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Abstract
Motivated by our recent works on the efficient point multifunction in multi-objective
parametric optimal control problems with nonconvex cost functions and control
constrains, in this paper we study of the first-order behavior of the efficient point
multifunction in a multi-objective parametric optimal control problem under nonlin-
ear state equations. By establishing an abstract result on the Clarke coderivative of
the frontier map of a multi-objective parametric mathematical programming prob-
lem, we derive a formula for computing the Clarke coderivative of the efficient point
multifunction to a multi-objective parametric optimal control problem.

Keywords Multi-objective parametric optimal control problem · Efficient point
multifunction · The Frontier map · Clarke normal cone · Clarke coderivative · Clarke
tangent cone

Mathematics Subject Classification 34K35 · 49J53 · 90B50 · 90C31 · 93C15

1 Introduction

The class of multi-objective optimal control problems are important because they have
many applications in economics, aerospace, multiobjective control design, environ-
mental studies where we need to optimize many objectives (see [2, 3, 11–13, 27, 31,
38]). For a specific example, in transportation we want to reach to a destination as
fast as possible while minimizing energy consumption, we need to use the model of
two-objective optimal control (see, for instance [27]).
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Recently, by establishing an abstract result on the subdifferential of the frontier
map in a multi-objective parametric optimization problem, Toan and Thuy [37] have
obtained a formula for computing the Mordukhovich subdifferential of the frontier
map to amulti-objective parametric optimal control problemwith nonconvex objective
functions, the linear state equation and the control constraint. Note that if the state
equation in the optimal control problem is linear, then the graph of the constraint
function in the optimization problem is convex. Then, we can compute the normal
cone of the graph of the constraint function via normal cones of convex sets. So,
we can use [37, Theorem 3.1] to obtain formulae for upper and lower-evaluation on
the Mordukhovich subdifferential of the frontier map to a multi-objective parametric
optimal control problem. However, the situation will be more complicated if the state
equation is nonlinear because normal cone calculus of convex sets fail to apply.

The study of sensitivity analysis for multi-objective optimization problems as well
as for multiobjective optimal control problems is a fundamental topic in variational
analysis and optimization. There have been a lot of papers dealingwith differentiability
properties and subdifferentials of the frontier map (see [1, 7–10, 14, 18, 19, 30, 32,
33]). Normally, there are two approaches to study sensitivity analysis for optimization
problems, either through the primal space or through the dual space. Via the concept of
the contingent derivative in the primal space, several authors have studied the behavior
of the frontier map in [1, 9, 18, 19, 30, 32, 33]. Using the notion of normal cones which
is defined in dual space, authors [7, 8, 10, 14] have obtained sensitivity analysis results
for mathematical programming problems with functional constraints.

In [37], we have obtained formulas for computing the Mordukhovich subdifferen-
tial of the frontier map in a multi-objective parametric mathematical programming
problem with geometrical and functional constraints. Note that in [37], the functional
constraint is defined via linear mappings. So, constraint sets of the multi-objective
parametric mathematical programming problem are all convex. Hence, we can com-
pute the normal cone of the constraint set through the intersection of two normal cones
(see [37, Lemma 3.2]). But in this direction, we did not see formulas for computing
the Clarke coderivative of the frontier map in a multi-objective parametric mathe-
matical programming problem with geometrical and functional constraints where the
functional constraint is defined via nonconvex mappings.

In this paper, we continue to study sensitivity analysis to multi-objective para-
metric optimal control problems with nonconvex objective functions, nonlinear state
equations and control constraints by giving shaper formulas for computing the Clarke
corderivative of the frontier map. In order to prove the main result, we first reduce
the problem to a multi-objective parametric mathematical programming problem and
establish formulae for upper and lower-evaluation on the Clarke corderivative of the
frontiermapvia the normal coneof the constraint set, theFréchet derivative of objective
functions and constraint functions. Then, we apply the obtain results to derive formu-
las for computing the Clarke coderivative on the frontier map in a multi-objective
parametric optimal control problem.

The paper is organized as follows. In Sect. 2, we sate the control problem and
recall some auxiliary results. Formulae for upper and lower-evaluation on the Clarke
corderivative of the frontier map to a specific mathematical programming problem is
studied in Sect. 3. The last section establishes one theorem and one corollary on esti-
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mating/computing the Clarke corderivative of the frontier map to the multi-objective
parametric optimal control problem. Section4 also presents an example to illustrate
the main result of this paper.

2 Problem Formulation and Auxiliary Results

For the convenience of the reader, we divide this section into three subsections. In
the first subsection, we introduce the multi-objective parametric optimal control prob-
lem that we are interested in. The second subsection transforms the problem to a
multi-objective parametric optimization problem under geometrical and functional
constraints. In the last subsection, we recall some notions and facts from variational
analysis and generalized differentiation, which are related to our problem.

2.1 Control Problem

A wide variety of problems in optimal control problem can be posed in the following
form.

Determine a control vectoru ∈ L p([0, 1],Rm) and a trajectory x ∈ W 1,p([0, 1],Rn),
1 < p <∞, which solve

MinRs+ J (x, u, θ), (1)

with the state equation

ẋ(t) = ϕ
(
t, x(t)

)+ B(t)u(t)+ T (t)θ(t) a.e. t ∈ [0, 1], (2)

the initial value

x(0) = α, (3)

and the control constraint

u ∈ U . (4)

Here W 1,p([0, 1],Rn) is the Sobolev space consisting of absolutely continuous
functions x : [0, 1] → R

n such that ẋ ∈ L p([0, 1],Rn). Its norm is given by

‖x‖1,p = |x(0)| + ‖ẋ‖p.

The notations in (1)–(4) have the following meanings:

– x, u are the state variable and the control variable, respectively,
– (α, θ) ∈ R

n × L p([0, 1],Rk) are parameters,

– J (x, u, θ) =
(
J 1(x, u, θ), J 2(x, u, θ), . . . , J s(x, u, θ)

)

J i (x, u, θ) = gi
(
x(1)

)+ ∫ 1
0 Li

(
t, x(t), u(t), θ(t)

)
dt ,
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– ϕ : [0, 1] ×R
n → R

n , gi : Rn → R̄ and Li : [0, 1] ×R
n ×R

m ×R
k → R̄ (i =

1, 2, . . . , s) are given functions,
– B(t) = (

bi j (t)
)
n×m and T (t) = (

ci j (t)
)
n×k are matrix-valued functions,

– U is a closed and convex set in L p([0, 1],Rm),
– MinRs+ J (x, u, θ) is the set of efficient points of

A := {J (x, u, θ) : (x, u, θ) are satisfied (2)-(4) }

with respect to R
s+, that includes y ∈ A such that (y − R

s+) ∩ A = {y}. When
A = ∅, we stipulate that MinRs+ A = ∅.
This type of problems are investigated in [6, 16, 17, 24–26, 34, 35, 40] and the

references therein.

2.2 Reduction to a Parametric Optimization Problem

Put X = W 1,p([0, 1],Rn), U = L p([0, 1],Rm), � = L p([0, 1],Rk), W = R
n×�.

It is well known that X ,U ,� and W are Asplund spaces. For each w = (α, θ) ∈ W ,
we put

H(w) = {
(x, u) ∈ X ×U : (2) and (3) are satisfied

}
, (5)

and

K = X × U .

Then, the problem (1)− (4) can be written in the following form:

MinRs+ J (x, u, w), subject to (x, u) ∈ H(w) ∩ K . (6)

Let F : W ⇒ R
s be the multifunction given by

F(w) = (J � HK )(w) := {J (x, u, w) : (x, u) ∈ HK (w)}, (7)

where

HK (w) = H(w) ∩ K , ∀w ∈ W .

