Long-time behavior of solutions to some equations in fluid mechanics

Cung The Anh

Department of Mathematics, Hanoi National University of Education (Joint works with Dang Thanh Son and Pham Thi Trang)

Hanoi, August 19, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1 Theory of pullback \mathcal{D} -attractors

2 Pullback D-attractors for Navier-Stokes-Voigt equations

3 Some other equations in fluid mechanics

・ロト・雪ト・ヨト・ヨー うへで

Theory of pullback D-attractors Pullback D-attractors for Navier-Stokes-Voigt equations Some other equations in fluid mechanics

Some basic problems for PDEs

$$\begin{cases} \partial_t u = \mathcal{F}(t, u(t)), t > \tau, \\ u(\tau) = u_{\tau}. \end{cases}$$

- Well-posedness
- Regularity of solutions
- Long-time behavior of solutions: Stability theory + attractors theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Control theory:
 - Controllability
 - Optimal control
 - Stabilization

Theory of pullback D-attractors Pullback D-attractors for Navier-Stokes-Voigt equations Some other equations in fluid mechanics

Process

$$\begin{cases} \partial_t u = \mathcal{F}(t, u(t)), t > \tau, \\ u(\tau) = u_\tau \in X. \end{cases}$$
(1.1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assume that for each $u_{\tau} \in X$ given, problem (1.1) has a unique global solution $u(t; \tau, u_{\tau})$. Putting $U(t, \tau)u_{\tau} := u(t; \tau, u_{\tau})$, we get a process $U(t, \tau)$ on X, which is called the process associated to problem (1.1).

A process on X is a family of two-parameter mappings $\{U(t,\tau)\}$ in X having the following properties:

$$U(au, au) = Id ext{ for all } au \in \mathbb{R},$$

 $U(t,r)U(r, au) = U(t, au) ext{ for all } t \ge r \ge au.$

Theory of attractors

Study the long-time behavior of solutions: theory of attractors

- Autonomous PDEs: Solution semigroup $S(t) : u_0 \mapsto u(t)$. Since 1980s: Theory of global attractors.
- Non-autonomous PDEs: The associated process:

$$U(t, \tau): u_{\tau} \mapsto U(t, \tau)u_{\tau} = u(t).$$

- Theory of uniform attractors: Chepyzhov-Vishik (1994);
- Theory of pullback attractors: Caraballo-Łukaszewicz-Real (2006).
- Advantages of pullback attractors:

- allow to handle a larger class of time-dependent external forces;

- (Usually) have a finite fractal dimension;
- are also valid for random dynamical systems.

Definition of pullback \mathcal{D} -attractors

Suppose that $\mathcal{B}(X)$ is the family of all nonempty bounded subsets of X, and \mathcal{D} is a non-empty class of parameterized sets $\hat{\mathcal{D}} = \{D(t) : t \in \mathbb{R}\} \subset \mathcal{B}(X)$. A family $\hat{\mathcal{A}} = \{A(t) : t \in \mathbb{R}\} \subset \mathcal{B}(X)$ is said to be a pullback \mathcal{D} -attractor for the process $U(t, \tau)$ if

•
$$A(t)$$
 is compact for all $t \in \mathbb{R}$;

3 \hat{A} is invariant, i.e., $U(t,\tau)A(\tau) = A(t)$, for all $t \ge \tau$;

③ $\hat{\mathcal{A}}$ is pullback \mathcal{D} -attracting, i.e.,

 $\lim_{\tau \to -\infty} \textit{dist}(\textit{U}(t,\tau)\textit{D}(\tau),\textit{A}(t)) = 0, \text{ for all } \hat{\mathcal{D}} \in \mathcal{D}, \text{ and all } t \in \mathbb{R};$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If {C(t) : t ∈ ℝ} is another family of closed attracting sets, then A(t) ⊂ C(t), for all t ∈ ℝ.

Some basic concepts

- The process U(t, τ) is said to be pullback D-asymptotically compact if for any t ∈ ℝ, any D̂ ∈ D, any sequence τ_n → -∞, and any sequence x_n ∈ D(τ_n), the sequence {U(t, τ_n)x_n} is relatively compact in X.
- The family of bounded sets $\hat{\mathcal{B}} \in \mathcal{D}$ is called pullback \mathcal{D} -absorbing for the process $U(t, \tau)$ if for any $t \in \mathbb{R}$, any $\hat{\mathcal{D}} \in \mathcal{D}$, there exists $\tau_0 = \tau_0(\hat{\mathcal{D}}, t) \leq t$ such that

$$igcup_{ au\leq au_0} U(t, au) D(au) \subset B(t).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Existence of pullback \mathcal{D} -attractors

