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Some basic problems for PDEs

{
∂tu = F(t, u(t)), t > τ,

u(τ) = uτ .

Well-posedness

Regularity of solutions

Long-time behavior of solutions: Stability theory + attractors
theory

Control theory:

Controllability
Optimal control
Stabilization
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Process

{
∂tu = F(t, u(t)), t > τ,

u(τ) = uτ ∈ X .
(1.1)

Assume that for each uτ ∈ X given, problem (1.1) has a unique
global solution u(t; τ, uτ ). Putting U(t, τ)uτ := u(t; τ, uτ ), we get
a process U(t, τ) on X , which is called the process associated to
problem (1.1).
A process on X is a family of two-parameter mappings {U(t, τ)} in
X having the following properties:

U(τ, τ) = Id for all τ ∈ R,
U(t, r)U(r , τ) = U(t, τ) for all t ≥ r ≥ τ.
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Theory of attractors

Study the long-time behavior of solutions: theory of attractors

Autonomous PDEs: Solution semigroup S(t) : u0 7→ u(t).
Since 1980s: Theory of global attractors.

Non-autonomous PDEs: The associated process:

U(t, τ) : uτ 7→ U(t, τ)uτ = u(t).

- Theory of uniform attractors: Chepyzhov-Vishik (1994);
- Theory of pullback attractors: Caraballo- Lukaszewicz-Real
(2006).

Advantages of pullback attractors:
- allow to handle a larger class of time-dependent external
forces;
- (Usually) have a finite fractal dimension;
- are also valid for random dynamical systems.
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Definition of pullback D-attractors

Suppose that B(X ) is the family of all nonempty bounded subsets
of X , and D is a non-empty class of parameterized sets
D̂ = {D(t) : t ∈ R} ⊂ B(X ).
A family Â = {A(t) : t ∈ R} ⊂ B(X ) is said to be a pullback
D-attractor for the process U(t, τ) if

1 A(t) is compact for all t ∈ R;
2 Â is invariant, i.e., U(t, τ)A(τ) = A(t), for all t ≥ τ ;

3 Â is pullback D-attracting, i.e.,

lim
τ→−∞

dist(U(t, τ)D(τ),A(t)) = 0, for all D̂ ∈ D, and all t ∈ R;

4 If {C (t) : t ∈ R} is another family of closed attracting sets,
then A(t) ⊂ C (t), for all t ∈ R.
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Some basic concepts

The process U(t, τ) is said to be pullback D-asymptotically
compact if for any t ∈ R, any D̂ ∈ D, any sequence
τn → −∞, and any sequence xn ∈ D(τn), the sequence
{U(t, τn)xn} is relatively compact in X .

The family of bounded sets B̂ ∈ D is called pullback
D-absorbing for the process U(t, τ) if for any t ∈ R, any
D̂ ∈ D, there exists τ0 = τ0(D̂, t) ≤ t such that⋃

τ≤τ0

U(t, τ)D(τ) ⊂ B(t).
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Existence of pullback D-attractors

Let {U(t, τ)} be a continuous process on X such that

1 {U(t, τ)} is pullback D-asymptotically compact;

2 there exists a family of pullback D-absorbing sets
B̂ = {B(t) : t ∈ R} ∈ D.

Then {U(t, τ)} has a unique pullback D-attractor
Â = {A(t) : t ∈ R}, and

A(t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)B(τ).
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Some references

1 T. Caraballo, G.  Lukaszewicz and J. Real, Pullback attractors
for asymptotically compact non-autonomous dynamical
systems, Nonlinear Anal. 64 (2006), 484-498.

2 A.N. Carvalho, J.A. Langa and J.C. Robinson, Attractors for
Infinite-Dimensional Non-autonomous Dynamical Systems,
Applied Mathematical Sciences 182, Springer, Berlin, 2013.
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Navier-Stokes-Voigt equations

Let Ω be a (bounded or unbounded) domain in Rd (d = 2, 3) with
boundary ∂Ω. Consider the following problem

∂tu − ν∆u − α2∆ut + (u · ∇)u +∇p = f , x ∈ Ω, t > τ,

∇ · u = 0, x ∈ Ω, t > τ,

u(x , t) = 0, x ∈ ∂Ω, t > τ,

u(x , τ) = u0(x), x ∈ Ω,

(2.1)
where u = u(x , t) = (u1, . . . , ud ) is the unknown velocity vector,
p = p(x , t) is the unknown pressure, ν > 0 is the kinematic
viscosity coefficient, and u0 is the initial velocity.