We put

F(w) = MinRs+F(w), w ∈ W (8)

and call F : W ⇒ R
s the efficient point multifunction or the frontier map of the

problem (1)− (4).
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2.3 Some Facts fromVariational Analysis and Generalized Differentiation

In this subsection, we recall some notions and facts from variational analysis and
generalized differentiation, which will be used in the sequel. These notations and
facts can be found in [5, 20, 22, 23, 29]. Unless otherwise stated, all spaces under
consideration are Asplund spaces whose norms are always denoted by ‖ · ‖. The
canonical pairing between Z and its dual Z∗ is denoted by 〈·〉. The symbol A∗ denotes
the adjoint operator of a linear continuous operator A. The opened ball with center z̄
and radius ρ is denoted by B(z̄, ρ).

A single-valued mapping f : Z → Y is said to be strictly differentiable at z̄ if there
is a linear continuous operator ∇ f (z̄) : Z → Y such that

lim
z,u→z̄

f (z)− f (u)− 〈∇ f (z̄), z − u〉
‖z − u‖ = 0.

Given a multifunction F : Z ⇒ Z∗ between a Asplund Z and its dual Z∗, we
denote by

Limsup
z→z̄

F(z) : =
{
z∗ ∈ Z∗ : ∃ sequences zn → z̄ and

w∗
z∗n → z∗

with z∗n ∈ F(zn) for all n ∈ N

}

and

Liminf
z→z̄

F(z) : =
{
z∗ ∈ Z∗ : ∀ sequences zn → z̄ ∃ z∗n ∈ F(zn) with n ∈ N

suchthat
w∗

z∗n → z∗as n→∞
}

the sequential Painlevé-Kuratowski upper/outer and lower/inner limits of F as z→ z̄
with respect to the norm topology of Z and the weak* topology of Z∗, where N :=
{1, 2, . . .}.

Let ϕ : Z → R̄ be an extended real-valued function and z̄ ∈ Z be such that ϕ(z̄) is
finite. For each ε ≥ 0, the set

∂̂εϕ(z̄) :=
{
z∗ ∈ Z∗ : lim inf

z→z̄

ϕ(z)− ϕ(z̄)− 〈z∗, z − z̄〉
‖z − z̄‖ ≥ −ε

}

is called the ε-Fréchet subdifferential of ϕ at z̄. A given vector z∗ ∈ ∂̂εϕ(z̄) is called
an ε-Fréchet subgradient of ϕ at z̄. The set ∂̂ϕ(z̄) = ∂̂0ϕ(z̄) is called the Fréchet
subdifferential of ϕ at z̄ and the set

∂ϕ(z̄) := Limsup
ϕ

z→z̄
ε↓0

∂̂εϕ(z) (9)
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is called theMordukhovich subdifferential of ϕ at z̄, where the notation z
ϕ−→ z̄ means

z→ z̄ and ϕ(z)→ ϕ(z̄). Hence

z∗ ∈ ∂ϕ(z̄)⇐⇒ thereexistsequences zk
ϕ−→ z̄, εk → 0+, and z∗k ∈ ∂̂εkϕ(zk)

such that z∗k
w∗−→ z∗. Ifϕ is lower semicontinuous around z̄, thenwecan equivalently put

ε = 0 in (9). Moreover, we have ∂ϕ(z̄) �= ∅ for every locally Lipschitzian function.
It is known that the Mordukhovich subdifferential reduces to the classical Fréchet
derivative for strictly differentiable functions and to subdifferential of convex analysis
for convex functions.

Suppose that D ⊂ Z , we denote the interior and the closure of D by int D and
cl D, respectively. Given a point x̄ ∈ cl D. The Bouligand tangent cone (or contingent
cone) and the Clarke tangent cone to D at x̄ are defined by

TB(z̄; D) = Limsup
t↓0

D − z̄

t
= {

h ∈ Z : ∃tn → 0+, ∃hn → h, z̄ + tnhn ∈ D,∀n}

and

TC (z̄; D) = Liminf
D

z→z̄
t↓0

D − z

t
= {

h ∈ Z : ∀tn → 0+,∀z̄n → z̄, ∃hn → h, z̄n

+tnhn ∈ D,∀n} ,

respectively. Note that these cones are closed and TC (z̄; D) is convex. Moreover,

TC (z̄; D) ⊂ TB(z̄; D)

and

TC (z̄; D) = TB(z̄; D) = T (z̄; D) = cl
(
D(z̄)

) = cl
(
cone(D − z̄)

)

= cl {λ(d − z̄) : d ∈ D, λ > 0}

when D is a convex set.
One says that D is tangentially regular at z̄ if TC (z̄; D) = TB(z̄; D). The negative

polar of the Clarke tangent cone TC (z̄; D) denoted by NC (z̄; D) is called the Clarke
normal cone to D at z̄, i.e.,

NC (z̄; D) = TC (z̄; D)◦ = {
z∗ ∈ Z∗ : 〈z∗, z〉 ≤ 0,∀z ∈ TC (z̄; D)

}
.

Let ε ≥ 0. The set

N̂ε(z̄; D) :=
{
z∗ ∈ Z∗ : lim sup

z
D−→z̄

〈z∗, z − z̄〉
‖z − z̄‖ ≤ ε

}
(10)
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is called the ε-Fréchet normal set to D at z̄ and the set

N (z̄; D) := Limsup
D

z→z̄
ε↓0

N̂ε(z; D)

is called the Mordukhovich normal cone to D at z̄. When ε = 0, the set N̂ (z̄; D) =
N̂0(z̄; D) in (10) is a cone called the Fréchet normal cone to D at z̄.

It is known that (see e.g., [22])

N̂ (z̄; D) ⊂ N (z̄; D) ⊂ NC (z̄; D).

The set D is said Fréchet normally regular at z̄ if N̂ (z̄; D) = NC (z̄; D). We know
that the Fréchet normal regularity of a nonempty closed subset D at z̄ implies the
tangential regularity of D at the corresponding point and if Z is assumed to be a finite
dimensional space, then we have the equivalence (see [4]).

It is also known that if 
 is a convex set, then the Mordukhovich normal cone
coincides with the Fréchet normal cone, coincides with the Clarke normal cone and
coincides with normal cone of convex analysis for convex sets.

The set D is said to be epi-Lipschitzian at z̄ if there exist a neighborhood U of z̄, a
number λ > 0, and a non-empty open set V ⊂ Z such that

z + tv ∈ D forall z ∈ U ∩ D, v ∈ V , t ∈ (0, λ).

Let G : W ⇒ Y be a set-valued map with the domain and the graph

dom G := {w ∈ W : G(w) �= ∅}, gph G := {(w, y) ∈ W × Y : y ∈ G(w)}.

The symbol G−1 denotes the inverse multifunction from Y to W given by

G−1(y) := {w ∈ W : y ∈ G(w)}.

Thus,

gph G−1 = {(y, w) ∈ Y ×W : (w, y) ∈ gph G}.

The Fréchet coderivative of G at (w̄, ȳ) ∈ gph G is the multifunction
D̂∗G(w̄, ȳ) : Y ∗ → W ∗ defined by D̂∗G(w̄, ȳ)(y∗) := {w∗ ∈ W ∗ : (w∗,−y∗) ∈
N̂

(
(w̄, ȳ); gphG)}, y∗ ∈ Y ∗.TheMordukhovich coderivativeofG at (w̄, ȳ) ∈ gphG

is the multifunction D∗G(w̄, ȳ) : Y ∗ → W ∗ defined by D∗G(w̄, ȳ)(y∗) := {w∗ ∈
W ∗ : (w∗,−y∗) ∈ N

(
(w̄, ȳ); gph G

)}, y∗ ∈ Y ∗. The Clarke coderivative of G at
(w̄, ȳ) ∈ gph G is the multifunction D∗CG(w̄, ȳ) : Y ∗ → W ∗ defined by

D∗CG(w̄, ȳ)(y∗) := {w∗ ∈ W ∗ : (w∗,−y∗) ∈ NC
(
(w̄, ȳ); gph G

)}, y∗ ∈ Y ∗.
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The mixed coderivative of G at (w̄, ȳ) ∈ gph G is the multifunction D∗MG(w̄, ȳ) :
Y ∗ → W ∗ defined by

D∗MG(w̄, ȳ)(y∗) :=
{
w∗1 ∈ W ∗ :∃ εn ↓ 0, (wn, yn)→ (w̄, ȳ), w∗n

w∗−→ w∗1, y∗n → y∗

with (w∗n,−y∗n ) ∈ N̂εn

(
(wn, yn); gph G

)}
, y∗ ∈ Y ∗.