Let $\{U(t,\tau)\}$ be a continuous process on X such that

- $\{U(t,\tau)\}$ is pullback \mathcal{D} -asymptotically compact;
- ② there exists a family of pullback D-absorbing sets $\hat{\mathcal{B}} = \{B(t) : t \in \mathbb{R}\} \in \mathcal{D}.$

Then $\{U(t,\tau)\}$ has a unique pullback \mathcal{D} -attractor $\hat{\mathcal{A}} = \{\mathcal{A}(t) : t \in \mathbb{R}\}$, and

$$A(t) = \bigcap_{s \le t} \bigcup_{\tau \le s} U(t,\tau)B(\tau).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theory of pullback D-attractors Pullback D-attractors for Navier-Stokes-Voigt equations Some other equations in fluid mechanics

Some references

- T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, *Nonlinear Anal.* 64 (2006), 484-498.
- A.N. Carvalho, J.A. Langa and J.C. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences 182, Springer, Berlin, 2013.

Navier-Stokes-Voigt equations

Let Ω be a (bounded or unbounded) domain in \mathbb{R}^d (d = 2, 3) with boundary $\partial \Omega$. Consider the following problem

$$\begin{cases} \partial_t u - \nu \Delta u - \alpha^2 \Delta u_t + (u \cdot \nabla) u + \nabla p &= f, \ x \in \Omega, t > \tau, \\ \nabla \cdot u &= 0, \ x \in \Omega, t > \tau, \\ u(x,t) &= 0, \ x \in \partial\Omega, t > \tau, \\ u(x,\tau) &= u_0(x), \ x \in \Omega, \end{cases}$$
(2.1)

where $u = u(x, t) = (u_1, ..., u_d)$ is the unknown velocity vector, p = p(x, t) is the unknown pressure, $\nu > 0$ is the kinematic viscosity coefficient, and u_0 is the initial velocity.

- Meaning: a model of linear viscoelastic fluids (Oskolkov, 1973)
 + a regularization of the Navier-Stokes equations (Titi et. al., 2006).
- Difficulties: the system is only weakly dissipative + the domain may be unbounded.

Hypotheses

(H1) The domain Ω can be an arbitrary (bounded or unbounded) domain in \mathbb{R}^d without any regularity assumption on its boundary $\partial\Omega$, provided that the Poincaré inequality holds on Ω : There exists $\lambda_1 > 0$ such that

$$\int_{\Omega} \phi^2 dx \leq \frac{1}{\lambda_1} \int_{\Omega} |\nabla \phi|^2 dx, \ \forall \phi \in H^1_0(\Omega).$$

(H2) $f \in L^2_{loc}(\mathbb{R}; V')$ such that

$$\int_{-\infty}^0 e^{\sigma s} \|f(s)\|_{V'}^2 ds < +\infty,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where
$$\sigma = \frac{\lambda_1 \nu}{1 + \alpha^2 \lambda_1}$$

Function spaces

Let $(L^2(\Omega))^d$ and $(H^1_0(\Omega))^d$ be endowed with the inner products

$$(u, v) = \int_{\Omega} u.vdx, \quad u, v \in (L^2(\Omega))^d,$$

 $((u, v)) = \int_{\Omega} \sum_{j=1}^d \nabla u_j \cdot \nabla v_j dx, \quad u, v \in (H_0^1(\Omega))^d,$

and norms $|u|^2 = (u, u), \|u\|^2 = ((u, u)).$ Let

$$\mathcal{V} = \left\{ u \in (C_0^\infty(\Omega))^d : \nabla \cdot u = 0 \right\}.$$

Denote by H the closure of \mathcal{V} in $(L^2(\Omega))^d$, and by V the closure of \mathcal{V} in $(H_0^1(\Omega))^d$. It follows that $V \subset H \equiv H' \subset V'$, where the injections are dense and continuous. We will use $\|\cdot\|_*$ for the norm in V', and $\langle ., . \rangle$ for the duality pairing between V and V'.

Operators

We now define the trilinear form b by

$$b(u, v, w) = \sum_{i,j=1}^{d} \int_{\Omega} u_i \frac{\partial v_j}{\partial x_i} w_j dx,$$

whenever the integrals make sense. It is easy to check that if $u, v, w \in V$, then

$$b(u, v, w) = -b(u, w, v).$$

Hence

$$b(u, v, v) = 0, \forall u, v \in V.$$

Set $A: V \to V'$ by $\langle Au, v \rangle = ((u, v)), B: V \times V \to V'$ by $\langle B(u, v), w \rangle = b(u, v, w), Bu = B(u, u)$. Then $Au = -P\Delta u$, for all $u \in D(A)$, where P is the ortho-projector from $(L^2(\Omega))^d$ onto H.

