER 3: BASIC CONCEPT OF DIFFERENTIAL
EQUATIONS

In this chapter we provide the readers with somed&mental concepts of differential
equations such as solutions and order of diffeaéndiquations, initial-value problems,
standard and differential forms, etc. We first tsthy considering some examples of
differential equations arising from processes widgy, physic, and so on.

1. Examples of Differential Equations
1.1 Growth and Decay Problems

Let N(t) denote the amount of substance (or populaticat)itheither growing or decaying. If
we assume thatN/dt, the time rate of change of this amount of sultsars proportional to
the amount of substance present, this meansiMidt = kN, or

dN/dt - kKN=O (1.1)
wherek is the constant of proportionality.
We are assuming thali(t) is a differentiable, hence continuous, functiointione. For
population problems, whend(t) is actually discrete and integer-valued, thisuagstion is
incorrect. Nonetheless, (1.1) still provides a gamgbroximation to the physical laws
governing such a system.

1.2 Temperature Problems

Newton's law of cooling, which is equally applicalib heating, states that the time rate of
change of the temperature of a body is proportitm#the temperature difference between the
body and its surrounding medium. Let T denote thmeperature of the body and let Tm
denote the temperature of the surrounding mediuran Tihe time rate of change of the
temperature of the body is dT/dt, and Newton's l[&aooling can be formulated as dT/dt = -
kK(T- Tn), Or as

el + kT = kT,

dt (1.2)
where Kk is a positive constant of proportional®nce k is chosen positive, the minus sign is
required in Newton's law to make dT/dt negative ooaling process, when T is greater than
Tm, and positive in a heating process, when T istless T,

1.3 Falling Body Problems

Consider a vertically falling body of mass m thebeing influenced only by gravity g and an
air resistance that is proportional to the veloafythe body. Assume that both gravity and
mass remain constant and, for convenience, chdesedwnward direction as the positive
direction. For the problem at hand, there are tarads acting on the body: the force due to
gravity given by the weight m of the body, whichuaty mg, and the force due to air
resistance given by -kv, where k > 0 is a constdnproportionality. The minus sign is
required because this force opposes the
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velocity; that is, it acts in the upward, or negatidirection (see Figure 1 -1). The net force F
on the body is, therefore, F = mg-kv. Using thisute and Newton second law of motion
(F=mdv/dt), we obtain

dv
mg—kv=m—
dt
or
dv . k e
dt m
+ ku
Falling body
v + mg
rround
e s s
Positive c-direction
Figure 1.1
1.4 Electrical Circuits
R R
J) MWW
E T L E T —C
- -«
Figure 1-2 Figure 1-3

The basic equation governing the amount of curréint@amperes) in a simple RL circuit (see
Figure 1-2) consisting of a resistance R (in ohnas), inductor L (in henries), and an
electromotive force (abbreviated emf) E (in vols) i

dl R E

Jsihanl

For an RC-circuit consisting of a resistance, aacapnce C (in farads), an emf, and no
inductance (Figure 1-3), the equation governing #meount of electrical charge g (in
coulombs) on the capacitor is

dg 1 E

dt RC R
The relationship between g and I is q = dl/dt
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2. Definitions and Related Concepts

2.1 Definition. A differential equation is an equation involving an unknown function arsd i
derivatives.

The following are differential equations involvingetunknown function vy.

E‘2=59r;+..”f-
dx
2 2
e’ Ef?-i}i + 2(‘@1] =]
dx dx
4’y dzy

ayY dyY sl dyY
23] (2] 12 -
: X
aﬂy

E:a‘zy
— 4 —==0
ot’ ox’

4? +(sin x)EJery =0

A differential equation is aardinary differential equation if the unknown function depends
on only one independent variable. If the unknowmcfion depends on two or more
independent variables, the differential equatioa partial differential equation.

The order of a differential equation is the order of theHhegt derivative appearing in the
equation.

2.2 Solution. A solution of a differential equation in the unkrmowunction y and the
independent variable x on the intervalis a function y(x) that satisfies the differential
equation identically for all x id.

Example: The function y(x) = ¢sin2x + ¢cos2x, where @and ¢ are arbitrary constants, is a
solution of y" + 4y = 0 in the intervald; «).

2.3 Particular and general solutions.
A particular solution of a differential equationasy one solution. The general solution of a
differential equation is the set of all solutions.

2.4 Initial-Value and Boundary-Value Problems.

A differential equation along with subsidiary carmzhs on the unknown function and its

derivatives, all given at the same value of thepehdent variable, constitutes an initial-value
problem. The subsidiary conditions are initial caoiotis. If the subsidiary conditions are

given at more than one value of the independenabia; the problem is a boundary-value
problem and the conditions are boundary conditions.

Example: The problem y" + 2y = x; y) = 1,y'(r) = 2 is an initial value problem, because the
two subsidiary conditions are both given at x. The problem y" + 2y' = x; y(0) =1, y() =1
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is a boundary-value problem, because the two sialbgidonditions are given at x = 0 and
x=1.

A solution to an initial-value or boundary-valueoplem is a function y(x) that both solves
the differential equation and satisfies all givebsdiary conditions.

2.5Standard and Differential Forms

Standard form for a first-order differential eqoatin the unknown function y(x) is
y' =f(x,y) (2.1)

where the derivative y' appears only on the lefe sf (2.1). Many, but not all, first-order
differential equations can be written in standamahf by algebraically solving for y' and then
setting f(x,y) equal to the right side of the réiig equation. The right side of (2.1) can
always be written as a quotient of two other fumtsi -M(x,y) and N(x,y). Then (2.1)
becomes dy/dx = -M(X,y)/N(X, y), which is equivalea the differential form

M(x,y)dx + N(x,y)dy =0 (2.2)
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CHAPTER 4: SOLUTIONS OF FIRST-ORDER
DIFFERENTIAL EQUATIONS

In this chapter we will consider the solutions afme first-order differential equations.
Starting form separable equations we will constithet method to solve more complicated
equation such as homogeneous, exact, linear, amb&@# equations.

1. Separable Equations

1.1 Definition: Consider a differential equation in differentiatrh (1.4). If M(x,y) =A(x)
(a function only of x) and N(x,y) = B(y) (a functioonly of y), differential equation is
separable, or has its variables separated.

1.2 General Solution:The solution to the first-order separable differ@rgquation
A(x)dx + B(y)dy =0 (1.1)

is
J A(x)dx + j B(y)dy=c

wherec represents an arbitrary constant.

(1.2)

2
Example. Solve the equation(::di—y X 2
X y

This equation may be rewritten in the different@in
(+2)cx-ydy = 0
which is separable witA(x) =X + 2 andB(y) = -y. Its solution is
_[(xz + 2)dx—_[ydy= c
or

1 1
=xX3+2x-Zy? =c.
3 2y2

The integrals obtained in Equation (1.2) may be, dibrpractical purposes, impossible to
evaluate. In such case, numerical techniques & tasobtain an approximate solution. Even
if the indicated integrations in (1.2) can be pearfed, it may not be algebraically possible to
solve fory explicitly in terms ofx. In that case, the solution is left in implicitio.

1.3 Solutions to the Initial-Value Problem:

The solution to the initial-value problem

(xpix + B(y)dy = 0; y(Xo) = Yo (1.3)
can be obtained, as usual, by first using Equatlo?) (o solve the differential equation and
then applying the initial condition directly to dwate c.
Alternatively, the solution to Equation (1.3) candi®ained from

]E A(s)ds +j' B(t)dt=0
*a Yo 4)]_

wheres andt are variables of integration.
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2. Homogeneous Equations:

2.1 Definition: A differential equation in standard form
dy =f(x, y) (2.5)
dx

is homogeneous if(tx, ty) = f(x, y) for every real number# 0.
Considerx # 0. Then, we can writd(x, y)=f(x, xy/=f(1, y/¥):=g(y/x) for a functiong
depending only on the ratygx .

2.2 Solution: The homogeneous differential equation can be toamsfd into a separable
equation by making the substitution:

y =XV (2.6)
along with its corresponding derivative:
ay v+ xﬂl : (2.7)
dx dx
Then we obtaiv+ xil =g(v). This can be rewritten asL = dx if g(v)+# V.
dx gv)-v X

The resulting equation in the variabkesndx is solved as a separable differential equation;
the required solution to Equation (2.5) is obtaibgdack substitution.
The caseay(v) = vyields another solution of the foryn= kx for any constari.

Example: Solvey' = yrx for x# 0.
X
This differential equation is not separable. Instédas the forny' = f(x,y),
with fxy)= 25X wheref(tx, ty) = tytﬂ =YX fix, ),
X X X
so it is homogeneous. Substituting equations @@)(2.7) into the equation, we obtain
dv_ xv+Xx
V+X—=
X X
which can be algebraically simplified to
xﬂzl or ldx—dv:(]
dx X
This last equation is separable; its solution is
1
—dx—|dv=
| = [dv=c

which, when evaluated, yields=In k| -c, or

v=Inkx| (26)
where we have set= -Ink|; and have noted thatxthfInk| = Inikk].
Finally, substitutingv = y/x back into (26), we obtain the solution to the giwdfferential
equation ay = xin|kx].

3. Exact equations

3.1 Definition: A differential equation in differential form

MX, y)dx + N(x, yydy=0 7§2
is exact if there exists a function g(x, y) sucatth
do(x, y) = M(x, ydx + N(x, y)dy (28)
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3.2 Test for exactnesslf M(x,y) andN(x,y) are continuous functions and have continuous
first partial derivatives on some rectangle of Xiyglane, then Equation (27) is exact if and
M (x,y) _ ON(x,y)

only if
YTy ox
3.3 Solution: To solve Equation (27), assuming that it is exadt §olve the equations
0g(x,
B — i (x,y) (28)
X
o9 (X,
9Y) - N(x,y) (29)
for g(x, y). The solution to (27) is then given implicitly by
g(xy=c (30)

where c represents an arbitrary constant.
Equation (30) is immediate from Equations (26) and.(& (27) is substituted into (26), we
obtaindg(x, X)) = 0. Integrating this equation (note that we @aite 0 as 0dx), we have

j dg(x, y(x)) = j 0dx, which, in turn, implies (30).

Example: Solve Xydx+ (I +x%dy= 0.

This equation has the form of Equation (26) Wik, y) = 2xyandN(x, y) = 1 +x°. Since

aMa(X’ Y) - aNéX y) - = 2%, the differential equation is exact. Because #gsation is exact,
y X

we now determine a functiog(x, y) that satisfies Equations (2.28) and (2.29). Stuisig

M(X, y) =2xyinto (2.28), we obtamM— 2xy. Integrating both sides of this equation

with respect to x, we find
g(x.y) =Xy + hg) (31)
Note that when integrating with respect to x, thastant (with respect to x) of integration can
depend on y. We now determine h(y). Differentiaij&d) with respect to y, we obtain
996y _ e, h'(y).
oy
Substituting this equation along wit{x, y) =1 + x* into (29), we have
“Hu'(y) = 1+ X or h(y) =
Integrating this last equation with respect to y wabtain h(y) = y +¢; (¢c; = constant).
Substituting this expression into (31) yields ggk,= ¥y + y + ¢;. The solution to the
differential equation, which is given implicitly Kg0) as g(x, y) =, is Xy + y =,
(c; = c-c1). Solving for y explicitly, we obtain the soluti@s y = ¢/(x* +1).

3.4 Integrating Factors:

In general, Equation (27) is not exact. Occasiondllis possible to transform (27) into an
exact differential equation by a judicious multialiion. A functioni(x, y) is an integrating
factor for (27) if the equation

I(X[IWXX, y)dx + N(x, y)dy= 0 (32)
IS exact.
A solution to (27) is obtained by solvitiige exact differential equation defined by (32).
Some of the more common integrating factors arplaljed in Table 2.1 and the conditions
that follow:
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1({aM oN
If —| '

3
N W_ e |E g(x), a function of x alone, then

1 {adM dN} . ) .
f —| —————|= hiv), a function of v alone, then
.1‘{ i d‘l‘ 'I:}-I J - -

“ X, 'l] = ;_:_J"',"': iy
If M = yfixy) and N = xg(xy), then
I
M —yN
In general, integrating factors are difficult toconer. If a differential equation does not have

one of the forms given above, then a search fointegrating factor likely will not be
successful, and other methods of solution are rezamded.

I(x,v)=

Example: Solveydx- xdy= 0.
This equation is not exact. It is easy to see thanigrating factor i§(x)=1/x%. Therefore,
we can rewrite the given differential equation as
xdy—2 ydx _ 0

X
which is exact. This equation can be solved usiegsteps described in equations (28)
through (30).
Alternatively, we can rewrite the above equatsd (y/x) = 0. Hence, by direct integration,
we havey / X = ¢, ory = cx, as the solution.

4. Linear Equations

4.1 Definition: A first-orderlinear differential equation has the form
Yy +p(X)y = a(X). (33)

4.2 Method of Solutions:An integrating factor for Equation (2.33) is

1(x) = ol 9% (34)
which depends only ox and is independent f When both sides of (33) are multiplied by
[(x), the resulting equation

1(x) Y+ 1(x)p(x)y = a(x)I(x) (35)
Is exact. This equation can be solved by the metlesdribed previously.
A simpler procedure is to rewrite (23) as

d(ly)
— 77 = ,
dx g
and integrate both sides of this last equation wépect tox, then solve the resulting
equation fory. The general solution for Equation (33) is
yo) =6 (e P g(xax+C) (36)

Example: Solve y'+(4/xX)y=x*.
Using (36) forp(x)=4/x andq(x)=x", we obtain the general solution of the given equedis
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y= C. x°
x* 9
Table 2.1
Group of terms | Integrating factor I{x, v) Exact differential dyix, v)
1 xdv —wd ‘v
vy —xdy - sk 1_1:_1- u’(l)
x x° X
1 vy —xdy ;
vy —xdy — ra :t el 'ﬂ'(z)
¥ ¥ L
1 v —vd
vy — xdy - — b A =d(ln}-J
xy xv .X
L xdv —yvd: ( 2
vy —xdy I HJ: J.”=n’{a1'ctun})
Xy X0y . X
l Ix +xdy
vy xdy Y 2 oy {Inxy)
Xy Xy
1 vdr +xdy -1
ﬁil + ll Y T |_ = = = [ . - :|
yarT ey " vy L= Dy
| rdy +xd 1 . s
vy +xdx B ! --'1':-- xf Yol i x4 v7) ‘
C AT E oy Iy 2 :
.*- ] sdv + v d) -1
vefy + xdy b = “: lﬂ{ -?=f { — ,J
Ty 7+ Tl - e )
i
ay dy + hx dy ot R P o= df e
{a, b constants) | vy Ny Haydy hydy) =d(x0y")
1

5. Bernoulli Equations
A Bernoulli differential equation has the form

Y + Py = q(x)y" (37)
whered is a real numberd( # 0;  # 1). If a > 0, theny = 0 is a solution of (37). Otherwise,
if a <0, then the condition is#0. In both cases, we now find the solutions@. To do this
we divide both sides by” to obtainy™@y + p(X) y* = q(x). The substitution z ¥ now
transforms (37) into a linear differential equatinrthe unknown functiog(x).