It follows from the definitions that

D̂∗G(w̄, ȳ)(y∗) ⊂ D∗MG(w̄, ȳ)(y∗) ⊂ D∗G(w̄, ȳ)(y∗) ⊂ D∗CG(w̄, ȳ)(y∗),∀y∗ ∈ Y ∗.

Suppose that E ⊂ Y is a pointed closed convex cone, i.e., E ∩ (−E) = {0} and E
induces a partial order �E on Y , i.e.,

y �E y′ ⇔ y′ − y ∈ E, ∀y, y′ ∈ Y .

A single-valued mapping l : V ⊂ W → Y is said to be locally upper Lipschitzian
(respectively, locally Lipschitzian) at w̄ ∈ V if there are numbers η > 0 and � ≥ 0
such that

‖l(w)− l(w̄)‖ ≤ �‖w − w̄‖, forall w ∈ Bη(w̄) ∩ V
(
respectively, ‖l(w)− l(w′)‖ ≤ �‖w − w′‖, forall w,w′ ∈ Bη(w̄) ∩ V

)
.

We say that a multifunction L : W ⇒ Y admits a local upper Lipschitzian selection
at (w̄, ȳ) ∈ gph L if there is a single-valued mapping l : dom L → Y which is locally
upper Lipschitzian at w̄ satisfying l(w̄) = ȳ and l(w) ∈ L(w) for all w ∈ dom L in a
neighborhood of w̄.

3 Sensitivity Analysis in Multi-objective Programming Problems

In this section, we suppose that X , W and Z are Asplund spaces with the dual spaces
X∗,W ∗ and Z∗, respectively. Assume that g : W × Z → X is a continuous mapping.
Let f : W × Z → R

s be a vector function and 
 be a closed and convex set in Z . For
each w ∈ W , we put

G(w) := {
z ∈ Z : g(w, z) = 0

}
.

Consider the problem

MinRs+ f (w, z), subject to z ∈ G(w) ∩
. (11)

Let F̃ : W ⇒ R
s be the multifunction given by

F̃(w) = ( f � G
)(w) := { f (w, z) : z ∈ G
(w)},
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where G
(w) = G(w) ∩
, ∀w ∈ W . We put

F̃(w) = MinRs+ F̃(w), w ∈ W

and call F̃ : W ⇒ R
s the efficient point multifunction or the frontier map of the

problem (11). The point z̄ ∈ G(w̄)∩
 such that f (w̄, z̄) ∈ F̃(w̄) is called local weak
Pareto solution of the problem (11) at w̄.

Thus, G
 : W ⇒ Z be a multifunction with the domain and the graph

dom G
 = {w ∈ W : G(w) ∩
 �= ∅},
gph G
 = {(w, y) ∈ W × Y : y ∈ G(w) ∩
}.

This section is allocated to establish formulas for computing theClarke coderivative
of the efficient point multifunction F̃ . We first establish a formula for exact computing
the Clarke coderivative of the constraint function G
.

Proposition 3.1 Suppose that 
 is locally closed around z̄, epi-Lipschitzian at z̄.
Assume further that the function g is differentiable around (w̄, z̄),∇g is continuous at
(w̄, z̄), ∇zg(w̄, z̄) or ∇wg(w̄, z̄) is surjective, and the following regularity conditions
is satisfied

{
(w, z) ∈ W × Z : ∇g(w̄, z̄)(w, z) = 0

}
∩

[
W × int T (z̄,
)

]
�= ∅. (12)

Then for each (w∗, z∗) ∈ W ∗ × Z∗,

D∗CG
(w̄, z̄)(w∗, z∗) = −
⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(z∗ + z∗1)

)]
.

Proof Put B = gph G, D = W ×
. We first prove that

NC
(
(w̄, z̄); B) = N̂

(
(w̄, z̄); B) =

{(∇wg(w̄, z̄)∗x∗,∇zg(w̄, z̄)∗x∗
) : x∗ ∈ X∗

}
.

(13)

Note that B can be represented in the form

B = {(w, z) ∈ W × Z : g(w, z) = 0} = g−1(0).

From ∇g(w̄, z̄)(w, z) = ∇wg(w̄, z̄)w + ∇zg(w̄, z̄)z and ∇zg(w̄, z̄) or ∇wg(w̄, z̄) is
surjective, we get that∇g(w̄, z̄) is also surjective. By [22, Theorem 1.14 and Corollary
1.15], we get

N̂
(
(w̄, z̄); D) = N̂

(
(w̄, z̄); g−1(0))

= ∇g(w̄, z̄)∗ N̂
(
g(w̄, z̄); {0}) = ∇g(w̄, z̄)∗(X∗).
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Since the strictly differentiability of function g at (w̄, z̄) and [39, Lemma 3.5], we
have

NC
(
(w̄, z̄); D) = NC

(
(w̄, z̄); g−1(0))

= ∇g(w̄, z̄)∗NC
(
g(w̄, z̄); {0}) = ∇g(w̄, z̄)∗(X∗).

Thus, we obtain (13). We now prove that

NC
(
(w̄, z̄); B ∩ D

) = {0} × N (z̄;
)+ NC
(
(w̄, z̄); B)

. (14)

Since 
 is epi-Lipschitzian at z̄, we have that D is also epi-Lipschitzian at (w̄, z̄). By
(13), we get

TC ((w̄, z̄); B) = T̂ ((w̄, z̄); B)

=
{
(w, z) ∈ W × Z : 〈(w∗, z∗), (w, z)〉 ≤ 0, ∀(w∗, z∗) ∈ NC

(
(w̄, z̄); B)}

=
{
(w, z) ∈ W × Z : 〈(w, z),∇g(w̄, z̄)∗x∗〉 ≤ 0, ∀x∗ ∈ X∗

}

=
{
(w, z) ∈ W × Z : 〈∇g(w̄, z̄)(w, z), x∗〉 ≤ 0, ∀x∗ ∈ X∗

}

=
{
(w, z) ∈ W × Z : ∇g(w̄, z̄)(w, z) = 0

}
.

Combining this and (12), we have TC ((w̄, z̄); B) ∩ int TC ((w̄, z̄); D) �= ∅. Note that
B and D are Fréchet normally regular at (w̄, z̄). By [4, Theorem 6.2], B and D are
also Fréchet tangentially regular at (w̄, z̄). By [28, Corollary 3], we obtain that

NC
(
(w̄, z̄); B ∩ D

) = NC ((w̄, z̄); D)+ NC
(
(w̄, z̄); B) = {0} × N (z̄;
)

+ NC
(
(w̄, z̄); B)

,

this is formula (14). Since the definition of the Clarke coderivative, we get

D∗CG
(w̄, z̄)(z∗) = {w∗1 ∈ W ∗ : (w∗1,−z∗) ∈ NC
(
(w̄, z̄); gph G


)}
= {w∗1 ∈ W ∗ : (w∗1,−z∗) ∈ NC

(
(w̄, z̄);C ∩ D

)}.

From (14), we have

D∗CG
(w̄, z̄)(z∗) = {w∗ ∈ W ∗ : (w∗,−z∗) ∈ {0} × NC (z̄;
)+ NC
(
(w̄, z̄); B)}.