Basic inequalities

Using Hölder's inequality and Ladyzhenskaya's inequality:

$$|u|_{L^4} \leq c_0 |u|^{d/4} |\nabla u|^{1-d/4}, \ \forall u \in H^1_0(\Omega),$$

and the interpolation inequalities, one can prove the following

$$|b(u, v, w)| \le C |u|^{1-d/2} ||u||^{d/4} |v|^{1-d/4} ||v||^{d/4} ||w||, \ \forall u, v, w \in V.$$

In particular,

$$|b(u, u, v)| \leq C |u|^{2-2/d} ||u||^{d/2} ||v||, \ \forall u, v \in V.$$

• Let $u \in L^2(\tau, T; V)$. Then the function Bu defined by

$$(Bu(t), v) = b(u(t), u(t), v), \forall u \in V, a.e. t \in [\tau, T],$$

belongs to $L^1(\tau, T; V').$

Definition of weak solutions

Given $u_0 \in V$. A function u is called a **weak solution** to problem (2.1) on the interval (τ, T) if

$$\begin{cases} u \in C([\tau, T]; V), \ du/dt \in L^2(\tau, T; V), \\ \frac{d}{dt}u(t) + \nu Au(t) + \alpha^2 Au'(t) + B(u(t), u(t)) = f(t) \text{ in } V', \text{ for a.e.} t, \\ u(\tau) = u_0. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Existence theorem

Suppose that $u_0 \in V$ is given and assumptions (H1) - (H2) hold. Then, for any $\tau \in \mathbb{R}$, $T > \tau$ given, problem (2.1) has a unique weak solution u on (τ, T) . Moreover, the map $u_0 \mapsto u(t)$ is continuous on V for all $t \in [\tau, T]$.

Sketch of the proof

Using the Galerkin approximation + the Compactness Lemma

• Step 1: Construct the approximate solutions u_m

$$\begin{cases} \frac{d}{dt}u_m(t) + \nu A u_m(t) + \alpha^2 A u'_m(t) + P_m B u_m(t) = P_m f(t) \text{ in } V', \\ u_m(\tau) = P_m u_0. \end{cases}$$

• Step 2: Establish some a priori estimates for um

$$|u^{m}(t)|^{2} + \nu \int_{\tau}^{t} |\nabla u^{m}(s)|^{2} ds + \alpha^{2} |\nabla u^{m}(t)|^{2} \\ \leq \frac{1}{\nu} ||f||^{2}_{L^{2}(\tau, T; V')} + |u_{0}|^{2} + \alpha^{2} |\nabla u_{0}|^{2}.$$

- Step 3: Passage to the limit
- Step 4: Prove the uniqueness and continuous dependence of the weak solutions on the initial data.

The associated process

Thanks to the existence theorem, one can define a continuous process $U(t, \tau)$ in V by

$$U(t,\tau)u_0=u(t;\tau,u_0),\ \tau\leq t,u_0\in V,$$

where $u(t) = u(t; \tau, u_0)$ is the unique weak solution of problem (2.1) with the initial datum $u(\tau) = u_0$.

Lemma. Let $\{u_{0_n}\}$ be a sequence in V converging weakly in V to an element $u_0 \in V$. Then

 $U(t,\tau)u_{0_n}
ightarrow U(t,\tau)u_0$ weakly in V, for all $\tau \leq t$,

 $U(t,\tau)u_{0_n}
ightarrow U(t,\tau)u_0$ weakly in $L^2(\tau,T;V)$, for all $\tau < T$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Existence of a pullback \mathcal{D} -attractor

Let \mathcal{R}_{σ} be the set of all functions $r:\mathbb{R} o (0,+\infty)$ such that

$$\lim_{t\to-\infty}e^{\sigma t}r^2(t)=0,$$

where $\sigma = \frac{\lambda_1 \nu}{1 + \alpha^2 \lambda_1}$, and \mathcal{D}_{σ} the class of all families $\hat{\mathcal{D}} = \{D(t) : t \in \mathbb{R}\} \subset \mathcal{B}(H)$ such that $D(t) \subset B(0, \hat{r}(t))$, for some $\hat{r}(t) \in \mathcal{R}_{\sigma}$, where B(0, r) denotes the close ball in V, centered at zero with radius r.