Example: Solvey'+ xy= xy?.

This equation is not linear. It is, however, a Bedhdifferential equation having the form of
Equation (37) withp(x) = q(X) = x, andd = 2. First, we can see thg£0 is a solution of the
equation. We now find the solutign# 0. To do so, we make the substitutian= y* 2=y,
from which follow y=1/z and y'=-z'/z>. Substituting these equations into the given
differential equation, we obtain the equatiphaxz = -x which is linear for the unknown
function z(x). It has the formof Equation (2.33) witty replaced byz andp(x) = q(xX) = —x.
Using the formula (2.36) we obtain that
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x2

z=Ce? +1.

The solution of the original differential equatianthen: y= 1 =
z

6. Modelling: Electric Circuits

Differential equations are of interest to non-math&cians primarily because of the
possibility of using them to investigate a wideiggr of problems in the physical, biological,
and social sciences. One reason for this is th#tenaatical models and their solutions lead to
equations relating the variables and parametdisiproblem.

These equations often enable you to make predictdwosit how the natural process will
behave in various circumstances. It is often easyary parameters in the mathematical
model over wide ranges, whereas this may be vemg-tionsuming or expensive in an
experimental setting. Nevertheless, mathematicaleiiog and experiment or observation
are both critically important and have somewhat gle@mentary roles in scientific
investigations. Mathematical models a re validatgdcomparison of their predictions with
experimental results. On the other hand, mathealadnalyses may suggest the most
promising directions to explore experimentally, amdy indicate fairly precisely what
experimental data will be most helpful. In Sectiba we formulated and investigated a few
simple mathematical models. We begin by recapihdagnd expanding on some of the
conclusions reached in that section. Regardleskeopecific field of application, there are
three identifiable steps that are always presetitarprocess of mathematical modelling.

6.1 Construction of the Model. This involves a translation of the physical situatioto
mathematical terms, often using the steps listeth@atend of Section 1.1. Perhaps most
critical at this stage is to state clearly the ptalsprinciple(s) that are believed to govern the
process. For example, it has been observed thsbrite circumstances heat passes from a
warmer to a cooler body at a rate proportionahtotemperature difference, that objects move
about in accordance with Newton’s laws of motiamg #hat isolated insect populations grow
at a rate proportional to the current populationctEef these statements involves a rate of
change (derivative) and consequently, when expdessghematically, leads to a differential
equation. The differential equation is a mathemhbtivadel of the process. It is important to
realize that the mathematical equations are alal@stys only an approximate description of
the actual process. For example, bodies movingedds comparable to the speed of light are
not governed by Newton’s laws, insect populatioonsdt grow indefinitely as stated because
of eventual limitations on their food supply, arehhtransfer is affected by factors other than
the temperature difference. Alternatively, one camopt the point of view that the
mathematical equations exactly describe the operati a simplified physical model, which
has been constructed (or conceived of) so as taéynthe most important features of the
actual process. Sometimes, the process of mathehatiodelling involves the conceptual
replacement of a discrete process by a continunaseor instance, the number of members
in an insect population changes by discrete ampinatsever, if the population is large, it
seems reasonable to consider it as a continuoiabl@aand even to speak of its derivative.

6.2 Analysis of the Model. Once the problem has been formulated mathematjcafig is
often faced with the problem of solving one or mdiféerential equations or, failing that, of
finding out as much as possible about the propedfethe solution. It may happen that this
mathematical problem is quite difficult and, if $orther approximations may be indicated at
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this stage to make the problem mathematically atdet For example, a nonlinear equation
may be approximated by a linear one, or a slowlying coefficient may be replaced by a
constant. Naturally, any such approximations missi ke examined from the physical point
of view to make sure that the simplified mathenatigroblem still reflects the essential

features of the physical process under investigathd the same time, an intimate knowledge

of the physics of the problem may suggest reasenablthematical approximations that will

make the mathematical problem more amenable toysisalThis interplay of understanding

of physical phenomena and knowledge of mathematexdiniques and their limitations is

characteristic of applied mathematics at its bestd is indispensable in successfully
constructing useful mathematical models of integathysical processes.

6.3 Comparison with Experiment or Observation. Finally, having obtained the solution (or at
least some information about it), you must intetrpinés information in the context in which
the problem arose. In particular, you should alwelgeck that the mathematical solution
appears physically reasonable. If possible, caleulhe values of the solution at selected
points and compare them with experimentally obsemedues. Or, ask whether the behavior
of the solution after a long time is consistenthwatbservations. Or, examine the solutions
corresponding to certain special values of pararmmétethe problem. Of course, the fact that
the mathematical solution appears to be reasomli@e not guarantee it is correct. However,
if the predictions of the mathematical model argosesly inconsistent with observations of
the physical system it purports to describe, thiggests that either errors have been made in
solving the mathematical problem, or the matherabtmodel itself needs refinement, or
observations must be made with greater care. Imp@hd we have given some examples
which are typical of applications in which firstdar differential equations arise. In this
section we pay our attention to a concrete modialf is a mathematical model of electric
circuits. We start with some important facts frolacéric circuits.

6.4 Electric circuits. The simplest electric circuit is a series circuitvhich we have a source
of electric energyglectromotive force such as a generator or a battery, and a resighach
uses the energy. Experiments show that the follovengholds.

Thevoltage drop Er across a resistor is proportional to the instantaneous the current I,
say,
(Ohm's law) E:=RI, (L)
where the constant of proportiondlis call the resistance of the resistor. The curteist
measured immperesthe resistancR in Ohms and the voltag&gin volts

The other two important elements in more cooapéd circuits are inductors and
capacitors. An inductor opposes a change in cyrtemting an inertia effect in electricity
similar to that of mass in mechanics; we shall @ersthis analogy latter. Experiments yield
the following law.

Thevoltage drop Er across an inductor is proportional to the instantaneous time rate of
change of the current $ay,

dl
E=L pm (L2)
where the constant of proportiorials called thenductance of the inductor and is measured
in henrys time t is measured in seconds.
A capacitor is an element which stores energpeErents yield the following law.
Thevoltage drop Ec across an capacitor is proportional to the instantaneous electric charg
Q on the capacitorsay

Ec==Q (L3%)
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whereC is called thecapacitanceand is measured ifarads; the charge Q is measured in
coulombs Since

dQ
I (t) =— L3’
(t) ot (L3%)
this may be written

EC%[Q(%) +j0| (r)dr] (L3)

The current I(t) in a circuit may be determineg dolving the equation (or equations)
resulting from the application of the following law

6.5 Kirchhoff's voltage law (KVL):

The algebraic sum of all the instantaneous voltdg®s around any closed loop is zero, or
the voltage impressed on a closed loop is equ#técsum of the voltage drops in the rest of
the loop

6.6 Example: RL-circuit

.

Fig. 2.2
Model the “RL-circuit” in fig 2.2 and solve the rd8ng equation for: (A) a constant
electromotive force; (B) a period electromotiveckor

Solution: 1% Step. Modeling.By (L1) the voltage drop across the resistdRlisBy (L2) ) the
voltage drop across the inductorlidl/dt. By KVL the sum of the two voltage drops must
equal the electromotive for@gt); thus

di
L— +RI = E(t
ot (t)

2" Step. Solution of the equationln order to use the formula (2.36) we transform the
above equation to the standard form by deviding) Bate toL and obtain

d R, _E(t)

—+— ===

dt L L
Using now formula (2.36) with=¢, y=I, p=R/L, andg=E/L we get

I(t) = e"”[_[e‘“?dHc} for o = R/L.

3 Step. Case A: Constant electromotive forcE=E,. The above equality fdft) yields
I(t)=e" Ee"‘ +C :5+ce“”
R R

39



Lecture on Infinite Series and Differential Equations

The last term tends to zero as; practically, after some time the currdf) will be
constant, equal t&y/R, the value it would have immediately (by Ohm’s Jamad we no
inductor in the circuit, and we see that this limitndependent of the initial valu).

Case B: Periodic electromotive forde=E, Sinwt. For thisE(t) we have that
| E .
I(t)=e ‘“[T"Ie"‘ sma)tdt+c} for a = R/L.
Integration by part yields
} E .
| (t) =ce™ + —=——sin(wt - J), ford=arctanpL/R).

VR? +@w®I?
The exponential term will approach zerot&snds to infinity. This mean that after some time
the current(t) will execute practically harmonic oscillations.

7. Existence and Uniqueness Theorem

We now finish this chapter by stating the theoremeristence and uniqueness of the solution
of an initial-value problem for a first-order difential equation.

7.1 Theorem.

Let the functionsf(t,y) and of/oy be continuous in some rectangle< t < 8, y <y <9
containing the poinfto,yo). Then, in some interva) — h <t <ty + h contained i <t < f,
there is a unique solutign= ¢(t) of the initial value problem

y, =f (t’ y)l y(@) = Yo.

Problems

I. In each of Problems 1 through 8 solve the givefedihtial equation.

1 v =xy 2. ¥ = 'r?-";l'“ +x%)
3y 4y smx =0 4V =03 13+ 2
5. ¥ = {cos” x)(cos” 2y 6. x' =1(1- .1':}]"I!

- ody  x—e " dy x°

Codx T oy+é Cdx T 14)°

II. In each of Problems 9 through 20 find the solutbthe given initial value problem in
explicit form.

9. ¥ = (1 =2x)", w0 =~1/6 10. ' = (1 =12x)/y, yily==2
11. xdx+ye*dy =0, =1 12. drfde =r'/8, r(l) =2
13. ¥ =X /(y+x)), v(0) ==2 14. ¥ =xp’ (14231, ¥y =1
15. ¥ =2x/(1+2), »2=0 16. ¥ =x(x*+1)/4y°,  »0)=-1/+2
17. ¥ = @x = &EVQy— 3, W) =1
18. ¥ =@ =V3+4y), i) =1
19. sin2xdx +cos3ydy =0, y({n/2) = x/3
20. (1 —x)dy = arcsinx dx, w0y =0

[ll. In each of Problems 31 through 38:
(a) Show that the given equation is homogeneous.
(b) Solve the differential equation.
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.. dy X Hxv+y o Gy X +3y
M. ==——FH—" I <~ = :
dx X dx 2xy
'  — 3% ' dx+3y
2. :f;1=—1_‘| 3x ” d_,1=_ x4 3
dx 2p =) dx 2+ y
dy x+3y . .
35, — = : 36. (22 4+ 3xy + 1 )dx —x'dy =0
dr x=Y T '
dy x? =32 dy 3y = x?
5?_ 1‘.— — ¥ 33- — — 5
dx 2xy dx 2xy

IV. Determine whether or not each of the equationsablEems 1 through 12 is exact. If it is
exact, Find the solution.

L 2x+3)4+2v=2"=0 2 2 4+4+2x =2y =0
3. 3x—2xy+2)dx 4+ (6 —x*+3)dy =0
4 (27 4+ 20+ 2%y + 22 =0
- dy ax + by 6 dy ax — by
T odx bx 4oy T dx br—cy
7. (¢ siny —2ysinx)dx + (¢ cosy + 2cosx) dy =10
8. (e'smy+3yv)dx— (3x—é&'smy)dy =0
9. (e cos2xy — 2% sm2x 4+ 2x)dx 4 (xe cos2x —3) dy =0
100 (v/x+6x)dx+ (lnx —2)dv =10, x=0
11. (xlny+xy)dx +(ylnx +xy) dy =0; r=0 yv=0
1 xdx ydy B

{1.3 +-,|_.2}3,-"3 + {_1.3 _|_I,|,J]3,-"3 -
In each of Problems 13 and 14 solve the grven mitial value problem and determine at least
approximately where the solution is valid.

13, 2x—y)dx+(2y—x)dy =0, yil)y=3

4 (" +y—-—ldr— 4y —x)dv=0, yily=10

In each of Problems 15 and 16 find the value of & for which the given equation 1s exact and then
solve 1t using that value of 5.

15. (xy* +bx’y)dx + (x + il dv =0 16. (yve™ + x)dx 4 bxe™ dy =0

V. Show that the equations in Problems 1 throughezat exact, but become exact when
multiplied by the given integrating factor. Thenwothe equations.

Lx3?d +x(1+3% =0, px.y) =1/x°
. . , N _—X e

5 (51113 9 sinx) dx + (co's} + 2e CG-‘:l) dy = 0. 1(x, y) = ye'
.‘I: JI

vdx + (2x —ye’)dy =0, plx, vy =y

x4+ 2)smydx 4 xcosydy =0, plx.y) = xe’

B L

VI. Show that if N'y— M'y) /&M — yN) = G, whereG depends on the quantity only,

then the differential equatididx + Ndy = 0 has an integrating factor of the form (xy,.
Find a general formula for this integrating factor.

VII. In each of Problems 1 through 5 find an integrafagjor and solve the given equation.
1. 3y + 2xy + Y dx+ ¢+ y?)dy= 0
2.y =e®+y—-1
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3.dx+ (x4 — siny)dy=0

4.y dx+ 2xy— € ¥)dy=0

5.€dx + (efcoty + 2y cscy)dy = 0
6.[46CAH%) + BA)]dx+ [3&AP) + 4yl dy

VIII . In each of Problems 1 through 12 find the genswhltion of the given differential
equation and use it to determine h&miutions behave ds—w.