We note that (w∗,−z∗) ∈ {0}× NC (z̄;
)+ NC
(
(w̄, z̄); B)

if and only if there exists

z∗1 ∈ NC (z̄;
) = N̂ (z̄;
) such that (w∗,−z∗ − z∗1) ∈ NC
(
(w̄, z̄); B)

. Since (13),
there exists x∗ ∈ X∗ such thatw∗ = ∇wg(w̄, z̄)∗(x∗) and−z∗1−z∗ = ∇zg(w̄, z̄)∗(x∗).
This follows that w∗ = −∇wg(w̄, z̄)∗(−x∗) and z∗1 + z∗ = ∇zg(w̄, z̄)∗(−x∗). So

w∗ ∈ −∇wg(w̄, z̄)∗
[
(∇zg(w̄, z̄)∗)−1(z∗1 + z∗)

]
.
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Thus,

D∗CG
(w̄, z̄)(z∗) = −
⋃

z∗1∈N (z̄;
)

∇wg(w̄, z̄)∗
[
(∇zg(w̄, z̄)∗)−1(z∗1 + z∗)

]
.

The proof of the proposition is complete. ��
Note that T (z̄;
) = Z where z̄ ∈ int 
. and

{
(w, z) ∈ W × Z : ∇g(w̄, z̄)(w, z) = 0

}
�= ∅,

for all (w, z) ∈ W × Z . So, the condition (12) is satisfied if z̄ ∈ int 
.Moreover, since
z̄ ∈ int 
, there exists a ball B(z̄, ε) with radius ε, center z̄ such that B(z̄, ε) ⊂ 
.

Choose U = B
(
z̄, ε

2

)
, V = B

(
0, ε

2

)
and λ = 1, we have

‖z1 + t z2 − z̄‖ ≤ ‖z1 − z̄‖ + t‖z2‖ <
ε

2
+ t

ε

2
<

ε

2
+ ε

2
= ε,

for all z1 ∈ U , z2 ∈ V and t ∈ (0, λ). So, z1 + t z2 ∈ B ⊂ 
 for all z1 ∈ U , z2 ∈ V
and t ∈ (0, λ). This means that 
 epi-Lipschitzian at z̄.

The uniformly positive polar to cone K ⊂ R
s (see [10]) is defined by

K ∗up := {y∗ ∈ R
s : ∃β > 0, 〈y∗, k〉 ≥ β|k|, ∀k ∈ K }.

We estimate the Clarke coderivatives of the sum of a multifunction F̃ and cone
K = R

s+ by the following proposition.

Proposition 3.2 Let F̂ : W × R
s → R

s be a multifunction defined by F̂(w, y) =
F̃(w) ∩ (y − R

s+).

(i) If F̃ + R
s+ is tangentially regular at (w̄, ȳ), then one has

D∗C (F̃ + R
s+)(w̄, ȳ)(y∗) ⊂ D∗C F̃(w̄, ȳ)(y∗), y∗ ∈ R

s;

(ii) If F̃ is Fréchet normally regular at (w̄, ȳ) and F̂ admits a local upper Lipschitzian
selection at (w̄, ȳ, ȳ), then one has

D∗C (F̃ + R
s+)(w̄, ȳ)(y∗) ⊃ D∗C F̃(w̄, ȳ)(y∗), y∗ ∈ K ∗up = int Rs+,

where K = R
s+.

Proof We first prove assertion (i). It is easy to see that gph F̃ ⊂ gph (F̃ + R
s+). By

the assumption of proposition and the monotonicity property of the Bouligand tangent
cone, we get

TC
(
(w̄, ȳ); gph F̃) ⊂ TB

(
(w̄, ȳ); gph F̃) ⊂ TB

(
(w̄, ȳ); gph (F̃ + R

s+)
)
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= TC
(
(w̄, ȳ); gph (F̃ + R

s+)
)
.

So,

NC
(
(w̄, ȳ); gph (F̃ + R

s+)
) ⊂ NC

(
(w̄, ȳ); gph F̃)

.

Since the definition of the Clarke coderivative, we have assertion (i) of proposition.
To prove assertion (ii), we first note that

K ∗up = int Rs+,

where K = R
s+. We now take y∗ ∈ K ∗up and w∗ ∈ D∗C F̃(w̄, ȳ)(y∗). Assume for

contradiction that w∗ /∈ D∗C (F̃ + R
s+)(w̄, ȳ)(y∗). Since the definition of the Clarke

coderivative, (w∗,−y∗) /∈ NC
(
(w̄, ȳ); gph (F̃ + R

s+)
)
. Note that

N̂
(
(w̄, ȳ); gph (F̃ + R

s+)
) ⊂ NC

(
(w̄, ȳ); gph (F̃ + R

s+)
)
.

So, (w∗,−y∗) /∈ N̂
(
(w̄, ȳ); gph (F̃ + R

s+)
)
. By the definition of the Fréchet normal

cone, there is (wn, yn)→ (w̄, ȳ) with yn ∈ F̃(wn)+ R
s+ such that

lim sup
n→∞

〈(w∗,−y∗), (wn, yn)− (w̄, ȳ)〉
‖(wn, yn)− (w̄, ȳ)‖ > 0. (15)

Note that dom F̂ = gph (F̃ + R
s+). From F̂ admits a local upper Lipschitzian

selection at (w̄, ȳ, ȳ), there are l > 0 and U × V is a neighborhood of (w̄, ȳ) such
that for each (u, y) ∈ (U × V )∩ gph (F̃ +R

s+), we can find y′ ∈ F̂(w, y) satisfying
‖y′ − ȳ‖ ≤ l‖(w, y) − (w̄, ȳ)‖. Since (wn, yn) → (w̄, ȳ), there is n0 ∈ N such
that (wn, yn) ∈ U × V , for all n > n0. Thus, for each n > n0, there exists y′n ∈
F̂(wn, yn) = F̃(wn) ∩ (yn − R

s+) such that ‖y′n − ȳ‖ ≤ l‖(wn, yn) − (w̄, ȳ)‖. So,
for each n > n0, there are y′n ∈ F̃(wn) and kn ∈ R

s+ such that y′n = yn − kn . This is

equivalent to that there is (wn, y′n)
gph F̃−−−→ (w̄, ȳ) such that

‖(wn, y
′
n)− (w̄, ȳ)‖ = ‖(wn − w̄, y′n − ȳ)‖ = ‖wn − w̄‖ + ‖y′n − ȳ‖

≤ ‖wn − w̄‖ + ‖yn − ȳ‖ + ‖y′n − ȳ‖ = ‖(wn − w̄, yn − ȳ)‖
+ ‖y′n − ȳ‖
≤ ‖(wn − w̄, yn − ȳ)‖ + l‖(wn − w̄, yn − ȳ)‖
= (l + 1)‖(wn − w̄, yn − ȳ)‖.

Since y∗ ∈ K+up = int Rs+ and kn ∈ R
s+, we have 〈y∗, kn〉 ≥ 0, ∀n. So, for each

n ≥ n0, we get

〈(w∗,−y∗), (wn, y
′
n)− (w̄, ȳ)〉 = 〈(w∗,−y∗), (wn − w̄, yn − kn − ȳ)〉
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= 〈(w∗,−y∗), (wn − w̄, yn − ȳ)〉 + 〈y∗, kn〉
≥ 〈(w∗,−y∗), (wn − w̄, yn − ȳ)〉.

Combining this and (15), we have

lim sup
n→∞

〈(w∗,−y∗), (wn, y′n)− (w̄, ȳ)〉
‖(wn, y′n)− (w̄, ȳ)‖ ≥ lim sup

n→∞
〈(w∗,−y∗), (wn, yn)− (w̄, ȳ)〉

‖(wn, y′n)− (w̄, ȳ)‖
≥ lim sup

n→∞
〈(w∗,−y∗), (wn, yn)− (w̄, ȳ)〉

(l + 1)‖(wn, yn)− (w̄, ȳ)‖ > 0.