Meaning: a model of linear viscoelastic fluids (Oskolkov, 1973)
+ a regularization of the Navier-Stokes equations (Titi et. al.,
2006).
Difficulties: the system is only weakly dissipative + the
domain may be unbounded.
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Hypotheses

(H1) The domain Ω can be an arbitrary (bounded or unbounded)
domain in Rd without any regularity assumption on its
boundary ∂Ω, provided that the Poincaré inequality holds on
Ω: There exists λ1 > 0 such that∫

Ω

φ2dx ≤ 1

λ1

∫
Ω

|∇φ|2dx , ∀φ ∈ H1
0 (Ω).

(H2) f ∈ L2
loc(R;V ′) such that∫ 0

−∞
eσs‖f (s)‖2V ′ds < +∞,

where σ = λ1ν
1+α2λ1

.
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Function spaces

Let (L2(Ω))d and (H1
0 (Ω))d be endowed with the inner products

(u, v) =

∫
Ω
u.vdx , u, v ∈ (L2(Ω))d ,

((u, v)) =

∫
Ω

d∑
j=1

∇uj · ∇vjdx , u, v ∈ (H1
0 (Ω))d ,

and norms |u|2 = (u, u), ‖u‖2 = ((u, u)).
Let

V =
{
u ∈ (C∞0 (Ω))d : ∇ · u = 0

}
.

Denote by H the closure of V in (L2(Ω))d , and by V the closure of
V in (H1

0 (Ω))d . It follows that V ⊂ H ≡ H ′ ⊂ V ′, where the
injections are dense and continuous. We will use ‖ · ‖∗ for the norm
in V ′, and 〈., .〉 for the duality pairing between V and V ′.
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Operators

We now define the trilinear form b by

b(u, v ,w) =
d∑

i ,j=1

∫
Ω
ui
∂vj

∂xi
wjdx ,

whenever the integrals make sense. It is easy to check that if
u, v ,w ∈ V , then

b(u, v ,w) = −b(u,w , v).

Hence
b(u, v , v) = 0, ∀u, v ∈ V .

Set A : V → V ′ by 〈Au, v〉 = ((u, v)), B : V × V → V ′ by
〈B(u, v),w〉 = b(u, v ,w), Bu = B(u, u). Then Au = −P∆u, for
all u ∈ D(A), where P is the ortho-projector from (L2(Ω))d onto
H.
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Basic inequalities

Using Hölder’s inequality and Ladyzhenskaya’s inequality:

|u|L4 ≤ c0|u|d/4|∇u|1−d/4, ∀u ∈ H1
0 (Ω),

and the interpolation inequalities, one can prove the following

If d = 2, 3, then

|b(u, v ,w)| ≤ C |u|1−d/2‖u‖d/4|v |1−d/4‖v‖d/4‖w‖, ∀u, v ,w ∈ V .

In particular,

|b(u, u, v)| ≤ C |u|2−2/d‖u‖d/2‖v‖, ∀u, v ∈ V .

Let u ∈ L2(τ,T ;V ). Then the function Bu defined by

(Bu(t), v) = b(u(t), u(t), v), ∀u ∈ V , a.e. t ∈ [τ,T ],

belongs to L1(τ,T ;V ′).



Theory of pullback D-attractors Pullback D-attractors for Navier-Stokes-Voigt equations Some other equations in fluid mechanics

Definition of weak solutions

Given u0 ∈ V . A function u is called a weak solution to problem
(2.1) on the interval (τ,T ) if

u ∈ C ([τ,T ];V ), du/dt ∈ L2(τ,T ;V ),
d

dt
u(t) + νAu(t) + α2Au′(t) + B(u(t), u(t)) = f (t) in V ′, for a.e.t,

u(τ) = u0.
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Existence theorem

Suppose that u0 ∈ V is given and assumptions (H1)− (H2) hold.
Then, for any τ ∈ R,T > τ given, problem (2.1) has a unique
weak solution u on (τ,T ). Moreover, the map u0 7→ u(t) is
continuous on V for all t ∈ [τ,T ].
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Sketch of the proof

Using the Galerkin approximation + the Compactness Lemma

Step 1: Construct the approximate solutions um
d

dt
um(t) + νAum(t) + α2Au′m(t) + PmBum(t) = Pmf (t) in V ′,

um(τ) = Pmu0.