I V4+3y=t+e ¥ 2 ¥ =2y=H&

3. YV4y=te'+1 4. ¥+ (1/t)y =3cos2e, >0
5. V=2y=3¢ 6. 1y’ + 2y =sint, t>0

7. v+ 2y =2t 8 I+ +4ty=00+"1

9. W +y=23t 10. ' —y=re¢"

1. '+ y=>5st 12 2y 4y =38

In each of Problems 13 through 20 find the solution of the grven initial value problem
13. y—y=2", y0)=1

4. V+2y=t2", wl)=0

15 '+ 2y =tT=t41, yly=4% >0

16. j’—|— (I/t)y = |-:m.?]|_.:'.*: y(m) = 0, r>0

17. y' =2y = e w0y =2 18. 0y’ + 2y = snt, vim/2) =
19. Y +dfy=e', yi=1)=0 0 o' +i+Ly=t ph2=

IX. In each of Problems 28 through 31 solve the givem8ulli equation:

28. 2y + 2ty —3.-3 =0, =0

200 v=ry—ky, r = Dand k = 0. This equation is important in population dynanucs and
1s discussed in detail in Section 2.5.

30 y=ey—oy, e = Oande = 0 This equation oconrs in the study of the stability of fluid
fowr

31, dyfdi = (Ceozt + Ty —y", where " and T are constants. This eguation also ocows in
the study of the stability of fluid fow.

X. Consider RL-circuit

I ..

I

)
-

(a) Determine the differential equation governing therentl (in amperes) on the
circuit.

(b) Solve the equation to find the current in the cefssonstant electromotive force
E(t)=E, constant. Evaluate the constant of integration lryguthe condition
[(0)=lo.

(c) Determine the limit limo..I(t) wherel(t) is obtained frongb)

(d) Let R= 100 ohmsL=2.5 henriesk(t) = 110 cos 31# Find the steady-state
solution.

XI. Consider RC-circuit
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(a) Determine the differential equation governing &mount of electrical charggin
coulombs) on the capacitor.

(b) Solve the equation to find the chargm the case of constant electromotive force
E(t)=E, constant. Evaluate the constant of integration lnyguthe conditiorg(0)=qo.

(c) Determine the limit lim.,,,q(t).
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CHAPTER 5: SECOND-ORDER LINEAR
DIFFERENTIAL EQUATIONS

Linear equations of second order are of crucialartgmce in the study of differential
equations for two main reasons. The first is thaédr equations have a rich theoretical
structure that underlies a number of systematihaoukt of solution. Further, a substantial
portion of this structure and these methods arerstandable at a fairly elementary
mathematical level. In order to present the keyasda the simplest possible context, we
describe them in this chapter for second order tezpsg Another reason to study second
order linear equations is that they are vital tp serious investigation of the classical areas of
mathematical physics. One cannot go very far indéeelopment of fluid mechanics, heat
conduction, wave motion, or electromagnetic pherm@aneithout finding it necessary to solve
second-order linear differential equations. As saneple, we discuss the oscillations of some
basic mechanical and electrical systems at theoetite chapter.

1. Definitions and Notations

A second order ordinary differential equation Hesform

y'(O=f(ty.y) (DE2)
wheref is some given function. Usually, we will denote thdependent variable kysince
time is often the independent variable in physjmalblems, but sometimes weill use x
instead. Equation (DE2) is said to be lingdhe functionf has the form

f(ty,y)=rt) —a)y - pt)y

that is, iff is linear iny andy’. In this expressiont, p, andq are specified functions of the
independent variablebut do not depend on In this case we usually rewrite Eq. (DE2)
asy” + p(t)y + q(t)y = r(t), and make the following precise definition.

1.1 Definition. A second-order differential equation is callegkar if it can be written in the
form

y' + p()y + qt)y=r(). (1)

Instead of EqQ. (1), we often see the equation

POY + Q)Y + G(t)y = R(t).
Of course, ifP(t) # 0, we can divide this Eq. B3(t) and thereby obtain Eq. (1) with
p(t) =QM)/P(t), a(t)=G(t)/P(t), r(t)=R(t)/P(t).

In discussing Eqg. (1) and in trying to solve it, wil restrict ourselves to intervals in which
p, g, andr are continuous functions on some open interyvéilat isforo <t < 4. The cases

= —o0, OF f§ =0, Or both, are included. The functipft) andq(t) are called theoefficients of
the Eq. (2).

A second-order linear equation is said tohloenogeneousf the termr(t) in Eq. (1), is zero

for all t. Otherwise, the equation is callednhomogeneousAs a result, the term{t) is
sometimes called the nonhomogeneous term.
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Examples: The following equationsy”+4y=e*sint and y”-2ty'+ 6(14?)y=0 are examples
of nonhomogeneous and homogenesaeond-order linear equations, respectively.

1.2 Solution. A solutionof a second-order linear differential equation oms intervall is a
functiony=h(t) that is twice differentiable and satisfies the eliéntial equation for atLI|.
2. Theory for Solutions of Linear Homogeneous Equations

In this section we give a general theory for soli to Linear Homogeneous Equations on
some interval of the form

y + pty + q()y=0. 2)
with continuous coefficients, gand initial conditions
y@=Yo; Y (to)=y1 for given yo, y1, and some fixeth 1. 3)

We accept the following theorem on existence ariquamess theorem of the solution to the
initial-value problem (2), (3).

2.1 Existence and Uniqueness Theoreronsider the initial-value problem

y" +p@)y’ +q()y r(t), y(to) = Yo, y'(to) = y1 (IVP)
where p, g, and r are continuous on an open intdrvdhen there is exactly one solution
y = ¢(t) of this problem, and the solution exists throogt the interval I.

2.3 Linearity Principle. If y; andy, are two solutions of the differential equation, (®gen the
linear combinatiort,y; + C; y» is also a solution for any values of the constansndc,.

PROOF. The assertion follows from the followingedir substitution:
(Coyr + C2¥2)"+ P(Coyr + C2 Y2) +(Clyr + C2 Y2)= Ca(Yr” + Pyr +Qy1)+ Cy2" + py2’'+qy2) = 0.

2.4 Linear Independence of Solutions:
The two solutiony; andy, are calledinearly independenton| if

ki ya(t) + ko yo(t)=0 for alltll | implies k; = k=0;
and we cally,, y. linearly dependent onl if there exist;, k; not both zero such that
ki yi(t) + ko y»(t)=0 for alltlIl. In this case (and only in this casg)y. are proportional, that
is y1=kys If ki#0, ory,=ly; if k;#0. Since, y; and y, are linearly independent if and only if
they are not linearly dependentwe obtain that, two solutiong; andy, are linearly
independent if and only if they are not proportiona

Example. y:(t) =€ and y,(t)=¢? are linearly independent, because they are ngioptional.

The following notion of Wronski determinamg very helpful in characterizing the linear
independence of solutions.

2.5 Definition. TheWronski Determinant (or Wronskian) of the two solutionyy, y» of the
equation (2) is defined by
Y1

1 2

Y,

W(y1 Y2)= = yiy2'- Y1'y2

The following theorems connect the linear dependamckindependence of the two solutions
of EQ. (2) with the properties of their Wronskian.
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2.6 Theorem Two solutionsy; and y of Eq. (2) are linearly dependent on | if and oifly
their Wronskian W(y y») is zero at some poing(tl.

PROOF. If y; andy, arelinearly dependent oh then they are proportional, sgy7k y, on|.
This follows thatW(y, y»)(t)=0 for all t[I1.
Conversely, if there igolJl such thatW(f,g)(b)=0, we prove thatf and g are linearly
dependent oh In fact, sinceW(y, y»)(to) = 0 we have that the system of equations

Ciyi(to) + Coyo(to)) =0

(4)

ay1’ (to) + Cay2' (to) = 0
for the unknownsc; andc; has a nontrivial solution. Using these values;&ndc;,
let p(t) = ciya(t) + ¢ yo(t). Theng is a solution of Eq. (2), and by system {3also satisfies
the initial conditions

9(to)) = 0, ¢’ (to) = 0.
Therefore, by the existence and uniqueness theorgnp(® = 0 for allt in I. Sincep(t) =
ciyi(t) + coye(t) with ¢, andc;, not both zero, this means thatandy, are linearly dependent.

Remark: The above proof also shows that teolutionsy; andy, of Eqg. (2)are linearly
dependent ohif and only if their WronskiaWV(yi, y») is zero for alkLll.

2.7 Theorem.Let y and ¥ be two solutions of the equation (2) on an intervarhen,
the following assertions are equivalent.

(i) y; and y are linearly independent.

(i) W(y, ¥»)(to) #0 for some pointtin 1.

(i)  W(y, y»)(t) #0 for every tin .

PROOF. “(i)= (ii)": For the purpose of contradiction l&t/(y, y»)(t) =0 for alltin I. Then,
by Theorem 2.6y; andy, arelinearly dependent. This contradicts to (i).

“(ii) = (iii)": Again, for the purpose of contradictiomgpose thaWV(y, y)(t;) =0 for some
ty in I. Then, by theorem 2.6y, andy, arelinearly dependent. This yields thét(y, y») Iis
zero for alltlll (see Remark after theorem 2.®his contradicts to (ii).

“(i) = ()" If y; andy, arelinearly dependent, then, by theorem 2.6, therstek such
thatW(y, y2)(to) =0. This contradicts to (iii).

2.8 Theorem (Existence of Linearly Independent Sotions).
Consider Eq. (2) with continuous coefficients pom I. Then there exists two linearly
independent solutiong,yy» on | of Eq. (2).

PROOF. By theorem 2.1, there exists solugpnf Eq. (2) satisfying/i(to)=1, yi'(to)=0 for
sometp in |. Also, there exists solutiopy of Eq. (2) satisfyings(to)=0, y-'(to)=1. Therefore,
W(y, V»)(to)=1#0. Hencey; and y, are linearly independent.

2.9 Theorem (Structure of Solutions to Homogeneousquations).

Consider Eq. (2) with continuous coefficients mngl. Let y, y»betwo linearly independent

solutions on | of Eq. (2). Then the general solufiihe set of all solutions) of Eq. (2) is
{ontca y2 | ¢ and ¢ are arbitrary constant$ (5)

PROOF. Clearly, for any fixed constantsandc,, the formula in (5) represents a solution of

Eq. (2) onl. Let nowY be an arbitrary solution of (2) dn PutY (p)=k1, Y’'(t))=k, for some
fixed thin 1.
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Consider y=; y1+c, yo. We will find ¢, ¢ such thaty(tp)=k1, y'(to)=k>. These conditions are
equivalent to

Ciyi(to) + Coyo(to) =ki

(6)

Ciy1' (to) + Cay2' (to) = ko
This system of linear equations (6) has a solutio ( o) since its determinant of
coefficients iSW(w,Y2)(to) #0 (becausey,, Y. are linearly independent).
The theorem 2.1 now yields théft)= cio yi(t)+C20 V2(t) for all t in I. Therefore)Y has a form
represented in the set (5).

2.10 Definition. A basis pr afundamental set) of solutionsof Eq. (2) on an intervdlis a
pairyi, Y. oflinearly independent solutions df Eq. (2).

Remark.

) To solve the homogeneous equation (2) is to findsachof solutiony,,y. of Eq. (2).
Then, the general solution is gf=y;+C2 Vo.

(i) However, for most problems of the form (2), it st possible to write down a useful
expression for the solution. This is a major diffexe between first order and second
order linear equations.

Example. Solve y”-3y'+2y =0 (7)

To solve this equation, we remember from chaptéafd first-order linear differential

equation y'+ky=0 with constant coefficient k hasexponential function as a solution, y&e

This gives us the idea to try as a solution oftl§é)function

(8)

y_
Substituting (8) into (7) we obtain%8c+2) =0, this is equivalent to c=1 or c=2. We then
obtain the two following linearly independent saduss of (7): y= € and y= € Therefore,
the general solution of (7) is yez € +c.e™
2.11. Reduction of Order.

If a nontrivial solutiony; is known, then we can find the solutionliypearly independent with
y1 by the following procedure which is called the huet of reduction of order.

Puttingy,=u. y; and substituting it to Eq (2), we obtain
u” y1 +U'(2 yi'+p y1)=0.

—.[pdt
Setting U=u’, it follows that Uy;+U(2 y,'+p y1)=0, this yields U—ey2 . Returning to u we
1
e—.[ pdt
have thatu'= (ﬁ] =———. Therefore,
Y1 Y1
e—f pdt
Y, = ylj-—gdt (9)
Y1

Example: Solve ¢-1)y”-2ty’+2y=0 given a solution jzt.
To use the formula (9) we write the equation ingtendard form
y-2ty’/(t %-1)+2y/(£-1)=0.
I%dt
e t°-1
t2

Applying (9) we have v, =tj dt =t>+1. Therefore, the general solution of given

equation is/=cyt+c,(t*+1).

47



Lecture on Infinite Series and Differential Equations

3. Homogeneous Equations with Constant Coefficients

In this section we consider the homogeneous equatigth constant coefficients of the form

y+ay +by=0 (10)
which has arbitrary (real) constant coefficientas&d on our experience with Eq. (7), let us
also seek exponential solutions of Eq. (10). Thessuppose thay = €¢, wherek is a
parameter to be determined. Then it follows that ke andy” = Ke, By substituting these
expressions foy, y’, andy” in Eq. (10), we obtain
(¥ + ak+ b)e" = O or, sincedis never zerp

k+ak+b=0. (11)

Equation (11) is called theharacteristic equation for the differential equation (10). Its
significance lies in the fact thatkfis a root of the polynomial equation (11), then €%is a
solution of the differential equation (10). Sincq.HK11) is a quadratic equation with real
coefficients, it has two roots, which may be read different, real but repeated, or complex
conjugates. We now consider each case in detail.

1% Case: Distinct real roots.
Assuming that the roots of the characteristic @aquafll) are real and different, let them be
denoted byk; and ky, where ki # ko. Thenyy(t) = € and y,(t) = €' are two linearly
dependent solutions of Eq. (11). Therefore, by Té®o2.9 in the previous section, we obtain
the general solution of Eq. (11):
y=cy e + ;e (12)
Example. Find the general solution of
y +5y +6y=0. (13)
The characteristic equation is
k*+5k+6 =0.
It has two distinct real rootk; = -2 andk, = —3; then the general solution of Eq. (13) is
y=ce 2 +ce .

2" Case: Double real root.

We consider the second possibility, namely, thatttho real rootk; andk, are equal. This
case occurs when the discriminakta® — 4b is zero, and it follows from the quadratic
formula that

k =k = -a/2. (14)
The difficulty is immediately apparent; both rogteld the same solution.
y(t) =l = @2 (15)

of the differential equation (11). We now find aceed solutiony; which is linearly
independent tg,. Using formula (9) we obtain that

at —.[adt at

A _at

yZ:eZJ' e dt =te?