So,

lim sup

(w,y)
gph F̃−−−→(w̄,ȳ)

〈(w∗,−y∗), (w, y)− (w̄, ȳ)〉
‖(w, y)− (w̄, ȳ)‖ > 0.

This is equivalent to (w∗,−y∗) /∈ N̂
(
(w̄, ȳ); gph F̃)

. Hence, w∗ /∈ D∗C F̃(w̄, ȳ)(y∗),
a contradiction. The proof of proposition is complete. ��

Next, we establish outer/inner estimates for the Clarke coderivative of F̃ .

Proposition 3.3 Let 
 be locally closed around z̄, epi-Lipschitzian at z̄ and let G̃
 :
W × R

s → Z be a multifunction defined by G̃
(w, y) = {z ∈ G
(w) : y =
f (w, z)}. Suppose that the function g is differentiable around (w̄, z̄),∇g is continuous
at (w̄, z̄),∇zg(w̄, z̄)or∇wg(w̄, z̄) is surjective, and the following regularity conditions
is satisfied

{
(w, z) ∈ W × Z : ∇g(w̄, z̄)(w, z) = 0

}
∩

[
W × int T (z̄,
)

]
�= ∅.

Assume further that w̄ ∈ W, ȳ ∈ F̃(w̄) and z̄ ∈ G
(w̄) = G(w̄) ∩ 
 satisfying
(w̄, z̄) ∈ f −1(ȳ), the function f is Fréchet differentiable at (w̄, z̄) with the derivative
∇ f (w̄, z̄) = (∇w f (w̄, z̄),∇z f (w̄, z̄)

)
.

(i) If F̃ is tangentially regular at (w̄, ȳ), then one has

D∗C F̃(w̄, ȳ)(y∗) ⊂ ∇w f (w̄, z̄)∗(y∗)

−
⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+ z∗1)

)]
,

for all y∗ ∈ R
s;

(ii) If G
 is Fréchet normally regular at (w̄, z̄) and G̃
 admits a local upper Lips-
chitzian selection at (w̄, ȳ, z̄), then

D∗C F̃(w̄, ȳ)(y∗) ⊃ ∇w f (w̄, z̄)∗(y∗)
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−
⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+ z∗1)

)]
,

for all y∗ ∈ R
s .

Proof To prove assertion (i), we first prove that

{
(w,∇ f (w̄, z̄)(w, z)) : (w, z) ∈ TC

(
(w̄, z̄); gph G


)} ⊂ TC
(
(w̄, ȳ); gph F̃

)
,

∀w ∈ W . (16)

For each w ∈ W , put (w, z) ∈ TC
(
(w̄, z̄); gph G


) ⊂ TB
(
(w̄, z̄); gph G


)
. Then,

there are sequences {tn} ⊂ (0,+∞), tn → 0 and {(wn, zn)} ⊂ W × Z , (wn, zn) →
(w, z) with z̄ + tnzn ∈ G
(w̄ + tnwn) for all n ∈ N. We get

f (w̄ + tnwn, z̄ + tnzn) ∈ F̃(w̄ + tnwn), ∀n.

This is equivalent to

ȳ + tn
f (w̄ + tnwn, z̄ + tnzn)− f (w̄, z̄)

tn
∈ F̃(w̄ + tnwn), ∀n.

By the Fréchet differentiable property of f at (w̄, z̄), we have

lim
n→∞

f (w̄ + tnwn, z̄ + tnzn)− f (w̄, z̄)

tn
= ∇ f (w̄, z̄)(w, z).

This implies that

(
w,∇ f (w̄, z̄)(w, z)

) ∈ TB
(
(w̄, ȳ); gph F̃

) = TC
(
(w̄, ȳ); gph F̃

)
.

Thus, (16) is proved. For each y∗ ∈ R
s , we now take any w∗ ∈ D∗C F̃(w̄, ȳ)(y∗). By

the definition of the Clarke coderivative, we get

(w∗,−y∗) ∈ NC
(
(w̄, ȳ); gph F̃

)
. (17)

We now prove that

NC
(
(w̄, ȳ); gph F̃

) ⊂
{(∇w f (w̄, z̄)∗(y∗)+ u∗,−y∗

) :
(
u∗,−∇z f (w̄, z̄)∗(y∗)

) ∈ NC
(
(w̄, z̄); gph G


)}
.

(18)

Since (16), inclusion (18) is proved if we can show

〈(∇w f (w̄, z̄)∗(y∗)+ u∗,−y∗
)
,
(
w,∇ f (w̄, z̄)(w, z)

)〉 ≤ 0,
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for all (w, z) ∈ TC
(
(w̄, z̄); gph G


)
and for all

(
u∗,−∇z f (w̄, z̄)∗(y∗)

) ∈
NC

(
(w̄, z̄); gphG


)
. This is always true, because for each (w, z) ∈ TC

(
(w̄, z̄); gphG


)

and for all

(
u∗,−∇z f (w̄, z̄)∗(y∗)

) ∈ NC
(
(w̄, z̄); gph G


)
,

we have

〈(∇w f (w̄, z̄)∗(y∗)+ u∗,−y∗
)
,
(
w,∇ f (w̄, z̄)(w, z)

)〉

=
〈(∇w f (w̄, z̄)∗(y∗)+ u∗,−y∗

)
,
(
w,∇w f (w̄, z̄)w +∇z f (w̄, z̄)z

)〉

= ∇w f (w̄, z̄)∗y∗(w)+ u∗(w)−∇w f (w̄, z̄)∗y∗(w)−∇z f (w̄, z̄)∗y∗(z)
= u∗(w)− ∇z f (w̄, z̄)∗y∗(z) ≤ 0.

Combining (17) and (18), there exists
(
u∗,−∇z f (w̄, z̄)∗(y∗)

) ∈ NC
(
(w̄, z̄); gphG


)

such that (w∗,−y∗) = (∇w f (w̄, z̄)∗(y∗)+ u∗,−y∗
)
. This implies that

(
w∗ − ∇w f (w̄, z̄)∗(y∗),−∇z f (w̄, z̄)∗(y∗)

) ∈ NC
(
(w̄, z̄); gph G


)
.

Using the definition of the Clarke coderivative, we get

w∗

−∇w f (w̄, z̄)∗(y∗) ∈ D∗CG
(w̄, z̄)
(∇z f (w̄, z̄)∗(y∗)

)
.

So, w∗ ∈ ∇w f (w̄, z̄)∗(y∗)+ DCG
(w̄, z̄)
(∇z f (w̄, z̄)∗(y∗)

)
. By Proposition 3.1,

w∗ ∈ ∇w f (w̄, z̄)∗(y∗)
−

⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+ z∗1)

)]
.

Thus, assertion (i) is proved. We now prove assertion (ii). Take any w∗ /∈
D∗C F̃(w̄, ȳ)(y∗), we will prove that

w∗ /∈ ∇w f (w̄, z̄)∗(y∗)
−

⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+ z∗1)

)]
.

Since Proposition 3.1, we need to prove

w∗ /∈ ∇w f (w̄, z̄)∗(y∗)+ D∗CG
(w̄, z̄)
(∇z f (w̄, z̄)∗(y∗)

)
.
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From w∗ /∈ D∗C F̃(w̄, ȳ)(y∗), we have (w∗,−y∗) /∈ NC
(
(w̄, ȳ); gph F̃

)
. So

(w∗,−y∗) /∈ N̂
(
(w̄, ȳ); gph F̃

)
. By the definition of Fréchet normal cone,

lim sup

(w,y)
gph F̃−−−→(w̄,ȳ)

〈(w∗,−y∗), (w, y)− (w̄, ȳ)〉
‖(w, y)− (w̄, ȳ)‖ > 0.