Step 2: Establish some a priori estimates for um

|um(t)|2 + ν

∫ t

τ
|∇um(s)|2ds + α2|∇um(t)|2

≤1

ν
‖f ‖2L2(τ,T ;V ′) + |u0|2 + α2|∇u0|2.

Step 3: Passage to the limit

Step 4: Prove the uniqueness and continuous dependence of
the weak solutions on the initial data.
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The associated process

Thanks to the existence theorem, one can define a continuous
process U(t, τ) in V by

U(t, τ)u0 = u(t; τ, u0), τ ≤ t, u0 ∈ V ,

where u(t) = u(t; τ, u0) is the unique weak solution of problem
(2.1) with the initial datum u(τ) = u0.

Lemma. Let {u0n} be a sequence in V converging weakly in V to
an element u0 ∈ V . Then

U(t, τ)u0n ⇀ U(t, τ)u0 weakly in V , for all τ ≤ t,

U(t, τ)u0n ⇀ U(t, τ)u0 weakly in L2(τ,T ;V ), for all τ < T .
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Existence of a pullback D-attractor

Let Rσ be the set of all functions r : R→ (0,+∞) such that

lim
t→−∞

eσtr2(t) = 0,

where σ = λ1ν
1+α2λ1

, and Dσ the class of all families

D̂ = {D(t) : t ∈ R} ⊂ B(H) such that D(t) ⊂ B(0, r̂(t)), for
some r̂(t) ∈ Rσ, where B(0, r) denotes the close ball in V ,
centered at zero with radius r .

Theorem. Suppose that conditions (H1)− (H2) hold. Then, there
exists a unique pullback Dσ-attractor Âα = {Aα(t) : t ∈ R} for
the process {U(t, τ)} associated to problem (2.1).
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Sketch of the proof

We will check the two conditions in the abstract theorem:

1 U(t, τ) has a family B̂ of pullback Dσ-absorbing sets

‖u(t)‖2 ≤ 1

α2
e−σ(t−τ)[u0]22 +

e−σt

να2

∫ t

τ
eσr‖f (r)‖2∗dr ,

where [u]22 := |u|2 + α2‖u‖2. Denote

R2
σ(t) :=

2e−σt

ν

∫ t
−∞ eσs‖f (s)‖2∗ds, then {Bσ(t) : t ∈ R} is a

family of bounded pullback Dσ-absorbing sets.

2 U(t, τ) is pullback Dσ-asymptotically compact: Using the
energy equation method introduced by J.M. Ball, Disc. Cont.
Dyn. Syst. (2004).
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Estimates of the fractal dimension

We suppose furthermore that

f ∈ L∞(−∞,T ∗;V ′), for some T ∗ ∈ R. (2.2)

Theorem. Suppose that conditions (H1), (H2) and (2.2) hold.
Then, the pullback Dσ-attractor Âα = {Aα(t) : t ∈ R} of the
process U(t, τ) associated to problem (2.1) satisfies

dF (Aα(t)) ≤ 2 +
C (λ1 + α2)2‖f ‖4L∞(−∞,T∗;V ′)

ν6α6σ2
, for all t ∈ R.

For more details, see Anh-Trang, Proc. R. Soc. Edinb. Sect. A
Math. (2013).
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Regularity of the pullback attractor for Navier-Stokes-Voigt
equations

We assume that

(F) f ∈ L2
loc(R;H), f ′ ∈ L2

loc(R;V ′) such that∫ 0

−∞
e

σs
3 ‖f (s)‖2−1/2ds < +∞;∫ 0

−∞
eσs |f (s)|2ds < +∞,

where σ = λ1ν
1+α2λ1

.