Therefore, the general solution of Eq. (11) in ttase is

at

y=(c1+cCat) e_E.
Example. Solve the differential equatiop”’ + 4y’ + 4y = Q.

The characteristic equation k8 + 4k + 4 = 0, which has a double real rdgt= k,= -2.
Therefore, the general solution of given differahéiquation ig=(ci+cat) € 2.
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3 Case: Complex conjugate roots.
Suppose now that® — 4b is negative. Then the roots of characteristic B). &re conjugate
complex numbers; we denote themKkay 4 + ix, ko =4 —iu, whered andyu are real ang 0.
We obtain two linearly independent gco_mplex-valsml)Jtions of Eq. (2) as

1(tY: e/1+ |/,1)t; Yz(t) — e(/l— I/,z)t. (16)

To find real-value solutions we will recall the EuFormula:
e = cost +i sint for every real number

Using this formula folYy(t), Ya(t) we obtain
% [Ya(t) + Ya(t)] = %(ef“ (cosut + i sinut) + €' (cogut — i sinut))= e''cosut

%[Yl(t) YD) =%( &t (Cosut + i sinut) - € (cosut — i sinut))= &'sinut.

Since, a linear combination of two solutions of.[Z}jis again a solution of Eq. (2), we obtain
the two following linearly independent (real-valssjutions of Eq. (2):
y,1= €"'cogut andy,= €'sinut.
Therefore, the general solution of Eq. (2) is
y= ci€''cosut + ce'sinut.
Example 1.Find the general solution of
y+y +y=0. (17)

The characteristic equationké+k + 1 = Q and its roots ark= —= +i

N | &

N

Thusi =-12 andu = J3/2, so the general solution of Eq. (17) is

y =16 2 cog/31/2) + e 2 sin(\/31/2).
Example 2.Find the general solution gf+ 9y = 0.
The characteristic equation k& + 9 = 0 with the root& = +3i ; thusA = 0 andu = 3. The
general solution is/ = ¢;c0s3 + ¢,Sind.
Note that if the real part of the roots is zerojrathis example, then there is no exponential
factor in the solution.

4. Modelling: Free Oscillation (Mass-spring problem)

We will study the motion of a mass on a spring @tad because an understanding of the
behaviour of this simple system is the first steghie investigation of more complex vibrating
systems. Further, the principles involved are comi@omany problems. Consider a mass
hanging on the end of a vertical spring of origilealgthl, as shown in Figure 4.1. The mass
causes an elongatidn of the spring in the downward (positive) directiorhere are two
forces acting at the point where the mass is atthdb the spring; see Figure 4.2. The
gravitational force, or weight of the mass, actaard and has magnitudeg whereg is
the acceleration due to gravity. There is alsoreefbs, due to the spring, that acts upward. If
we assume that the elongatibnof the spring is small, the spring force is vergary
proportional toL; this is known as Hooke’s law. Thus we witg= —kL, where the constant
of proportionalityk is called the spring constant, and the minus sgiue to the fact that the
spring force acts in the upward (negative) directio
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Fig 4.1 A spring—mass system.

F,- —kL

W= mg

Fig 4.2 Force diagram for a spring—mass system.

Since the mass is in equilibrium, the two forcelsubee each other, which means that
mg kL =0. (1)

For a given weightv = mg one can measuteand then use Eq. (2) to determineNote that
k has the units of force/length. In the correspondiggamic problem we are interested in
studying the motion of the mass when it is actedbgnan external force or is initially
displaced. Leu(t), measured positive downward, denote the displastwofethe mass from
its equilibrium position at time see Figure 4.1. Thar(t) is related to the forces acting on the
mass through Newton’s law of motion,

mu’ (t) = f (1), 2)
whereu” is the acceleration of the mass dmglthe net force acting on the mass. Observe that
bothu andf are functions of time. In determinifigwe consider the following cases.

4.1 Undamped Systemsin this case there are two separate forces that Ineusonsidered

1. The weightw = mgof the mass always acts downward.
2. The spring forceFs is assumed to be proportional to the total eloogdti + u of the
spring and always acts to restore the spring toatsral position. If. + u > 0, then the spring
is extended, and the spring force is directed ugwarthis case

Fs=—k(L + u). 3)
On the other hand, if + u < 0, then the spring is compressed a distahce (|, and the
spring force, which is now directed downward, isegi byFs = k|L + u|. However, when
L +u <0, it follows thatllL + u] = L + u), soFsis again given by Eqg. (3). Thus, regardless of
the position of the mass, the force exerted byspreng is always expressed by Eqg. (3).

Taking account of these forces, we can now reWwé@aiton’s law (2) as
mu’ (t) = mg+ Fs(t= mg— k[L + u(t)]
Sincemg- kL = 0 by Eq. (1), it follows that the equation of moot of the mass is
mu’ (t) + ku(t) =0, 4)
where the constantas andk are positive. Note that Eg. (4) has the same farfaa (1).
It is important to understand that Eq. (4) is omhyapproximate equation for the displacement
u(t). In particular, Eq. (3) should be viewed as agpnations for the spring force. In our
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derivation we have also neglected the mass ofghagsin comparison with the mass of the
attached body.

The general solution of Eq. (4) is
u = Acoswgt + Bsinmot, (5)
where & = k/m.

The arbitrary constan&s andB can be determined if initial conditions of the form
u(0) = uo, U(0) = V. (6)
are given.

In discussing the solution of Eq. (4) it is cometito rewrite Eq. (5) in the form
u=Rcoqwot - 9), (7

R=+A? +B? , tano = B/A.
In calculatingo care must be taken to choose the correct quadrasmtcan be done by
checking the signs of c@sand sirv in Egs. (5).
The graph of Eq. (7), or the equivalent Eq. (5),ddypical set of initial conditions is shown
in Figure 4.3. The graph is a displaced cosine wiinat describes a periodic, or simple
harmonic, motion of the mass. Tperiod of the motion is

T :2_7T = Zﬂ(mjz (8)
w, Kk

. m . . L .
The circular frequencwO = \/% measured in radians per unit time, is called ribtural

where

frequency of the vibration. The maximum displacem&uf the mass from equilibrium is the
amplitude of the motion. The dimensionless paramétex called thephase or phase angle,
and measures the displacement of the wave fronoitsaal position corresponding éc= 0.

Note that the motion described by Eqg. (7) has asteort amplitude that does not diminish
with time. This reflects the fact that in the alseof damping there is no way for the system
to dissipate the energy imparted to it by the ahitlisplacement and velocity. Further, for a
given masgan and spring constari, the system always vibrates at the same frequegcy
regardless of the initial conditions. However, thi¢ial conditions do help to determine the
amplitude of the motion. Finally, observe from KE8) thatT increases am increases, SO
larger masses vibrate more slowly. On the othedh&ndecreases ak increases, which
means that stiffer springs cause the system tatabnore rapidly.

e

FIG. 4.3 Simple harmonic motion; u = R cos(wot — 0).
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4.2 Damped Systemdn this case, beside the two forcds The weightand2. The spring
force) as above, we have to consider one more forceigha
3. The damping or resistive force-4 always acts in the direction opposite to the dioecof
motion of the mass. This force may arise from s@va&yurces: resistance from the air or other
medium in which the mass moves, internal energgighgion due to the extension or
compression of the spring, friction between the sraasd the guides (if any) that constrain its
motion to one dimension, or a mechanical devicsl{dat) that imparts a resistive force to the
mass. In any case, we assume that the resistige ®iproportional to the speetiifd{ of the
mass; this is usually referred to as viscous dagigifrdu/dt >0, thenu is increasing, so the
mass is moving downward. Th&gis directed upward and is given by
(1) = — u'(t), (8)
wherey is a positive constant of proportionality knowntle damping constant. On the other
hand, if du/dt < 0O, thenu is decreasing, the mass is moving upward, Bynds directed
downward. In this cas&d =y |u'(t)]; sincey’ (t)] = -U'(t), it follows thatFq (t) is again given
by Eqg. (8). Thus, regardless of the direction oftioro of the mass, the damping force is
always expressed by Eqg. (8).
The damping force may be rather complicated and assumption that it is modelled
adequately by Eg. (8) may be open to question. Sdesbpots do behave as Eq. (8) states,
and if the other sources of dissipation are snitathay be possible to neglect them altogether,
or to adjust the damping constantto approximate them. An important benefit of the
assumption leading to Eq. (8) is that it leads tmear (rather than a nonlinear) differential
equation. In turn, this means that a thorough amalyf the system is straightforward, as we
will show in this section and the next.
Taking account of these forces, we can now rewé@eiton’s law as
mu’ (t) = mg+ Fg(t) + Fg (t) = mg— KL + u(t)] —» u'(t)
Sincemg- KL = 0, it follows that the equation of motion of thnass is
mu’ (t) +y u' (t) + ku(t)= 0, 9)
where the constants, y , andk are positive. Note that Eq. (9) has the same fafEaq (2).

We are especially interested in examining the efiéwariations in the damping coefficient
for given values of the maswm and spring constark. The roots of the corresponding
characteristic equation are

—p £y -4k o [ 4km’
Fi.la = ) V) F”:]— -1+ 'I—L:F .
- 2m 2m 1||.' ye

Depending on the sign of — 4km the solutioru has one of the following forms

pi—4km = 0, u= A" + B,
p—4km =0, u= (44 Bre™"/™,

- _ (dkm — p)*
po—dkm <0, u=e " "{dcosut + Beinpt), p= i .

2m (10)
Sincem, y , andk are positivey” — 4kmis always less thayf. Hence, ify* — 4km> 0, then the
values ofr; andr, given by above formulae anegative If y*> — 4m <0, then the values of
andr, are complex, but withegativereal part. Thus, in all cases, the solutioiends to zero
ast —oo; this occurs regardless of the values of the mayitconstantsA and B, that is,
regardless of the initial conditions. This confirmar intuitive expectation, namely, that
damping gradually dissipates the energy initialiyparted to the system, and consequently the
motion dies out with increasing time.
The most important case is the third one, whichumewhen the damping is small.
If we letA=Rcosd andB =Rsing in Eq. (10), then we obtain

u=Re""* coqut - 9).

The displacement lies between the curvas= +Re’"™ hence it resembles a cosine wave
whose amplitude decreasestascreases. A typical example is sketched in Figu85. The

52



Nguyen Thieu Huy

motion is called a damped oscillation, or a damybdation. The amplitude factd® depends
onm, y, k, and the initial conditions.

Although the motion is not periodic, the parameteletermines the frequency with which the
mass oscillates back and forth; consequeptlig, called thequasi frequency By comparing

w« with the frequency, of undamped motion, we find that
y 172

o (Akm — yIY2 2m 3 (1 _ y? ) ~1 p?

g JEm 4em  8km’
(11)

[

o R T2
r e s

Rcosd ===
b | | | |
& S+ 8+ 2 8+ 3w wr
T \_Rg_rezm

FIG. 4.4 Damped oscillation; u = Re ""?"cos(ut - 5).

The last approximation is valid whef/4km is small; we refer to this situation as “small
damping.” Thus, the effect of small damping is &muce slightly the frequency of the
oscillation. The quantityTd = 27/u is called thequasi period. It is the time between
successive maxima or successive minima of theiposif the mass, or between successive
passages of the mass through its equilibrium mwsitthile going in the same direction. The
relation betweeiy andT is given by

¢ =12

L_oy_(_ N o
T u (1 4k:n) - (1+Sﬂ'a:r_r)' (12)

where again the last approximation is valid wi@gkmis small. Thus, small damping
increases the quasi period.

Equations (11) and (12) reinforce the significantthe dimensionless ratjé/4km

It is not the magnitude of alone that determines whether damping is largemalls but the
magnitude ofy?> compared to im Wheny%4kmis small, then we can neglect the effect of
damping in calculating the quasi frequency and iqo@sod of the motion. On the other hand,
if we want to study the detailed motion of the miassall time, then we caneverneglect the
damping force, no matter how small.

5. Nonhomogeneous Equations: Method of Undetermined Coefficients

We now return to the nonhomogeneous equation

y'+ py+ alt)y=g(), (1)
wherep, g, andg are given (continuous) functions on the open irglrv The equation
y'+ p(t)y +qt)y=0, 2)

in whichg(t) = 0 andp andq are the same as in Eq. (1), is called the homogeneguation
corresponding to Eq. (1). The following two resulescribe the structure of solutions of the
nonhomogeneous equation (1) and provide a basofwtructing its general solution.

5.1. Theorem.If Y; andY; are two solutions of the nonhomogeneous equatiprii{en their
differenceY; — Y, is a solution of the corresponding homogeneouatemu(2). If, in addition,
y1 andy, are a fundamental set of solutions of Eq. (2the

Ya(t) = Ya(t) = €1 ya(t) + c2 ya(t), 3)
wherec; andc; are certain constants.
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Proof. To prove this result, note th¥t andY; satisfy the equations (1), this means that

Y, +p@) Y, +a®Yi=g® and, +p(t) Y, + q(t)Y:= g() (4)
Subtracting the second of these equations frorfitstewe have
(Y1~ Y2) +p(®)(Y1- Y2) +q(t)(Y1- Y2)= O. (5)

Equation (5) states that — Y: is a solution of Eq. (2). Finally, since all saduits of Eq. (2) can
be expressed as linear combinations of a fundamnsgitaf solutions by Theorem 2.9, it follows
that the solutiory; — Y, can be so written. Hence Eqg. (3) holds and thefpsocomplete.

5.2 Theorem. The general solution of the nonhomogeneous equétjocan be written in the
form

y=0(t) =cLyi(t) + 2 yo(t) +Y (1), (6)
wherey; andy, are a fundamental set of solutions of the cornedipg homogeneous equation
(2), c1 andc;, are arbitrary constants, afivdis some specific solution of the nonhomogeneous
equation (1).
The proof of Theorem 5.2 follows quickly from theepeding theorem. Note that Eqg. (3) holds if
we identifyY; with an arbitrary solutiopof EQ. (1) andy, with the specific solutiolY . From
Eq. (3) we thereby obtain

p(t) =Y ()= caya(t) + Cay(b), (7)

which is equivalent to Eq. (6). Singas an arbitrary solution of Eq. (1), the expresorthe
right side of Eq. (7) includes all solutions of KEf); thus it is the general solution of Eq. (1).