So, there is {(wn, yn)} ⊂ gph F̃ and α > 0 such that (wn, yn)→ (w̄, ȳ) as n →∞,
with

〈w∗, wn − w̄〉 ≥ 〈y∗, yn − ȳ〉 + α
(‖wn − w̄‖ + ‖yn − ȳ‖) (19)

for all n sufficiently large. From Ĝ
 admits a local upper Lipschitzian selection at
(w̄, ȳ, z̄), there exists l : dom Ĝ
 → Z satisfying l(w̄, ȳ) = z̄, l(w, y) ∈ Ĝ
(w, y)
for all (w, y) ∈ dom Ĝ
 sufficiently close to (w̄, ȳ) and that l is local upper Lips-
chitzian at (w̄, ȳ). So, there is � > 0 such that

‖zn − z̄‖ ≤ �
(‖wn − w̄‖ + ‖yn − ȳ‖) (20)

for all n sufficiently large, where zn = l(wn, yn) ∈ Ĝ
(wn, yn). From zn ∈
Ĝ
(wn, yn), we have zn ∈ G
(wn), yn = f (wn, zn). Combining this and (19),
we get

〈w∗, wn − w̄〉 ≥ 〈y∗, f (wn, zn)− f (w̄, z̄)〉 + α
(‖wn − w̄‖ + ‖ f (wn, zn)− f (w̄, z̄)‖)

= 〈y∗,∇ f (w̄, z̄)(wn − w̄, zn − z̄)〉 + o(‖wn − w̄‖ + ‖zn − z̄‖)
+ α

(‖wn − w̄‖ + ‖ f (wn, zn)− f (w̄, z̄)‖)

= 〈∇ f (w̄, z̄)∗(y∗), (wn − w̄, zn − z̄)〉 + o(‖wn − w̄‖ + ‖zn − z̄‖)
+ α

(‖wn − w̄‖ + ‖ f (wn, zn)− f (w̄, z̄)‖). (21)

Since (20),

α‖ f (wn, zn)− f (w̄, z̄)‖ ≥ α

2
‖ f (wn, zn)− f (w̄, z̄)‖ ≥ α

2�
‖zn − z̄‖ − α

2
‖wn − w̄‖.

Combining this and (21), we have

〈w∗, wn − w̄〉 ≥ 〈∇ f (w̄, z̄)∗(y∗), (wn − w̄, zn − z̄)〉 + o(‖wn − w̄‖ + ‖zn − z̄‖)
+ α

2
‖wn − w̄‖ + α

2�
‖zn − z̄‖)

≥ 〈∇ f (w̄, z̄)∗(y∗), (wn − w̄, zn − z̄)〉 + o(‖wn − w̄‖ + ‖zn − z̄‖)
+ α̂

(‖wn − w̄‖ + ‖zn − z̄‖),
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with α̂ = min{α2 , α
2� }. Thus,

lim sup

(w,z)
gph G
−−−−→(w̄,z̄)

〈(w∗ − ∇w f (w̄, z̄)∗(y∗), w − w̄〉 − 〈∇z f (w̄, z̄)∗(y∗), z − z̄〉
‖w − w̄‖ + ‖z − z̄‖ ≥ α̂,

which means that
(
w∗ −∇w f (w̄, z̄)∗(y∗),−∇z f (w̄, z̄)∗(y∗)

)
/∈ N̂

(
(w̄, z̄); gph G


)
.

By the Fréchet normal regularity of G
 at (w̄, z̄), w∗ − ∇w f (w̄, z̄)∗(y∗) /∈
D∗CG
(w̄, z̄)

(∇z f (w̄, z̄)∗(y∗)
)
. By Proposition 3.1, we obtain

w∗ − ∇w f (w̄, z̄)∗(y∗) /∈
−

⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+ z∗1)

)]
.

Thus, assertion (ii) is proved. ��

We say that the domination property holds for a set-valued map F̃ : W ⇒ R
s

around w̄ ∈ W , if there exists a neighborhoodV of w̄ such that F̃(w) ⊂ MinRs+ F̃(w)+
R
s+, ∀w ∈ V . The reader is referred to [21] for discussions and examples.
We consider the multifunctions F̂, G̃
 which are defined in Proposition 3.2 and

3.3, respectively. The following theorem gives inner and outer estimates on the Clarke
coderivative of the extremummultifunction F̃ , which is the main result of this section.

Theorem 3.1 Let 
 be locally closed around z̄, epi-Lipschitzian at z̄ and w̄ ∈ W,
z̄ ∈ G
(w̄) = G(w̄) ∩ 
 be such that ȳ = f (w̄, z̄) ∈ F̃(w̄). Suppose that the
function g is differentiable around (w̄, z̄), ∇g is continuous at (w̄, z̄), ∇zg(w̄, z̄) or
∇wg(w̄, z̄) is surjective, and the following regularity conditions is satisfied

{
(w, z) ∈ W × Z : ∇g(w̄, z̄)(w, z) = 0

}
∩

[
W × int T (z̄,
)

]
�= ∅. (22)

Assume further that the function f is Fréchet differentiable at (w̄, z̄)with the derivative
∇ f (w̄, z̄) = (∇w f (w̄, z̄),∇z f (w̄, z̄)

)
, the domination property holds for F̃ around

w̄ and F̂ admits a local upper Lipschitzian selection at (w̄, ȳ, ȳ).

(i) Suppose that F̃ and F̃ + R
s+ are tangentially regular at (w̄, ȳ). If F̃ is Fréchet

normally regular at (w̄, ȳ), then one has

D∗C F̃(w̄, ȳ)(y∗) ⊂ ∇w f (w̄, z̄)∗(y∗)

−
⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+z∗1)

)]
,

for all y∗ ∈ int Rs+;
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(ii) Suppose that F̃ +R
s+ is tangentially regular at (w̄, ȳ) and F̃ is Fréchet normally

regular at this point. If G
 is Fréchet normally regular at (w̄, z̄) and G̃
 admits
a local upper Lipschitzian selection at (w̄, ȳ, z̄), then

D∗C F̃(w̄, ȳ)(y∗) ⊃ ∇w f (w̄, z̄)∗(y∗)

−
⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+z∗1)

)]
, (23)

for all y∗ ∈ int Rs+.

Proof Since F̃(w̄) ⊂ F̃(w) for all w ∈ W and the domination property holds for F̃
around w̄, there exists a neighborhood V of w̄ such that F̃(w)+K = F̃(w)+K , ∀w ∈
V . So,

D∗C (F̃ + R
s+)(w̄, ȳ)(y∗) = D∗C (F̃ + R

s+)(w̄, ȳ)(y∗), ∀y∗ ∈ R
s . (24)

Since F̂ admits a local upper Lipschitzian selection at (w̄, ȳ, ȳ), F̃ is Fréchet normally
regular at (w̄, ȳ) and assertion (ii) of Proposition 3.2, we get

D∗C F̃(w̄, ȳ)(y∗) ⊂ D∗C (F̃ + R
s+)(w̄, ȳ)(y∗),∀y∗ ∈ int Rs+. (25)

Since the tangential regularity of F̃+R
s+ at (w̄, ȳ), we can prove similarly to assertion

(i) of Proposition 3.2 that

D∗C (F̃ + R
s+)(w̄, ȳ)(y∗) ⊂ D∗C F̃(w̄, ȳ)(y∗),∀y∗ ∈ R

s+. (26)

By the tangential regularity of F̃ at (w̄, ȳ) and assertion (i) of Proposition 3.3,

D∗C F̃(w̄, ȳ)(y∗) ⊂ ∇w f (w̄, z̄)∗(y∗)

−
⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+ z∗1)

)]
,

(27)

for all y∗ ∈ R
s . Since (24)-(27), we obtain assertion (i) of theorem. We now prove

assertion (ii). By the tangential regularity of F̃ + R
s+ at (w̄, ȳ) and assertion (i) of