Theorem. The pullback Dα-attractor Âα = {Aα(t) : t ∈ R} is
compact in (H2(Ω))2 ∩ V in the sense that for any fixed t ∈ R,
Aα(t) is a compact set in (H2(Ω))2 ∩ V .
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Upper semicontinuity of pullback attractors for 2D
Navier-Stokes-Voigt equations

α = 0: Navier-Stokes equations

Pullback attractors in V for strong solutions to 2D
Navier-Stokes equations:

bounded domain: Real et. al., J. Diff. Equa. (2012).
unbounded domain: Anh-Trang, preprint (2013).

Upper semicontinuity of pullback attractors:
Theorem. The family of pullback Dα- attractors
Âα = {Aα(t) : t ∈ R} for 2D Navier-Stokes-Voigt equations is
upper semicontinuous in V at α = 0, that is, for any t ∈ R,

lim
α→0

distV (Aα(t),A(t)) = 0.



Theory of pullback D-attractors Pullback D-attractors for Navier-Stokes-Voigt equations Some other equations in fluid mechanics

Existence, uniqueness and stability of stationary solutions

Let f ∈ V ′ be independent of time. A stationary solution to
problem (2.1) is an element u∗ ∈ V such that

ν((u∗, v)) + b(u∗, u∗, v) = 〈f , v〉, ∀v ∈ V .

Assume that f ∈ V ′ and

ν2 >
c2
0

λ
1/2
1

‖f ‖∗,

where c0 is the best constant in Ladyzhenskaya’s inequality.
Then there exists a unique stationary solution to problem
(2.1). Moreover, this stationary solution is exponentially
stable:

|u(t)− u∗|2 ≤ e−λt |u0 − u∗|2.
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Some generalizations of Navier-Stokes equations

3D convective Brinkman-Forchheimer equations (or
tamed/damping Navier-Stokes equations){

ut − ν∆u + (u · ∇)u + f (x , u) +∇p = g ,

∇ · u = 0,

where f (·, u) ∼ |u|p−1u, p > 3.

Global attractor (bounded domain): Kalantarov-Zelik, Comm.
Pure Appl. Anal. (2012).
Pullback attractor (unbounded domain): Anh-Trang,
submitted.
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Some generalizations of Navier-Stokes equations (cont.)

Kelvin-Voigt-Brinkman-Forchheimer equations{
ut − ν∆u − α2∆ut + (u · ∇)u + f (x , u) +∇p = g ,

∇ · u = 0,

where f (·, u) ∼ |u|p−1u, p ≥ 1.

See Anh-Trang, Nonlinear Anal. (2013).
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2D second grade fluid equations


∂t(u − α∆u)− ν∆u + curl(u − α∆u)× u +∇p = f , x ∈ Ω, t > τ,

∇ · u = 0, x ∈ Ω, t > τ,

u(x , t) = 0, x ∈ ∂Ω, t > τ,

u(x , τ) = u0(x), x ∈ Ω.

Here the parameters α and ν are given positive constants and
the initial datum u0 satisfies the compatibility condition

divu0 = 0 in Ω and u0 = 0 on ∂Ω.

Fluids with pressure dependent viscossities
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Some coupled systems in fluid mechanics

the 2D Bénard problem (or Boussinesq system): a system with
the Navier-Stokes equations for the velocity field coupled with
a convection-diffusion equation for the temperature.

∂tu + (u · ∇)u − ν∆u +∇p = fu(x , t) + α~e2(T − Tr ),

∂tT + (u · ∇)T − κ∆T = fT (x , t),

∇ · u = 0,

See Anh-Son, Math. Methods Appl. Sci. (2013).
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Some coupled systems in fluid mechanics (cont.)

2D magnetohydrodynamic (MHD) equations: a system with
the Navier-Stokes equations for the velocity field coupled with
a convection-diffusion equation for the magnetic fields



∂u

∂t
+ (u · ∇)u − 1

Re
∆u +∇p + S∇(

B2

2
)− S(B · ∇)B = f ,

∂B

∂t
+ (u · ∇)B − (B · ∇)u +

1

Rm

˜curl(curl B) = 0,

divu = 0,

divB = 0.

the two-phase flows: Cahn-Hilliard-Navier-Stokes system,
Allen-Cahn-Navier-Stokes system, models for the nematic
liquid crystal flows.
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Thank you for your attention!
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