In somewhat different words, Theorem 5.2 statestthaolve the nonhomogeneous equation (1),
we must do three things:

1. Find the general solutiany;(t) + coy.(t) of the corresponding homogeneous equation. This
solution is frequently called the complementaryisoh and may be denoted fayt).

2. Find some single solutiovi(t) of the nonhomogeneous equation. Often this solusi@eferred
to as a particular solution.

3. Add together the functions found in the two prengdteps.

We have already discussed how to fig(), at least when the homogeneous equation (2) has
constant coefficients. Therefore, in the remairafehis section and in the next, we will focus
on finding a particular solutio¥ (t) of the nonhomogeneous equation (1). There are two
methods that we wish to discuss. They are knowthemethod of undetermined coefficients
and the method of variation of parameters, respagtiEach has some advantages and some
possible shortcomings.

5.3 Method of Undetermined Coefficients. The method of undetermined coefficients requires
that we make an initial assumption about the fofithe particular solutiory (t), but with the
coefficients left unspecified. We then substitite assumed expression into Eq. (1) and attempt
to determine the coefficients so as to satisfy duatation. Then we have found a solution of the
differential equation (1) and can use it for thetipalar solutionY (t). The main advantage of the
method of undetermined coefficients is that ittraightforward to execute once the assumption
is made as to the form &f (t). Its major limitation is that it is useful primbrifor equations for
which we can easily write down the correct fornited particular solution in advance. For this
reason, this method is usually used only for pnoislén which the homogeneous equation has
constant coefficients and the nonhomogeneous terestricted to a relatively small class of
functions. In particular, we consider only nonhomogous terms that consist of polynomials,
exponential functions, sinus, and cosines. Deghpisdimitation, the method of undetermined
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coefficients is useful for solving many problematthave important applications. Precisely, we
will consider the second-order linear differenggluations with constant coefficients:

y’' + ay+ by=g(t) 8)
and with the following forms of the nonhomogenetars g(t):

FORM 1: g(t)=€"Px(t), where R(t) is a polynomial of order n. For g(t) of thisifio we consider
the following cases:
Case I: The constamis not a root of the characteristic equatiénak+b = 0. In this case,
we choose Y= BQ,(t) with Q.(t) being a polynomial of degree n whose
coefficients are found by substituting Y to Eq). (8

Case Il: The constamtis a single root of the characteristic equatiérak+b = 0. In this
case, we choose Y=46,(t) with Q.(t) being a polynomial of degree n whose
coefficients are found by substituting Y to Eq). (8

Case Ill: The constantis the double root of the characteristic equatidrak+b = 0. In
this case, we choose YZefQ,(t) with Qu(t) being a polynomial of degree n
whose coefficients are found by substituting Etp (8).

EXAMPLES

1. Consider y’ +3y’ - 4y =t; (a=0; n=1) (9)
The corresponding homogeneous equatigfi+8y’ —4y =0 with the characteristic equation

K*+3k-4=0 = k=1 or -4.

Therefore, the general solution of the correspogptiomogeneous equation ig'¢c,e*. Since
a=0 is not a root of characteristic equatiove find a particular solution of Eq. (9) of therfo
Y=At+B; Substituting this form into (9) we obtaihét -4At+3A-4B=t. Identifying the
corresponding coefficients of t we have that A=-4ndl B=-3/16. This yields a particular

solution of Eq. (9) as Ys%t _1_36 and hence, the general solution of (9):

a4 1 3
= e+ e -t -
Y= aere 4 16
2. Consider y' -y = é(t+l); (a=1; n=1) (10)

The corresponding homogeneous equatiofi isy’=0 having the general solution age-ce’".
Sincea=1 is a single root of the characteristic equatiwa find a particular solution of Eq. (10)
of the form Y=t§At+B); Substituting this form into (10) we obtaimat & (2At+B+2A)=€(t+1)

= A=1/2 and B=0. Therefore, the general solutiofl® is

1+ 1
y= cle‘+czet+§t2 e

3. Consider y’-2y'+y =¢€; (a=1; n=0) (11)
The corresponding homogeneous equatiofi is2y’+y=0 having the general solution as
(ci+cot)€. Sincea=1 is the double root of the characteristic equatiea find a particular
solution of Eq. (11) of the form Y=A¢"; Substituting this form into (11) we obtain that B2 .

Therefore, the general solution of (11) is yi—-+(c§t)et+%t2et

FORM 2: g(t)=Rn(t)coPt + Q,(t)sinBt, where R(t) and Q(t) are known polynomials of order
m and n, respectively. For g(t) of this form we sioler following cases:
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Case |: The constaftis not a root of the characteristic equatidtak+b = 0. In this
case, we choose Y=,@®cof3t+S(t)sinBt with R(t) and Jt) being polynomials of
degree’ = max{m, n} whose coefficients are found by sulsiitg Y to Eq. (8).

Case Il: The constafitis a root of the characteristic equatidrdk+b = 0. In this case,
we choose Y= t(R)coPt+S(t)sinBt) with R(t) and Jt) being polynomials of
degree’ whose coefficients are found by substituting Etp (8).

EXAMPLE
Consider
y’'+4y=3cos g £=2,7=0) (12)
Firstly, solve the homogeneous equation
y'+4y=0 (13)

that corresponds to Eq. (12). The characterisfimgonk®+4=0 has two complex conjugate

rootk = £2i. Therefore, the general solution of Eqg. (13):0s 2 + ¢,sin 2.

Since the nonhomogeneous term is 3 a¢parf 2i is a root of the characteristic equatioa, w

will find a particular of the forn¥ (t)= At cos 2 + Bt sin 2. Then, upon calculating’(t) and

Y”(t), substituting them into Eq. (12), and collectiagits, we find that
-4Asin2+4Bcos2=3cos 2

ThereforeA =0 andB = ; so a particular solution of Eq. (20)¥g(t) = gt sin 2. Hence,

The general solution of (12) is y(tgzcos 2 + ¢,Sin 2t+%t sin &.

FORM 3: g(t) = é"[Pn(t)coPt+Qn(t)sinBt]; In this case, we use the substitution {z evith that
the equation (8) becomes
e [27+(2 a+a)z'+@*+an+b)z] = E'[Pm(t)coPt+Qn(t)sinBt]
dividing by &" on both sides we obtain that
z"+(2a+a)z'+@*+ao+b)z = Ry(t)coPt+Qu(t)sinBt (14)
This equation has the form 2 and hence can be &dbrez. Returning to y by using the above
formula of substitution we obtain the solution 8f.(

Note on the case of Form 3An alternative way to solve (8) in this case idital a particular
solution of (8) of the form Y(t)= YR/(t)coPt+S(t)sinBt] if o + iB is not a root of the
characteristic equatiorfkak+b = 0, or of the form Y(t)= ¥R (t)coBt+S(t)sinBt] if o + if is a

root of the characteristic equation.

EXAMPLE
Solve the equation y’— 2y +5y = 3e'cos 2. (15)

Substituting y= & to (15) we obtain: z"+4z=3cog.2
This equation is precisely the Eq. (12) above althe general solution as

z(t)=c,cos 2 + csin 2+gt sin .
Then, the general solution of (15) is yz=d(cicos 2 + &sin 2+%t sin 2).
5.4 Superposition of solutions

Now suppose thaj(t) is the sum of two termgj(t) = gi(t) + go(t), and suppose that andY; are
solutions of the equations
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y'+ ay+ by=gi(t) (16)

and

y' + ay + by=ga(b), (17)
respectively. TheiY; + Y, is a solution of the equation

y'+ ay+ by=g(t). (18)

To prove this statement, substitit€t) + Y(t) for y in Eqg. (18) and make use of Egs. (16) and
(17). A similar conclusion holds g{(t) is the sum of any finite number of terms.

The practical significance of this result is that &n equation whose nonhomogeneous function
g(t) can be expressed as a sum, one can consider isstea@l simpler equations and then add
the results together. The following example isllustration of this procedure.

EXAMPLE
Find a particular solution of
y’' — 3y — 4y = 3™ + 2 sirt - 8¢'cos 2. (19)
By splitting up the right side of Eq. (19), we dbt¢he three equations
y'=3y- 4y =3¢,

y’ =3y — 4y =2 sir,
and
y’ - 3y — 4y = -8 cos 2.
Solutions of these three equations are-¥Y2, Y,=(3 cost - 5 sin t)/17, and
Y3=€(10 cos2t+ 2 sin 2t)/13, respectively.
Therefore a particular solution of Eq. (19) is theim, namely,

L 1 2 3 o 10 r 2 i -
Fift)= —5&” +mcosf — rsinf + q7e cos2f + e sin 2

6. Variation of Parameters

In this section we describe another method of figd particular solution of a nonhomogeneous
equation. This method, known aariation of parameters, is due to Lagrange and complements
the method of undetermined coefficients rather iidle main advantage of variation of
parameters is that it isgeneral methodn principle at least, it can be applied to aguation,

and it requires no detailed assumptions aboutdire bf the solution. In fact, later in this

section we use this method to derive a formulafparticular solution of an arbitrary second
order linear nonhomogeneous differential equati@mthe other hand, the method of variation
of parameters eventually requires that we evalcatiin integrals involving the
nonhomogeneous term in the differential equatiod, this may present difficulties.

Again we consider the nonhomogeneous equation

y"+p(t)y+a(t)y=g(t) (20)
and the corresponding homogeneous equation
y"+p(t)y'+q(t)y=O0. (21)
As a starting point, we assume that we know theggisolution
y(t) = c1 ya(t) + ¢z yo(t) (22)

of the corresponding homogeneous equation (21).
This is a major assumption because so far we Hawsrshow to solve Eq. (21) only if it has

constant coefficients. If Eq. (21) has coefficiethiat depend oty then usually the methods
described in previous sections must be used torojpti.
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The crucial idea is to replace the constan@ndc, in Eq. (22) by functions;(t) andux(t),
respectively; this gives
y = ui(t)ya(t) + ux(t)y=(b). (23)

Then we try to determing(t) anduy(t) so that the expression in Eq. (23) is a solution
of the nonhomogeneous equation (20) .
Thus we differentiate Eq. (23), obtaining

Y = U (Oya(t) + ua(t)ys () + w2 ()ya(t) + uz(t)y2' (t). (24)
To determinau; andu, we need to substitute fgrfrom Eq. (23) in Eq. (20). However, even
without carrying out this substitution, we can eipiate that the result will be a single equation
involving some combination af;, u,, and their first two derivatives.
Since there is only one equation and two unknowmagtians, we can expect that there are many
possible choices af; andu, that will meet our needs. Alternatively, we maydixe to impose a
second condition of our own choosing, thereby olgi two equations for the two unknown
functionsu; andu,. We will soon show (following Lagrange) that itgessible to choose this
second condition in a way that makes the computatiarkedly more efficient.

We now set the terms involving’ (t) andu,’ (t) in Eq. (24) equal to zero; that is, we require that

ur’ (H)ya(t) + w2’ (B)y2(t) = 0. (25)
Then, we have
y'= W®yr' (1) + u(t)y2' (1). (26)
Further, by differentiating again, we obtain
y' = ud Oy (1) +u®ya” (1) + u’ (©)y2' (1) + u(t)y2” (). (27)

Now we substitute foy, y', andy” in Eq. (20) from Egs. (23), (26), and (27),
respectively. After rearranging the terms in thgufeng equation we find that
ur(®)[ys” (1) + pO)ya(t) + a®y:®]+ w(t)y2” (1) + pt)y2’ (1) + a®)ya(t)] +
+ Uy’ (Oyr (1) + w2’ (y2 (1) = 9(O). (28)
Each of the expressions in square brackets inZ8().i¢ zero because bothandy,
are solutions of the homogeneous equation (21)eftve Eq. (28) reduces to
ur’ @ya’ (1) + w2’ (y2' (1) = g(V). (29)
Equations (25) and (29) form a system of two liredgebraic equations for the derivative¥t)

anduy’ (t) of the unknown functions. The coefficient matri{i%1 yz} whose determinant is
i ¥z
Wronskian Wy1,y»)#0 sincey,, Y. are linearly independent. By solving the systeBb),(R29) we
obtain
e - Y2(09() L va(Bg(t)
ui'(t)= -t Wy () = == (30)
W(Y:. Y,) W(Y1, Y2)
By integrating Egs. (30) we find the desired fuotiu,(t) anduy(t), namely,
_ _[Y(D9(t) AU
up(t) = — | ==———=dt; uy(t) =| =—=——"=dt. (31)
W(Y1 Y2) W(Y1,Y2)
Therefore, we obtain a particular solution of (38)en by formula (23) withu;(t) andus(t)
being determined by (31).

We state the result as a theorem.
Theorem 6.1.If the functionsp, g, andg are continuous on an open interdaland if the
functionsy; andy, are linearly independent solutions of the homogeasequation (21)
corresponding to the nonhomogeneous equation (20),

y’ + p(t)y + at)y=g(),
then a particular solution of Eq. (20) is
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and the general solution is
y=cya(t) + caya(t) + Y (O). (33)

By examining the expression (32) and reviewingpitaeess by which we derived it, we can see
that there may be two major difficulties in usihg tmethod of variation of parameters. As we
have mentioned earlier, one is the determination(ofandy,(t), a fundamental set of solutions
of the homogeneous equation (21), when the coeffisiin that equation are not constants. The
other possible difficulty is in the evaluation bktintegrals appearing in Eq. (32). This depends
entirely on the nature of the functiops y,, andg. In using Eqg. (32), be sure that the differential
equation is exactly in the form (20); otherwises ttonhomogeneous tem) will not be

correctly identified.

A major advantage of the method of variation ofapaeters is that Eq. (32) provides an
expression for the particular soluti®n(t) in terms of an arbitrary forcing functigtt). This
expression is a good starting point if you wislintgestigate the effect of variations in the
forcing function, or if you wish to analyze the pesse of a system to a number of different
forcing functions.

EXAMPLE

Find a particular solution of
y’'+4y= 3 csd. (33)
Observe that this problem does not fall within skepe of the method of undetermined
coefficients because the nonhomogeneous tgths 3 csct=1/sin tinvolves a quotient (rather
than a sum or a product) of samd cot The homogeneous equation corresponding to EJ. (33
is
y'+4y=0,

having the general solution as

y(t)=c1 cos 2 + ¢, sin A.
Replacing the constants andc; in this equation by functions(t) anduy(t), respectively, and
then to determine these functions so that the tieguéxpression

y =us(t) cos 2 + uy(t) sin 2 4)3
is a solution of the nonhomogeneous equation.
With the additional requirement

u;’(t) cos 2+ u)’(t) sin2=0, (35)
and substituting y(t) from (34) into (33) we obtématu; andu, must satisfy
—2uy’ (t) sin 2 + 2u,’ (t) cos 2 = 3 csd. (36)

Solving the system of linear equations for the ti&nown quantities;’ (t) andu,’ (t) we find
e (t) = —3 csd sin 2 = -3 cod.

u2'(t) =g csct — 3 sint.