Proposition 3.2, we get

D∗C F̃(w̄, ȳ)(y∗) ⊃ D∗C (F̃ + R
s+)(w̄, ȳ)(y∗),∀y∗ ∈ R

s . (28)

Put a multifunction F̂ : W ×R
s → R

s defined by F̂(w, y) = F̃(w)∩ (y−R
s+). It is

easy to see that F̂(w, y) ⊂ F̂(w, y) for all (w, y) ∈ W×R
s , dom F̂ = gph (F̃+R

s+)

and dom F̂ = gph (F̃ + R
s+). Combining this and the assumptions of theorem, we

have that F̂ admits a local upper Lipschitzian selection at (w̄, ȳ, ȳ). Combining this
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and Fréchet normal regularity of F̃ at (w̄, ȳ), we can prove similarly to assertion (ii)
of Proposition 3.2 that

D∗C (F̃ + R
s+)(w̄, ȳ)(y∗) ⊃ D∗C F̃(w̄, ȳ)(y∗),∀y∗ ∈ int Rs+. (29)

By assertion (ii) of Proposition 3.3,

D∗C F̃(w̄, ȳ)(y∗) ⊃ ∇w f (w̄, z̄)∗(y∗)

−
⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+ z∗1)

)]
,

(30)

for all y∗ ∈ int Rs . Combining (24) and (28)-(30), we obtain assertion (ii) of theorem.
��

Let us give some illustrative examples for Theorem 3.1.

Example 3.1 Let Z = R
3,W = R

2,
 = (0,+∞)× (0,+∞)× [π2 , 3π
2 ], K = R

2+,
f (w, z) = (

f 1(w, z), f 2(w, z)
)
, where

f 1(w, z) =
√
2(z21 + z22)− w1 + w2,

f 2(w, z) = (z1 − 1)2 + (z2 − 1)2 − w1 + w2

andG(w) = {
(z1, z2, z3) ∈ R

3 : z1+z2 = 2w1, sin z3 = 0
}
.Assume that w̄ = (1, 0).

Then one has z̄ = (1, 1, π), ȳ = f (w̄, z̄) = (1,−1) and

D∗C F̃(w̄, ȳ)(y∗1 , y∗2 ) =
{
(y∗1 + y∗2 ,−y∗1 + y∗2 )

}
, ∀y∗1 , y∗2 ∈ (0,+∞).

Indeed, for w̄ = (1, 0), we have the following problem

Min
R
2+

{(√
2(z21 + z22)− 1, (z1 − 1)2 + (z2 − 1)2 − 1

)
: (z1, z2, z3) ∈ G(w̄) ∩


}
,

where G(w̄) = {
(z1, z2, z3) ∈ R

3 : z1 + z2 = 2, sin z3 = 0
}
. It is easy to check

that z̄ = (1, 1, π) is a solution of problem corresponding to w̄ and therefore ȳ =
f (w̄, z̄) = F̃(w̄) = F̃(w̄) = (1,−1), and N (z̄;
) = 0R3 . We have

G
(w) = {z ∈ 
 : z1 + z2 = 2w1, sin z3 = 0}
= {z1, z2 > 0, z3 = π : z1 + z2 = 2w1},

gph G
 = {(w, z) ∈ W ×
 : z1 + z2 = 2w1, sin z3 = 0}
= {(w, z) ∈ R

5 : w1, z1, z2 > 0, z3 = π, z1 + z2 = 2w1}

and

F̃(w) =
{
y = (y1, y2) =

(
f 1(w, z), f 2(w, z)

) : z ∈ G
(w)
}
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=
{
y = (y1, y2) : y1 = 2

√
(z1 − w1)2 + w2

1 − w1 + w2,

y2 = 2(z1 − w1)
2 + 2w2

1 + w2 − w1 + 2 : z1 > 0
}

=
{
y = (y1, y2) ∈ R

2 : y1 ≥ 2|w1| − w1 + w2, y2 ≥ 2w2
1 + w2 − w1 + 2

}

= F̃(w)+ R
2+.

So, the domination property holds for F̃ around w̄ and F̂(w, y) = F̃(w)∩ (y −R
2+)

admits a local upper Lipschitzian selection at (w̄, ȳ, ȳ). We also get

gph F̃ =
{
(w, y) = (w1, w2, y1, y2) ∈ R

4 : y1 = 2
√

(z1 − w1)2 + w2
1 − w1 + w2,

y2=2(z1−w1)
2+2w2

1+w2 − w1+2,
w1, z1>0

}
.

So, we can show that F̃, F̃ and F̃ +R
2+, F̃ +R

2+ are normally regular at (w̄, ȳ). We
also prove that the mapping G̃
, which is defined by

G̃
(w, y) = {z ∈ G
(w) : y = f (w, z)}
=

{
z1, z2 > 0, z3=π : z1+z2=2w1, y1=2

√
(z1−w1)2+w2

1−w1+w2,

y2 = 2(z1 − w1)
2 + 2w2

1 + w2

− w1 + 2
}
,

admits a local upper Lipschitzian selection at (w̄, ȳ, z̄). It is easy to see that

∇w f (w̄, z̄) =
[−1 1
−1 1

]
, ∇z f (w̄, z̄) =

[
1 1 0
0 0 0

]

and

∇wg(w̄, z̄)(w1, w2) = (−2w1, 0), ∇zg(w̄, z̄)(z1, z2, z3) = (z1 + z2,−z3).

Thus, assumptions of Theorem 3.1 are satisfied. By this theorem,

D∗C F̃(w̄, ȳ)(y∗) = ∇w f (w̄, z̄)∗(y∗)

−
⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+ z∗1)

)]
,

(31)
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for all y∗ = (y∗1 , y∗2 ) ∈ (0,+∞) × (0,+∞). Note that for any y∗ = (y∗1 , y∗2 ) ∈
(0,+∞)× (0,+∞), we have

∇w f (w̄, z̄)∗(y∗)=(−y∗1+y∗2 ,−y∗1+y∗2 ), ∇z f (w̄, z̄)∗(y∗)=(y∗1 , y∗1 , 0), N (z̄;
)={0}.
So, (∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+ z∗1) = (y∗1 , 0),

−
⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(y∗)+ z∗1)

)] = (2y∗1 , 0).

Combining this and (31), we obtain

D∗C F̃(w̄, ȳ)(y∗) =
{
(y∗1 + y∗2 ,−y∗1 + y∗2 )

}
, ∀y∗ = (y∗1 , y∗2 ) ∈ (0,+∞)× (0,+∞).

The following example shows that assumptions in Theorem 3.1 are essential. Par-
ticularly, inclusion (23) may fail to hold if the assumption on the existence of the local
upper Lipschitzian selection of G̃
 at the point under consideration is omitted.

Example 3.2 Let W = Z = R, s = 2,
 = [−1,+∞), f (w, z) = (z2, z2 + w) and
G(w) = {

z ∈ R : z2 − w = 0
}
. Assume that w̄ = 0. Then one has z̄ = 0, ȳ =

f (w̄, z̄) = (0, 0) and D∗C F̃(w̄, ȳ)(1, 1) = (−∞, 0]. While

∇w f (w̄, z̄)∗(1, 1)

−
⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(1, 1)+ z∗1)

)] = R.