Theorem. Suppose that conditions (H1) - (H2) hold. Then, there exists a unique pullback \mathcal{D}_{σ} -attractor $\hat{\mathcal{A}}_{\alpha} = \{A_{\alpha}(t) : t \in \mathbb{R}\}$ for the process $\{U(t,\tau)\}$ associated to problem (2.1).

Sketch of the proof

We will check the two conditions in the abstract theorem: **1** $U(t,\tau)$ has a family \hat{B} of pullback \mathcal{D}_{σ} -absorbing sets

$$\|u(t)\|^2 \leq \frac{1}{\alpha^2} e^{-\sigma(t-\tau)} [u_0]_2^2 + \frac{e^{-\sigma t}}{\nu \alpha^2} \int_{\tau}^t e^{\sigma r} \|f(r)\|_*^2 dr,$$

where $[u]_2^2 := |u|^2 + \alpha^2 ||u||^2$. Denote $R_{\sigma}^2(t) := \frac{2e^{-\sigma t}}{\nu} \int_{-\infty}^t e^{\sigma s} ||f(s)||_*^2 ds$, then $\{B_{\sigma}(t) : t \in \mathbb{R}\}$ is a family of bounded pullback \mathcal{D}_{σ} -absorbing sets.

U(t, τ) is pullback D_σ-asymptotically compact: Using the energy equation method introduced by J.M. Ball, *Disc. Cont. Dyn. Syst.* (2004).

Estimates of the fractal dimension

We suppose furthermore that

$$f \in L^{\infty}(-\infty, T^*; V')$$
, for some $T^* \in \mathbb{R}$. (2.2)

Theorem. Suppose that conditions (H1), (H2) and (2.2) hold. Then, the pullback \mathcal{D}_{σ} -attractor $\hat{\mathcal{A}}_{\alpha} = \{A_{\alpha}(t) : t \in \mathbb{R}\}$ of the process $U(t, \tau)$ associated to problem (2.1) satisfies

$$d_F(A_\alpha(t)) \leq 2 + \frac{C(\lambda_1 + \alpha^2)^2 \|f\|_{L^\infty(-\infty, T^*; V')}^4}{\nu^6 \alpha^6 \sigma^2}, \quad \text{ for all } t \in \mathbb{R}.$$

For more details, see Anh-Trang, *Proc. R. Soc. Edinb. Sect. A Math.* (2013).

Regularity of the pullback attractor for Navier-Stokes-Voigt equations

We assume that

(F) $f \in L^2_{loc}(\mathbb{R}; H)$, $f' \in L^2_{loc}(\mathbb{R}; V')$ such that

$$\int_{-\infty}^{0}e^{rac{\sigma s}{3}}\|f(s)\|^2_{-1/2}ds<+\infty;\ \int_{-\infty}^{0}e^{\sigma s}|f(s)|^2ds<+\infty,$$

where $\sigma = \frac{\lambda_1 \nu}{1 + \alpha^2 \lambda_1}$.

Theorem. The pullback \mathcal{D}_{α} -attractor $\hat{\mathcal{A}}_{\alpha} = \{A_{\alpha}(t) : t \in \mathbb{R}\}$ is compact in $(H^2(\Omega))^2 \cap V$ in the sense that for any fixed $t \in \mathbb{R}$, $A_{\alpha}(t)$ is a compact set in $(H^2(\Omega))^2 \cap V$.

Upper semicontinuity of pullback attractors for 2D Navier-Stokes-Voigt equations

- $\alpha = 0$: Navier-Stokes equations
- Pullback attractors in V for strong solutions to 2D Navier-Stokes equations:
 - bounded domain: Real et. al., J. Diff. Equa. (2012).
 - unbounded domain: Anh-Trang, preprint (2013).
- Upper semicontinuity of pullback attractors: Theorem. The family of pullback D_α- attractors Â_α = {A_α(t) : t ∈ ℝ} for 2D Navier-Stokes-Voigt equations is upper semicontinuous in V at α = 0, that is, for any t ∈ ℝ,

$$\lim_{\alpha\to 0} dist_V(A_\alpha(t),A(t))=0.$$

Existence, uniqueness and stability of stationary solutions

Let f ∈ V' be independent of time. A stationary solution to problem (2.1) is an element u^{*} ∈ V such that

$$u((u^*,v)) + b(u^*,u^*,v) = \langle f,v \rangle, \ \forall v \in V.$$

• Assume that $f \in V'$ and

$$u^2 > rac{c_0^2}{\lambda_1^{1/2}} \|f\|_*,$$

where c_0 is the best constant in Ladyzhenskaya's inequality. Then there exists a unique stationary solution to problem (2.1). Moreover, this stationary solution is exponentially stable:

$$|u(t) - u^*|^2 \le e^{-\lambda t}|u_0 - u^*|^2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Some generalizations of Navier-Stokes equations