Having obtained;’ (t) andu,’(t), the next step is to integrate so as to ohigi) andu,(t). The
result is

up(t) = -3 sin+cl
and

uy(t) = gln | csct — cott| + 3 cog + c2.
Finally, on substituting these expressions in Bg),(we obtain the general solution of (33) as

y=-3sirt + gln | csct — cott| sin 2 + ¢l cos 2+ ¢2 sin 2.
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7. Modelling: Forced Oscillation

We have already known that the equation governednchanical system dfee oscillation
(Mass-spring problem) is
mu’+ y u + ku=0,

where the term mu” represents the force of ineptid-the damping force, and¢u-spring
force.
Now, forced motions are obtained if we let an enakforce g(t) act on the body. To get the
model, we simply have to add our new force g(these forces to obtain

mu’+ y u + ku = g(t).
Then, g(t) is called the input or driving forcedahe corresponding solutions are called an
output or a response of the system to the drivemgef.

Of particular interest are periodic input, say*fh coswt with @ > 0. Then the equation of
motion is
mu’+ y U + ku=Fq coswt. (1)

Forced Vibrations without Damping: First suppose that there is no dampiyefyj; then Eq. (1)
reduces to

mu’+ ku=Fq cosmt. (2)
If o=+ k/m # & then the general solution of Eq. (2) is
, F,
U = ¢; coswyt + ¢, simaw,yt + 1—0,, cos wi.

m(wy — w”) 3)
The constants; andc;, are determined by the initial conditions. The h&sg motion is, in
general, the sum of two periodic motions of difféarequencies ¢ and ») and

amplitudes. There are two particularly interestiages.

Beats.Suppose that the mass is initially at rest, souf@t= 0 andu” (0) = 0. Then
it turns out that the constardsandc; in Eq. (3) are given by

]

Q= =0,
Moy — ™ -
- (4)
and the solution of Eq. (2) is
Fy
U= ——=——(coswl —cosw,f).
m (g — @) i
° (5)
This is the sum of two periodic functions of di#et periods but the same amplitude.
Making use of the trigonometric identities for (s B) with A = (wo + »)t/2 and
B = (wo — w)t/2, we can write EQ. (5) in the form
[ 2F, . wg — u:}r} . (wy + )t
U= 2 N 111 ~ s11 .
I ma — i i
(6)

If |wo — w| is small, themo + @ is much greater than{ — w|. Consequently, sfa, + w)t/2 is
a rapidly oscillating function compared to @i — w)t/2. Thus the motion is a rapid
oscillation with frequencywo + ®)/2, but with a slowly varying sinusoidal amplitude

2F, o lwy — @)t

- 5 S ———
mwy — @) 2
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Fig. 6.1:A beat; solution ofi” + u= 0.5 cos08t,u@) = 0,u ) = 0;

u= 2.77778 sin 01t sin Q 9t.

This type of motion, possessing a periodic varrabbamplitude, exhibits what is called
abeat Such a phenomenon occurs in acoustics when tmnguorks of nearly equal
frequency are sounded simultaneously. In this tas@eriodic variation of amplitude is quite
apparent to the unaided ear. In electronics thiatan of the amplitude with time is called
amplitude modulation. The graph oti as given by Eq. (6) in a typical case is showrhe t
Figure 6.1.

ResonanceAs a second example, consider the easewo; that is, the frequency of the
forcing function is the same as the natural fregyeaf the system. Then the
nonhomogeneous terky coswt is a solution of the homogeneous equation. Indage the
solution of Eq. (2) is

F.

1 = ¢ coswyt + ¢, sinwyt + = f sineyt.

2may, )
Because of the tertrsin wot, the solution (7) predicts that the motion wilcbene

unbounded as—w regardless of the valuesdif andc2; see Figure 3.9.2 for a

typical example. Of course, in reality unboundeditagions do not occur. As soon

asu becomes large, the mathematical model on whici{dgs based is no longer

valid, since the assumption that the spring forgeethds linearly on the displacement
requires that be small. If damping is included in the model, pinedicted motion

remains bounded; however, the response to the fapationF, coswt may be quite

large if the damping is small argis close tavo. This phenomenon is known as
resonance

Resonance can be either good or bad dependingarirttumstances. It must be taken very
seriously in the design of structures, such aslimgk or bridges, where it can produce
instabilities possibly leading to the catastrodhiture of the structure. For example, soldiers
traditionally break step when crossing a bridgeltminate theperiodicforce of their

marching that could resonate with a natural fregyei the bridge. Another example
occurred in the design of the high-pressure fuddpump for the space shuttle main engine.
The turbopump was unstable and could not be omkoater 20,000 rpm as compared to the
design speed of 39,000 rpm. This difficulty lecatshutdown of the space shuttle program for
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6 months at an estimated cost%660,000/dayOn the other hand, resonance can be put to good
use in the design of instruments, such as seismpbgyintended to detect weak periodic
incoming signals.

i

10 T

bt \
= u=-025¢ =

-0 90

Forced Vibrations with Damping. The motion of the spring—mass system with dampirag)(
and the forcing functioRO coswt can be determined in a straightforward mannerpatjh
the computations are rather lengthy. The solutidamp (1) is

u=c 1 + e, + Reos(wt —8), 1y #1, ®)

where

F, m (e —cu:} . 0,
Rz—ﬂ. cnaé‘:tﬂ—. 31115=}Jt~
A A A 9)

and

A= ,lr,-"lﬂ'.lz{wg — m]]I2 + ‘,Vzmz, (10)

In Eq. (8), r; andr; are the roots of the characteristic equation aatatwith Eq. (1); they
may be either real and negative or complex conggyaith negative real part. In either case,

both exgrit) and exjfr,t) approach zero ds—«. Hence, ag —w,

] Fy
u— Ut) = — = cos{wt — d).

T 2.2 T 9
V m-(wy —w™)” + ¥y w”

(11)
For this reasonc(t) = c;exp(nt) + c,exp(kt) is called theéransient solution; U(t), which
represents a steady oscillation with the same é&equas the external force, is called the
steady-state solutioror theforced response The transient solution enables us to satisfy
what ever initial conditions are imposed; with e&sing time the energy put into

the system by the initial displacement and velosityissipated through the damping
force, and the motion then becomes the respontbe @ystem to the external force.
Without damping, the effect of the initial condit®would persist for all time.

It is interesting to investigate how the amplitiRief the steady-state oscillation

depends on the frequenaeyof the external force. For low-frequency excitafitmat is,

asw — 0, it follows from Egs. (9) and (10) thRt— Fg/k. At the other extreme, for

very high-frequency excitation, Egs. (9) and (I0ply thatR — 0 asw—x. At an
intermediate value ab the amplitude may have a maximum. To find this mmaxn

point, we can differentiat® with respect ta» and set the result equal to zero. In this
way we find that the maximum amplitude occurs when wmax, Where
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2 2

2 3 ¥ 2 1 ¥
Wy = Wy — ~ = -_ .

A 2m* - 2km

' ' (12)
Note thatwmax< wo and thawmax is close tawg Wheny is small. The maximum
value ofRis
FC' .~ 'F;:I ¥
Rmax = - = 1+ sk |
]»‘{tll:l 2 1 — '[:If_;_-'-_-'l_nlk} ymﬂ . oFH . (13)

where the last expression is an approximationrualky . If y/2km > 1, thenwmax as given
by Eq. (12) is pure imaginary; in this case the mmanxn value ofR occurs forw = 0 andRis

a monotone decreasing functionaafFor smally it follows from Eq. (13) thaRma= Fo/ywo.
Thus, for smaly, the maximum response is much larger than theiardpF, of the external
force, and the smaller the valueyqfthe larger the ratiBna/Fo. Figure 6.3 contains some
representative graphs Bf/Fo versusw/m, for several values of.

The phase angl&also depends in an interesting wayamarForw near zero, it follows

from Egs. (9) and (10) that c6=1 and sin =0. Thusd =0, and the response is nearly in
phase with the excitation, meaning that they risfall together, and in particular, assume
their respective maxima nearly together and trempective minima nearly together. kor
wo, We find that co® = 0 and sini = 1, soo = /2. In this case the response lags behind the
excitation byr/2; that is, the peaks of the response oaf2itater than the peaks of the

excitation, and similarly for the valleys. Finalfpr w very large, we have cé=-1 and

sind=0. Thusd =, so that the response is nearly out of phasethtexcitation; this

means that the response is minimum when the excitet maximum, and vice versa.
RKIF,

3_

ra
I

L |
i 2 [olon

FIGURE 6.3: Forced vibration with damping: amplitude of steatigte response versus
frequency of driving force;
I'= szl.-"mzmé.
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i
Solution of Forcing function 3 cos 2t
'+ 012500 + u =3 cos 2¢
o0y = 2, 1/{0) =0
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FIGURE 6.4 A forced vibration with damping; solution af+ 0.1250" + u = 3 cos2,
u@)=2,u(0)=0.

In Figure 6.4 we show the graph of the solutiothefinitial value problem

u’+0.1250 +u=3cos? uQ)=2 u(0)=0.
The graph of the forcing function is also showndomparison. Observe that the initial
transient motion decays aBcreases, that the amplitude of the steady foresponse is
approximately 1, and that the phase difference &éetvthe excitation and response is
approximatelyr.
More precisely, we find that = J145/4 = 3.0104, s@R = Fy/A = 0.9965. Furthermore,

coso = —3A = -0.9965 and si = 1/4A = 0.08305, so that =3.0585. Thus the calculated
values ofR and¢ are close to the values estimated from the graph.

8. Power Series Solutions

8.1. Definition: The function f(x) is called real analytic at a pota if it coincides with its
0 (n)
Taylor’s series of some neighbourhoog-B X+ R) of x, i.e., f(x) = fﬂ#(x -X,)" for
n=0 .
all x 0 (xo-R, X%+ R).
The positive number R normally coincides with thdius of convergence of the Taylor's
series.

Examples:€", sinx, cosx are real analytic functions at any poing (XR.

The following theorem connects the real analytiotgoefficients of second order
differential equations with their solutions

8.2. Theorem:Consider equation

h(O)y"+p()y'+a(t)y=r(t) (8.1)
If h(t), p(t), q(t), and r(t) are analytic at gxvith radius convergence R>0, then every
solutions of (8.1) is also analytic atg=ind can be represented by a power series in paiers
(t-to) with the same radius of convergence R.
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Using Theorem 8.2 we have the following algorittmfibd power series solutions of
Equation (8.1):

Step 1: Represent h(t), p(t), q(t) and r(t) by powereein powers of t (or of (kX if
solutions in powers of (gtare wanted). Often, h(t), p(t), q(t), r(t) ardypmmials, then
nothing needs to be done in this step.

Step 2: Write
y=Y at" (ory=> a,(t-t,)"), (8.2)
m=0 m=0

then compute y’ and y”.

Step 3: Substitute y, y’ and y” obtained from Step 2 ifi&1). Then, collect the like powers
of t and equate the sum of the coefficients of eaurring power of t to zero, starting from
the constant terms, then the terms containingetteétms containind...etc. This gives the
relations from which we can determine the unknowgfiicients in (8.2) successively.

Example: Consider (Apt’-2ty’+2y=0. (8.4)
In this example, h(t)= (13, p(t)=-2t, q(t)=2, r(t)=0 are already polynomialge now write

y—Zamtm then compute y’ Zmamtm ' andy’= Zm(m Da t™2.
Next, we substitute y, y', y”’ |nto Equation (8. obtaln

(1-9) i m(m-1)a,t™> -ZtZ”: ma,t™* +2§:amtm =0.
This is equivalent to " "~ "

i(n+2)(n+1)an+2t“ Zn(n Dat" - Zan]t”+ZZant“—

n=0 n=2
Collecting the like powers of t we have that:

2a+ a)+6at+ Y [(n+2)(n+Da,., +n(n-Da " = o.

Equating the coefficients of each occurring powfdrto zero, we obtain that

n(n-1a,

+2=0; &=0; Bp= —— 2
tp & Shi2 (n+2)(n+1)

for n>2. Therefore, by induction, we derive

a+1=0 and a= (( ):a;) for all k=1.

Hence, we obtain the general solution of (8.4) as

00

_ ) 3y .k .
= ——~ 9 t* for arbitrary gand a.
kZ k=D y aand a
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Problems

Consider the homogeneous equatipnt+ p(t)y + q(t)y=0. (2)
with the coefficients being continuous on the inéét.

1. Show that two solutions of (1) dnthat are zero at the same point cannot be linearly
independent oh

2. Show that two solutions of (1) érthat have maxima or minima at the same poitt in
cannot be linearly independent bn

3. Suppose thatyand y are two linearly independent solutions of (1)lo8how that
Zi=any1taoy, and z=a1y1+ay. (for some constantgg@form a basis of the solutions of (1)
if and only if the determinant of the coefficiesis not zero.

4. Show that the equatiofyt -4ty’ + 6y=0 hasy;=t* and y=t* as a basis of the solutions for
all t. Show that W £)=0 at t=0. Does this contradicts with Theorem2.7

Reduction of order: In each of Problems 5 through 9 show that thergfuaction y is a
solution of the given equation. Using the methodediuction of the order, find,ysuch that
y1, > form a basisCaution! First write the equation in the standard formatiywant to use
the formula (9) in Section 2.11.

5. (t+1)%y"- 2(t+1)y’ + 2y=0,y; =t +1.

6. t-1)y’- 2ty + y=0,y; = €.

7. t-1)%y"- 4(1-t)y + 2y=0, y; = 1/(1-t)

8.ty + ty + (tz-%)y:O, yi=t Y%cos t.
9.ty"+ 2y +ty=0,y;=t 'sin t.

In each of Problems 10 through 16 find the gersshltion of the given differential equation.

10. ¥4+2)=3y=0 1, ¥ 4+3"+2y=0
12. 6" —y' —y=0 13, 2" =3y'+y=0
14 . .'t"-" + .“_r.]-'r =0 15 . -1.1"" — 9_‘]‘ =0

16, ¥—=9'4+9%=0

In each of Problems 17 through 24 find the solutbthe given initial value problem. Sketch
the graph of the solution and describe its behaagbincreases.
7, y"+y' =2y =0, yihi=1, »O =1

18 "|.'” -+ —1_‘]'r -+ 31 =0 :'.'i'D] =2 .‘.'.E*:}]l =1
19, 6" =5"+y=0, v =4, »©0)=0
20, ¥ +3'=0, y0)=-2, y©0)=3

21, ¥ +35'+3y=0, ¥(0)=1, y(@©0)=0
22, 29"+y' -4y =0, yi)=0, »(0) =1
23, Y +8 =9 =0, vih=1, y(1)=0
24 4y" —y=0, y=)=1 y(E)=-1
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25. Find a differential equation whose general solution is y = ¢, e + 513'3"

26  Find a differential equation whose general solufion is y = ¢, e 4o

27 Find the solution of the initial value problem
Vi-y=0, y0=3 »yoO=-%

Plot the solution for 0 < ¢ < 2 and determine its minimum value.
28. Fmnd the solntion of the inttial value problem

2y =3y +y=0, ¥0)=2, »y(0)=

T —

Then determune the maximum value of the solution and also find the pomt where the
solution 1s zero.

29. Solve the initial value problem y" — ¥ =2y =0, ¥0) =a. »'(0) =2. Thenfindw so
that the solution approaches zero as ¢t — co.

30. Solve the mitial value problem 4y — y =0, y(0)=2, »'(0) = B. Thenfind § so that
the solution approaches zero as t — o<.

In each of Problems 31 through 34 find the Wronskihtwo solutions of the given
differential equation without solving the equatio

31—t 2y + 2y =0 32, (cast)y” + (sdat)y” —fy =0

33 x40y + (" =1 )y=0,  Beszel'sequation

34 (1-xp" =y’ +aiw+1)y=0  Legendre’s equation

In each of Problems 35 through 44 find the gensyhltion of the given differential equation.

329 - +y=10 40, y' =+ =0
36 ¥V +0 =8 =10 41, v+ '+ =0
37V 46 +13y =0 42 4" 49y =0

38 V4 +128y=0 43 0" 49y —4y =0
39 7 44125y =0 44, V' 4+ 4 +625y=10

In each of Problems 45 through 47 find the soludbthe given initial value problem. Sketch
the graph of the solution and describe its beh&dwaioincreasing.

45 ¥ +4y=0, w0i=0 yil=1
46 Y+ +3r=0 ¥ =1 yilh=0
A0y =0'+3y=0  wix/2)=0, Vix/d=1

48. Consider the initial value problema”3- u + 2u=0, u0) =2, u (0) = 0.
(a) Find the solutiom(t) of this problem.
(b) Find the first time at whiclu(t)] = 10.

49. Consider the initial value problera’s+ 2u + 7u=0, u@©) =2, U (0) = 1
(a) Find the solutiom(t) of this problem.
(b) Find the smallest such thaty(t)] < 0.1 for allt > T.

50. Euler Equations. An equation of the form
ty" + aty + fy=0,t>0,
whereq andp are real constants, is called an Euler equatioowShat the substitution
x = Int transforms an Euler equation into an equation wathstant coefficients. Then, using
this substitution to solve the following equations
a) Py’ -3ty +4y=0,t>0. bY?y” + 2ty'+ 0.25y = 0, t > 0.
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In each of Problems 51 through 60 find the gensshltion of the given differential equation.

51 v =4 y=10 6. W+ +y=10
S2. 4y —dy' =3y =10 5T 4+ 1y 0 =10
53 3" -2 +10y =0 58, )" =6 +9y=10
54 4"+ 17Y +4v =0 59 16"+ 24y +9%v =0
55 25" -y +4v =10 60 '+ +y=10

In each of Problems 61 through 64 solve the giwngral value problem. Sketch the graph of
the solution and describe its behavior for incnegsi

51 E' T—1+d =0, y0=2I yi0=-1
g2, V-0 +0=0  yly=0 Y)=2

63. 9,1-”+r5;-“+32,r:c} ridy==1, y=2
od. Vi +4y +4y =1, ‘.I: =2, yi-l)=1

65. If a, b, andc are positive constants, show that all solutionayf+ by + cy = 0 approach
zero ag —oo.

66. (a) Ifa > 0 andc > 0, butb = 0, show that the result of Problem 65 is no lorgee,
but that all solutions are boundedtaso.

(b) If a > 0 andb > 0, butc = 0, show that the result of Problem 65 is no longee,
but that all solutions approach a constant thaeddg on the initial conditions &s-.
Determine this constant for the initial conditiorf8) = yo,y (0) = ya.

In each of Problems 67 through 78 find the genswhltion of the given differential equation.

67 ¢ =2y —3'.'—3.-; 74, ¥ 42+ 3y=1sindt
68y —'-'1 —3'.——315 75 ¥4+ =+ 4sinde
69 +91—*-g-"f+e5 76 4+ 4y =2

70. 71”+*} -|-‘|_.*-|-3‘-:Jnf ‘ 77. 1"+"|_35u_r+rr:asﬁr
7w twju=coset, @ &G 78 -I--:u:r_tam[,.r

72, ¢ 4y +dy = Quight Hine sinht = (&' —a7")/2
73. ¥ —v'—=2y=cosh2t  Hint:coshf =(e' +&7)/2

In each of Problems 74 through 80:
(a) Determine a suitable form f¥\(t) if the method of undetermined coefficients is to be

used.
(b) Find a particular solution of the given equatio

4 . y'+y=11+smi)
75 . v =5y 46y = feost 427 (3t 4 4)zint

76 Y+ =3¢+ 20 cos 4 de7 sin g
Ty = by dy = 2 e +tsinde
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78 v+ dv=rsm 2t + (6 + Tycos2t
u P - ;
Ty 43 +y=e (" +1)sindt + 387 cost+4e
- _— S
80. ¥+ 1y 43y =13fe cosli-Ife " cosf

In each of Problems 81 through 88 find the gensshltion of the given differential equation.
In Problems 11 and 18(t) is an arbitrary continuous function.

g1. Y'+y=tmf, O<t<nfl 85, 1 +0y=0sec’d, (<f<nf§
2. Y'+dy'+dy=e, 120 g6, Y dy=dexdt, O<te<rn/]
83. ' +y=luec(t/l), -m<tem 87 ¥ -N4y=d/1+1)

84. 7" =5+ 6y=glt) 88 ¥ +dy=gif)

89. A mass weighing 2 |b stretches a spring 6fithd mass is pulled down an additional 3 in.
and then released, and if there is no dampingrmete the positiom of the mass at any
timet. Plotu versud. Find the frequency, period, and amplitude ofrticgion.

90. A mass of 100 g stretches a spring 5 cm. Ifithss is set in motion from its equilibrium
position with a downward velocity of 10 cm/sec, anithere is no damping, determine the
positionu of the mass at any tinieWhen does the mass first return to its equilitoriu
position?

91. A mass weighing 3 |b stretches a spring 3fithd mass is pushed upward, contracting
the spring a distance of 1 in., and then set inanatith a downward velocity of 2 ft/sec,
and if there is no damping, find the positioof the mass at any tinteDetermine the
frequency, period, amplitude, and phase of theanoti

92. A series circuit has a capacitor #®x 10° farad and an inductor of 1 henry. If the
initial charge on the capacitor is 2@oulomb and there is no initial current, find tergeQ
on the capacitor at any tinhe

93. A mass of 20 g stretches a spring 5 cm. Supihasehe mass is also attached to a
viscous damper with a damping constant of 400 dygedem. If the mass is pulled down an
additional 2 cm and then released, find its positiat any time. Plotu versust. Determine
the quasi frequency and the quasi period. Deterthi@eatio of the quasi period to the
period of the corresponding undamped motion. Alisd the timer such thaty(t)| < 0.05

cm for allt > 7.

94. A mass weighing 4 Ib stretches a spring 1.9 mass is displaced 2 in. in the positive
direction from its equilibrium position and reledsgith no initial velocity. Assuming that
there is no damping and that the mass is acte¢ am lexternal force of 2 cos IB,

formulate the initial value problem describing thetion of the mass.

(a) Find the solution.

(b) Plot the graph of the solution.

(c) If the given external force is replaced by ecé4 sinwt of frequencyw, find the value

of w for which resonance occurs.

95. A mass of 5 kg stretches a spring 10 cm. Thesnisaacted on by an external force of
10 sint/2) N (newtons) and moves in a medium that impartseous force of 2 N when
the speed of the mass is 4 cm/sec. If the masd iB sotion from its equilibrium position
with an initial velocity of 3 cm/sec, formulate thetial value problem describing the
motion of the mass.
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(a) Find the solution of the initial value problem.

(b) Identify the transient and steady-state pdrth@ solution.

(c) Plot the graph of the steady-state solution.

(d) If the given external force is replaced by ecé2 cosnt of frequencyw, find the value
of w for which the amplitude of the forced response aimum.

96. If an undamped spring—mass system with a nhassvieighs 6 Ib and a spring constant
1 Ib/in. is suddenly set in motiontat O by an external force of 4 cosli@, determine the
position of the mass at any time and draw a grdpheodisplacement versiis

97. A mass that weighs 8 Ib stretches a spring BThe system is acted on by an external
force of 8 sin 8Ib. If the mass is pulled down 3 in. and then redel determine the position
of the mass at any time. Determine the first fowes at which the velocity of the mass is
zero.

98. Find the power series solutions (in powers)aifxhe following equations:

. 20"+ 1y +xy=0 2 2 i — 15_1;_' =0
o'+ y=0 4 xv"+3y —v=0

5. 31‘23"" + Ixv' + x:g_' =0 6. xﬁj 4xy+ix—2y=10
Tox'+(l—xp'—y=0 8. 11."",1""' + 3" + (2x =Ly =0
O x " —xx+3In '+ +3y=0 10 x5+ + =0
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CHAPTER 6: LAPLACE TRANSFORM

Many practical engineering problems involve mecbalnor electrical systems acted on by
discontinuous or impulsive forcing terms. For spobblems the methods described in
previous chapters are often rather awkward to Aigsether method that is especially well
suited to these problems, although useful much mgenerally, is based on the Laplace
transform. In this chapter we describe how thisartgnt method works, emphasizing
problems typical of those arising in engineeringlegations.

1. Definition and Domain

1.1. Definition: Let f(t) be a given function defined é.=[0, ) and be piecewise
continuous on every finite interval. If the follawg integral exists (i.e. it has a finite value)

[ f(tydt
0

for s in some domain D, then we define a funcigs) by
F(s)= [e™f(t)dt for <D, ) (1
0

and call it theLaplace transfornof the functiori(t). In this case, the functidiit) is called the
original function.The operatof, which assigns each original functitft) to its Laplace

transformk(s), is called the Laplace transform. Therefore, thplace transforrk of f is
F=Z). Note that, sometimes, especially in physical [@wis, we use the notation

?r
f(t) €—> F(s)to indicate the fact thdi=Z).

Example: 1) f{t)=1 for all 20, then F(s)= Lf)(s) = _[ e 'dt = 1 for s>0. So, in other notation
S
0

4 1
we can write: 1 €$——» =
S

Here, the domain of definition of F(s) is (0, o)

2) f(t)=€™ for all t=0 (a-constant), then the Laplace transforrﬁiefF(s):Ie‘(s‘a’tdt -1
: s—a
s 1
fors>a. Or, 8 ¢——> ——

s—a
From the above examples we remark that the donfalefmition of the Laplace transform
contains a half infinite interval. This remarkiige in more general situations as we have the
following theorem

1.2 Theorem:Let f(t) be a function that is defined and piecgvtontinuous on every finite
intervals on the range0, and satisfies

[f(tH|sMe" O t=0 (2)

for some constants M arydThen, the Laplace transform of f(t) exists fdrsaly. (In this
case, f(t) is called exponentially bounded; gmslcalled the growth bound of f(t).)
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PROOF: The integraIJ'e‘S‘f(t)dt exists if the integrajﬂ e *f (t)|dt does. We now see that
0 0
lef (t)]< Me¥¥, and also the integrﬁMe(y’S)tdt is convergent for g Therefore, for sy
0

_[| e*'f (t)|dt exists and hence so dofze‘s‘f(t)dt.
0 0

1.3 Theorem:Let f(t) andg(t) be functions that are defined and piecewise caoatis on the
ranget=0. Suppose that they are exponentially bounded thélgrowth bounds, y»,
respectively. Then, i#f)(s) = Hg)(s) for all s>max{, y2}, we have thaf(t) = g(t) at every
continuous points dfandg.

Therefore, if two continuous functions have the sdraplace transforms, they are completely
identical.

This means that, omitted the discontinuous poifte@functions, we have that the relation
between an original function and its Laplace transfis one-to-one.

Thus, the original function f(t) in (1) is calleldetinverse Laplace transform of F and is
denoted byZ*(F). It is proved that, under some conditions,dtiginal function f(t) can be
reconstructed from F(s) by the formula

f(t) :i, J'F(s)es‘ds for some large enough
21

—0o+io

We note that the original functions are denotedblercase letters, and their Laplace
transforms--by the same letters in capitals, e f), G= ZQ9), etc.

2. Properties
2.1. Linearity: For all piecewise continuous functiofisg, and constants a, b we have
Haf+bg)= adf)+bHg).
?.r
Physically, one writes: af(t)+bg(t) «——> aF(s)+bG(s).

Examples: 1) Let f(t)=cosh(at)=(e*+ ¢*)/2. Find F= #{).
1

?.l' ?.l'
We already have e* «—> L and e ——>

. Therefore,
Ss—a S+a
g.l'
1(6‘“+6"‘“)Hﬁ 1( L + L ).
2 2 s—a s+a
Hence, F(s)= 1( ! + 1 )=— S 5.
2 s—a s+a s“-a
2) Let F(s)= ;; a#b. Find f=¢"'(F).
(s—a)(s—b)
! ) 1 1 1 1 ) )
We first write F(s)= = ( - ) . Therefore, by the linearity, we
(s—a)(s—-b) (a-b) s—a s-b
?.r
obtain ! (e"-e™) &—» L ( t 1 ). Thus, f(t)= ! (e"-e™).
a-b a-b s-a s-b a-b
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2.2. Laplace transform of the derivative of f(t):
Theorem 1: Let f be differentiable and exponentially bounded.