• 3D convective Brinkman-Forchheimer equations (or tamed/damping Navier-Stokes equations)

$$\begin{cases} u_t - \nu \Delta u + (u \cdot \nabla)u + f(x, u) + \nabla p &= g, \\ \nabla \cdot u &= 0, \end{cases}$$

where $f(\cdot, u) \sim |u|^{p-1}u, p > 3$.

• Global attractor (bounded domain): Kalantarov-Zelik, *Comm. Pure Appl. Anal.* (2012).

• Pullback attractor (unbounded domain): Anh-Trang, *submitted*.

Some generalizations of Navier-Stokes equations (cont.)

• Kelvin-Voigt-Brinkman-Forchheimer equations

$$\begin{cases} u_t - \nu \Delta u - \alpha^2 \Delta u_t + (u \cdot \nabla)u + f(x, u) + \nabla p &= g, \\ \nabla \cdot u &= 0, \end{cases}$$

where $f(\cdot, u) \sim |u|^{p-1}u, p \geq 1$.

See Anh-Trang, Nonlinear Anal. (2013).

• 2D second grade fluid equations

$$\begin{cases} \partial_t (u - \alpha \Delta u) - \nu \Delta u + \operatorname{curl}(u - \alpha \Delta u) \times u + \nabla p = f, x \in \Omega, t > \\ \nabla \cdot u = 0, \ x \in \Omega, t > \tau, \\ u(x, t) = 0, \ x \in \partial \Omega, t > \tau, \\ u(x, \tau) = u_0(x), \ x \in \Omega. \end{cases}$$

Here the parameters α and ν are given positive constants and the initial datum u_0 satisfies the compatibility condition

div
$$u_0 = 0$$
 in Ω and $u_0 = 0$ on $\partial \Omega$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fluids with pressure dependent viscossities

Some coupled systems in fluid mechanics

 the 2D Bénard problem (or Boussinesq system): a system with the Navier-Stokes equations for the velocity field coupled with a convection-diffusion equation for the temperature.

$$\begin{cases} \partial_t u + (u \cdot \nabla)u - \nu \Delta u + \nabla p = f_u(x, t) + \alpha \vec{e_2}(T - T_r), \\ \partial_t T + (u \cdot \nabla)T - \kappa \Delta T = f_T(x, t), \\ \nabla \cdot u = 0, \end{cases}$$

See Anh-Son, Math. Methods Appl. Sci. (2013).

Some coupled systems in fluid mechanics (cont.)

• 2D magnetohydrodynamic (MHD) equations: a system with the Navier-Stokes equations for the velocity field coupled with a convection-diffusion equation for the magnetic fields

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u - \frac{1}{R_e} \Delta u + \nabla p + S \nabla (\frac{B^2}{2}) - S(B \cdot \nabla)B = f, \\ \frac{\partial B}{\partial t} + (u \cdot \nabla)B - (B \cdot \nabla)u + \frac{1}{R_m} \tilde{\text{curl}}(\text{curl } B) = 0, \\ \text{div} u = 0, \\ \text{div} B = 0. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• the two-phase flows: Cahn-Hilliard-Navier-Stokes system, Allen-Cahn-Navier-Stokes system, models for the nematic liquid crystal flows.

Further readings

- R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, 3nd edition, Amsterdam: North-Holland, 1984.
- R. Temam, Some developments on Navier-Stokes equations in the second half of the 20th century, *Development of Mathematics 1950–2000*, 1049-1106, Birkhäuser, Basel, 2000.
- J. Málek and K. Rajagopal, Mathematical issues concerning the Navier-Stokes equations and some of its generalizations, *Handbook of Differential Equations*. Vol. II, 371-459, Elsevier, 2005.
- E. Feireisl and D. Pražák, Asymptotic Behavior of Dynamical Systems in Fluid Mechanics, Springer, 2010.
- M. Petcu, R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, *Handbook of Numerical Analysis*. Vol. XIV, 577-750, Elsevier, 2009.

Theory of pullback D-attractors Pullback D-attractors for Navier-Stokes-Voigt equations Some other equations in fluid mechanics

Thank you for your attention!

(ロ)、(型)、(E)、(E)、 E) の(()