If f(t) Q’ F(s), then £ (t) '(;} sF(s)-f(0) for s>0.
PROOF: (Zf)(s) = j f'(f)edt = e‘St:
0

+ sj f (e dt=sF(s)-f(0). (ged)

If the second derivative fexists, applying the above formula fomfe obtain that

£ (1) {L} $?F(s)-sf(0)-f"(0).

Generally, by induction we have the following theorem.

Theorem 2: In case the n" derivative of f exists and exponentially bounded, we obtain the
formula

?’ 14
£ (1) €—> $"F(s)-s"'(0)-s"*f(0)-...-f*1(0).
Examples: 1) For f(t)=t we find F=Zf. To do so, we observe that f'(t)=2t; "’ (t)=2.

?.l'
We already have 2=f""(t) €—> 2/s. Therefore, 2/s = s’F(s)-sf(0)-f(0). It follows that
F(s)=2/s".
W

?r
2) Similarly, we easily obtain that sinwt ——> — "
S w

5 .

2.3. Laplace transform of the integral of f(t):

4 F 4
Theorem 3:1f (1) «——> F(s), then [f(U)du <—> %F(S).
! S
t
PROOF: Put g(t)=ff(u)du. Then, g’ (t)=f(t) and g(0)=0. Let F¥#f and G= ¥g. By
0

g.r
Theorem 1, we obtain that g’ (t) «—— sG(s)-g(0)=F(s). Therefore, G(s)=F(s)/s. (ged)

. ?r
Example: For F(s) =————— let find f(t). We already have sinwt > - 1 5 -
qs* +w?) w s +w
t . ?-r
By Theorem 3, we then deri SALLLL PN 2; Thus,
. W qs* + W)

1- ’
cozswt : 1 .
w qs” + W)
2.4. Inverse Laplace transform of the derivative of(s):
i s ,
Forf(ty €—> F(s) we can easily prove that — tf(t) €—> F (Ss).

V)
Example: Sincesinwt €—» we have, by the above formula, that

% +w?

d
rsinwt $—» A
(s* +w?)?
2.5. Inverse Laplace transform of the integral of Es)'

4
Forf(ty €—> F(s) it can be proved that —* (t) 'Hr I F(u)du.
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Example: Let compute the inverse Laplace transform of §E In(1+£2) . To do that, we
S

- /4
2w du. Since 1-coswt —> 1

. . W, T W T _
first write In(1+?) —-.[d In(1+ F) _-[—u(uz W) W 4 + W)

- 4
and applying the above formula we obtain m > In( 1+£2) :
S

2.6. Shifting properties:

g.r g.r
(1) s-shifting: For f(t) €—> F(s) we have that €*' f(t) €—> F(s-s,)

i

. . 4 w
5 > Wwe obtain that e® sinwt é—> ——
£ +w (5—5)° +W

(2) t-shifting: If we shift the function f(t), t=0, to the right (i.e., we replace t by t-a for

some a>0), then we encounter a problem that the function f(t-a) is no longer defined
0 if O<st<a

f(t-a)if t=a

?r
Example: From sinwt $——»

for a>t=0. To come over this problem, we put f t) = {

Oif t<O

1if t>0 we can rewrite 1:(t) =f(t-a)u(t-a). Then, for

using the step function u(t)={

?r ?.l'
f(t) €——> F(s) it can be proved that f(t-a)u(t-a) €——> € > F(s).
—2S
. From the relation

Example: Let compute the inverse Laplace transform of —;
Q

o]

i ; : (t-2)° r
/2 €—> 1/s* we can derive that Tu( 1-2) 6——>

e—2 s

s

3. Convolution

3.1. Lemma:Let f(t) andg(t), t0, be piecewise continuous and exponentially bounded
t

functions. Then, the function /(1) :I f(u)g(t —u)du is also exponentially bounded.
0

PROOF: Sincé(t) andg(t) arepiecewise continuous and exponentially bounded, we can

t
estimate |h(1)I< IMleylueVZ(t_“)du:M | - |:Metmax% 2} Therefore, h(t) is
] V=1l V=72l

exponentially bounded.

3.2. Definition: Let f(t) andg(t), t0, be piecewise continuous and exponentially bounded
t

functions. Then the function A(t) = J f (u)g(t —u)du is called convolution of fand g. Also, we
0

denote by h=f/¢. So, h(t)=(fL£)(t). However, sometimes, physically we write h(t)=f(t)[£(t).

3.3. Theorem: Let f(t) andg(t), t0, be piecewise continuous and exponentially bounded

s
functions. Suppose F = % fand G= ¥ g. Then, f{t)[g(t) €—> F(S)G(s).
Shortly, one can say that Laplace transform turns a convolution to a normal product.

[ [ 00 00
PROOF: Let compute [(f g)(t)e™dt=] [ f(u)g(t - u)e™dudt=[ [ f(u)g(t - uedtdu
0 00 Ou
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:(T f( u)e‘S“duJG(S) =F(s)G(s)

0
here, we used Fubini’s Theorem for the domain described by following figure:

r

. ‘f!‘.l'
Example: Let compute &' % . Since we already have sinwt —> - ! 5
(s +w) s“+w
: : _sinwt sinwt , ¥ 1
using the convolution property we obtain SINWE AINWE o = s ——— -
W w (s”+w)

3.4. Some other properties:

1) Associative: (f[g)[k = f[{g[k)

2) Commutative: f/¢ = g/

3) Distributive: f/{g + k) = f[ ¢ + f[k

4. Applications to Differential Equations

We have the following algorithm of using Laplace transform to solve differential equations of
the order n: f(t, y, ..., y™)=r(t).

Step 1: Apply the Laplace transform to both sides of the differential equation to obtain the
simpler equation called subsidiary equation.

Step 2: Solve the subsidiary equation.

Step 3: Apply the inverse Laplace transform to obtain the solution of the original differential
equation.

Example 1: y’’-y=t; with the initial conditions y(0)=1; y’(0)=1;
Applying Laplace transform to the above equation and putting Y = %y we obtain
Y (5)-5y(0)-y' (0)-Y(5)=1/5°

1 + 1 _ 1 N 1 1
s-1 §(s°-1) s-1 s*-1 &
Using the table of Laplace transforms we easily obtain that

y(H)= L'Y=e'+ sinht-t.

Before continuing with further examples of applications of Laplace transform, we now
introduce here a scheme for solving a differential equation using Laplace transform:

=Y(s)=
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e

Given equaton Subsidiary eguation
Solution of ¥ Solution of

given equation subsidiary equation

Example 2: Consider the general linear second-order differential equation with constant
coefficients:

y’’ 4+ ay’ + by=r(t); with initial conditions y(0) =y,, y’(0) =y,. 4.1)
Applying Laplace transform to both sides of the given equation and putting Y= £y, R=%r,
we obtain the subsidiary equation: (s> + as + b)Y(s)=R(s) + (s+a)y, + y,. Therefore, we have
that the solution of subsidiary equation is

()= RO rale ty,

s*+as+b
Therefore, we obtain the solution of the given differential equation by taking the inverse
Laplace transform of Y(s), i.e., the solution is y= Y.

1 ) . )
We now put Q(s) = Zratb and call it the transfer function. This name comes from the
S as

fact that, for some (mechanic or electric) systems, the function r(t) in equation (4.1) is called
the input and the solution y(t) is called the output of the system, and in the special case when

y(0)=0 and y’(0)=0, then Y (s)=R(s)Q(s). Therefore, Q(s)= g (output)/ 14 (input) explaining

the name of Q(s). Also, in this case, the output is y(t)=r(t)Ld(t), where q(t) is inverse Laplace
transform of Q(s).
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Tables of Laplace Transform:
Igp_l_e 1 General Formulae

\."7: " Formula o ' Name, Comments
F(s) = Z{f(n} = f e~ Stf (1) dt Definition of Transform
0
() = £ YF(s)} inverse Transform
Plaf() + bg)} = af{f(n} + b¥{g1)} Linearity

(') = sLF) - f(0)

y , Differentiation
2f7) = ssz(f) - sf(0 — £10) of Function
L™ = s"E(fy - "0 - -

R L (V)
: 1
ff{f f(7) dT} = ;93(f) Integration of Function
0
FPlevtf() = F(s — a) s-Shifting
$-F(s — a)} = e f(1) (ist Shifting Theorem)
LU — ayu(t — a)} = e”¥F(s) t-Shifting

_Sg—l{(,—mp(s)} = f(t — a)u(t — a) (2nc! Shifting Theorem)

LUf0} = —F () \ Differentiation of Transform
R10) U :
k4 et e F(5)ds Integration of Transform
3

t
(f * g)t) = f f(gt — 7 dr
0

- J'tf(, - Dg(s) dr Convolution
0
P(f * g) = LNHX()
1 P
() = — f e-stf(1) dt f Periodic with Period p
L — e P4
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T RO =2io) [
1 s 1
21 Il/s? r
31 1/sm, (n=12--") 1 Ym - 1)
4| Vs N 7t
51 1/s32 2Viln
6| l/se (a>0) t2-1YI(a)
7 ! e
5§~ d
8 ————l—— te®t
(s — a)?
1 |
9 — =1,2, - —_——— =1 _,at
G- ar (n I, 2 ) = l)!t e
1 1
0| ——r  *> —— rk-1gat
G-aF 70 ro "
N
# b at __ bt
M e -as-n @7 @-p ")
12 > (a # b) l (ae® — bebt)
(s — aXs — b) (@ — b)
1 1
| 1.
3 T ot - sin wt
14 5 i 3 Cos w!
S+ w
15 l ! sinh at
5% — g2 a
5
16 Z g2 cosh at
I'] l l al o1 t
(s — a)? + w? we s w
18 s~ 4 e cos wt
s — a)? + w?
9 1 1 «
s(s? 4+ w?) w? (I' = cos wn)
1 ] .
20 6T T o) o (wt — sin w!)
! )
21 T T o) m (sin wt — wt cos wt)
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Table 3: Laplace Transform (contlnued)

L‘J‘i i ih ;t . L I A §
TR R = 2o Ry
7 - {
(52 + w?)? Z Sin wt
52
5 I
24 @+ adGE + bY) (a2 # b2 bT g2 (cos at — cos bi1)
| |
2N e 7L e (sin kt cosh ki
— cos kf sinh k¢)
s 1
26 T k2 sin kf sinh ks
' L
L By =3 (sinh kt — sin k)
28 . L (cosh &kt — kt)
I
91 Vs ~a-Vs-b (e% — eat)
2V a?
I a - b
30 ~-(a + b2
Vs +aVs + b ¢ l"( 2 r)
|
M| ————
Vs? + a? Jolan)
32 d el 42
(‘- - a)ﬂm \/;C’ ( + (1!)
1 Ve /o \k-112
M| 53 —_ =
3 (52 — ad) (k > 0) 0 (20) I, plat)
34 | em™s w(t ~ a)
35 e 6(( - a)
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|
36 | ek Jo(2Vke)
37 i e~ N L cos 2 Vkt
\/.; V 1t
| |
e pkin SR
38 L e e sinh 2Vk¢
k
9 [ et k>0 = ekt
2 Va3
]
40 ;ln.s —Int - vy (y=0.5772)
s — |
4 — {aht _. ,at
{1 | In P—— t((’ e)
52 + w? 2
42 Ins—.‘,—w 7(] - COS wl)
2 _ .2 )
43 | In s_‘zr_;_ —’- (1 — cosh at)
w 1 .
44 | arc tan — ~ Sin w!
3 {

Problems

In each of Problems 1 through 10 find the inveraplace transform of the given function.

1.

sS4

)

; J
“+35—4
2z 432
42545
- 241
- =242
1-12=

445 +3

In each of Problems 11 through 23 use the Laplaresform to solve the given initial value

problem.

2

10.

4
(s — 1y

P—5—6
_'n_—-l-
857 — 45 4+ 12

=5 a
T |

—_—
T4+ 22410

80

- _-r--
s+ 4



Nguyen Thieu Huy

11, y'—y' -6y =0 yidy=1, yilhh=-1

12 Y43 +2y=0, p0)=1 y(O0)=0

13 V=29 +2y=0, w0 =0, ¥(0) =1

4 V' —d'+dv=0; yi=1, yih=1

15. V'=2'=2y=0; w0 =2, Y@ =0

16, ¥ +2y"+35y=10; =2, yil=-1

17 W ="+ 6" - + v =0, yip=0, »h=1, =0, y(H=1
18. W —y=0; ¥ilh=1, (=0, =1 »" =10
19, W — 4:' =0 w0y = 1, »ily=0, »ih=-2 »ih=0
200 Vitwy=cosdt, o #£4 yilh=1, =0

21 W =2+ 2y =coat; yli=1, »(H=0

LV =+ y=¢" =0, =1

0+ y =40 =2, yih=-1

Pt P

In each of Problems 24 through 36 find the solutbthe given initial value problem.

<t<mf2
24. V'+y=f(1) y0)=0, »0)=1; f(t) =| L, i}—
0, m/2<t<o0
: -y ) ; l, m<t<2m
e "+ 2vi+ 2v = k() 0y =0, (NH=1: h(H)= -
P HATIES AN N e ai lD O<t<xandf>2nr

26.y"+ 4y = sint — u(t-2x) sin(t — 27); y(0) =0,y (0) =0

27.y"+ 4y =sint + u(t-x) sint — z); y0) =0,y (0) =0

28.y"+3y +2y=1(t);y0) =0,y (0)=0;f (t)= 1for 0<t< 10 andf (t) =0 fort> 10
29.y"+ 3y +2y=u(t-2); y0) =0,y (0) =1

30.y" + y=u(t-37); y0) =1,y (0)=0

3Ly +y o+ gy: t— u(t - 7/2)(t - 7/2): y(0) = 0, y (0) = 0
32.y"+ y=g(t);y0) =0,y (0)=1;g(t)= t/2forO<t < 6 andg(t) = 3 for t> 6,
3B.y'+y + gy: g(t); y(0) =0,y (0)=0;g(t)= sintfor0<t< zandg(t)=0 for t>x

34.y" + 4y =u(t-r) — u(t-37); y0) =0,y (0) =0
35.y® -y =u(t-1) - u(t2); y(0) = 0,y (0) = 0, y’ (0) = 0, y” (0) = 0
36.y + 5" + 4y =1 -u(t-n); y(0) =0,y (0)=0,y’ (0)=0,y” (0)=0
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