Indeed, for w̄ = 0, we have F̃(w̄) = Min
R
2+{(z2, z2) : z ∈ G
(w̄)}, where

G
(w̄) = {
z ∈ R : z2 = 0, z ≥ −1}. It is easy to check that z̄ = 0 is the unique

solution of the problem corresponding to w̄ and therefore ȳ = f (w̄, z̄) = F̃(w̄) =
F̃(w̄) = (0, 0) and N (z̄;
) = 0. We have

G(w) =
{
{√w,−√w} if w ≥ 0

∅ otherwise,

G
(w) =

⎧
⎪⎨

⎪⎩

{√w} if w > 1

{√w,−√w} if 0 ≤ w ≤ 1

∅ if w < 0,

gph G
(w) =

⎧
⎪⎨

⎪⎩

{(w,
√

w)} if w > 1

{(w,
√

w), (w,−√w)} if 0 ≤ w ≤ 1

∅ if w < 0

and

F̃(w) = {y = f (w, z) : z ∈ G
(w)} = {(w, 2w) : w ≥ 0}.
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So, the domination property holds for F̃ around w̄ and F̂(w, y) = F̃(w)∩ (y −R
2+)

admits a local upper Lipschitzian selection at (w̄, ȳ, ȳ). We also get

gph F̃ = {(w, y) = (w, y1, y2) ∈ R
3 : w ≥ 0, y1 = w, y2 = 2w}.

So, we can show that F̃, F̃ and F̃ +R+, F̃ +R+ are normally regular at (w̄, ȳ). We
also prove that the mapping G̃
, which is defined by

G̃
(w, y) =

⎧
⎪⎨

⎪⎩

{√w} if w > 1, y = (w, 2w)

{√w,−√w} if 0 ≤ w ≤ 1, y = (w, 2w)

∅ if w < 0

does not admit a local upper Lipschitzian selection at (w̄, ȳ, z̄). It is easy to see that
∇w f (w̄, z̄) = (0, 1), ∇z f (w̄, z̄) = (0, 0) and ∇wg(w̄, z̄) = −1, ∇zg(w̄, z̄) = 0.
Thus, the remaining assumptions of Theorem 3.1 are satisfied. We are able to cal-
culate directly, ∇z f (w̄, z̄)∗(1, 1)+ z∗1 = 0,∀z∗1 ∈ N̂ (z̄,
). So,

(
(∇zg(w̄, z̄)∗)−1(∇z

f (w̄, z̄)∗(1, 1)+ z∗1)
) = R. Hence,

∇w f (w̄, z̄)∗(1, 1)
−

⋃

z∗1∈N̂ (z̄,
)

[∇wg(w̄, z̄)∗
(
(∇zg(w̄, z̄)∗)−1(∇z f (w̄, z̄)∗(1, 1)+ z∗1)

)] = R.

While, D∗C F̃(w̄, ȳ)(1, 1) = (−∞, 0].

4 Sensitivity Analysis in Multi-objective Optimal Control Problems

Based on Theorem 3.1, we can obtain formulae for upper and lower-evaluation on the
Clarke coderivatives of the extremummultifunctionF in the multi-objective paramet-
ric optimal control problem (1)–(4).

To deal with our problem, we impose the following assumptions:
(A1) The functions Li : [0, 1] × R

n × R
m × R

k → R̄ and gi : Rn → R̄ (i =
1, 2, . . . , s) have the properties that Li (·, x, u, v) is measurable for all (x, u, v) ∈
R
n ×R

m ×R
k , Li (t, ·, ·, ·) and gi (·) are continuously differentiable for almost every

t ∈ [0, 1], and there exist constants c1 > 0, c2 > 0, r ≥ 0, a nonnegative function
ω1 ∈ L p([0, 1],R), constants 0 ≤ p1 ≤ p, 0 ≤ p2 ≤ p − 1 such that

|Li (t, x, u, v)| ≤ c1
(
ω1(t)+ |x |p1 + |u|p1 + |v|p1

)
,

max
{|Li

x (t, x, u, v)|, |Li
u(t, x, u, v)|, |Li

v(t, x, u, v)|} ≤ c2
(|x |p2 + |u|p2

+ |v|p2)+ r

for all (t, x, u, v) ∈ [0, 1] × R
n × R

m × R
k .

(A2) The matrix-valued functions B : [0, 1] → Mn,m(R) and T : [0, 1] → Mn,k(R)

are measurable and essentially bounded.
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(A3) The function ϕ : [0, 1] × R
n → R

n has properties that ϕ(t, ·) is of class C1 for
almost every t ∈ [0, 1], ϕ(·, 0) ∈ L p([0, 1],Rn) and for each M > 0, there exists a
positive number lϕM such that

| ϕx (t, x) |≤ lϕM , | ϕx (t, x1)− ϕx (t, x2) |≤ lϕM |x1 − x2|,

for a.e. t ∈ [0, 1], for all x, x1, x2 ∈ R
n satisfying |x |, |x1|, |x2| ≤ M .

In the notation of Subsections 2.1, put V = L p([0, 1],Rn) and

h : X ×U ×W → V × R
n

defined by

h(x, u, w) = (
h1(x, u, w), h2(x, u, w)

) := (
ẋ − ϕ(·, x)− Bu − T θ, x(0)− α

)
.

Under the hypotheses (A2)–(A3), (5) can be written in the form

H(w) =
{
(x, u) ∈ X ×U : h(x, u, w) = 0

}
.

Consider the multifunctions F̂ : W ×R
s ⇒ R

s and H̃K : W ×R
s ⇒ Z as follows

F̂(w, y) = F(w) ∩ (y − R
s+) and H̃K (w, y) = {z ∈ HK (w) : y = J (z, w) =

J (x, u, w)}. We are now ready to state our main result.

Theorem 4.1 LetU be locally closed around ū, epi-Lipschitzian at ū and w̄ = (ᾱ, θ̄ ) ∈
W , z̄ = (x̄, ū) ∈ HK (w̄) = H(w̄) ∩ K be such that ȳ = f (w̄, z̄) ∈ F̃(w̄). Suppose
that assumptions (A1)–(A3) and the following regularity conditions are satisfied

{
(α, θ, x, u) ∈ R

n ×�× X ×U : ẋ − ϕx (·, x̄)x − Bu − T θ = 0, x(0) = α
}

∩
[
R
n ×�× X × int T (z̄,U)

]
�= ∅. (32)

Assume further that the domination property holds for F around w̄ and F̂ admits a
local upper Lipschitzian selection at (w̄, ȳ, ȳ).

(i) Suppose that F, F + R
s+ are tangentially regular at (w̄, ȳ) and F is Fréchet

normally regular at (w̄, ȳ). Then for a vector (α∗, θ∗) ∈ R
n × Lq([0, 1],Rk),

(α∗, θ∗) ∈ D∗CF(w̄, ȳ)(y∗) with y∗ = (y∗1 , y∗2 , . . . , y∗s ) ∈ int Rs+, it is necessary
that there exist functions y ∈ W 1,q([0, 1],Rn) and u∗ ∈ Lq([0, 1],Rm) with
u∗ ∈ N (ū,U) such that the following conditions are satisfied:

α∗ =
s∑

i=1
(gi )′

(
x̄(1)

)
y∗i +

s∑

i=1

∫ 1

0
Li
x

(
t, x̄(t), ū(t), θ̄ (t)

)
y∗i dt

−
∫ 1

0
ϕx

(
t, x̄(t)

)
y(t)dt,
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y(1) = −
s∑

i=1
(gi )′

(
x̄(1)

)
y∗i ,

and

(
ẏ(t)+ ϕx

(
t, x̄(t)

)
y(t), BT (t)y(t)− u∗(t), θ∗(t)+ T T (t)y(t)

)

=
s∑

i=1
∇Li (t, x̄(t), ū(t), θ̄ (t)

)
y∗i a.e. t ∈ [0, 1]. (33)

The above conditions are also sufficient for (α∗, θ∗) ∈ D∗CF(w̄, ȳ)(y∗) with y∗ =
(y∗1 , y∗2 , . . . , y∗s ) ∈ int Rs+ if F + R

s+ is tangentially regular at (w̄, ȳ), F is Fréchet
normally regular at this point, HK is Fréchet normally regular at (w̄, z̄) and H̃K admits
a local upper Lipschitzian selection at (w̄, ȳ, z̄). Here, BT stands for the transpose of
B, ∇Li

(
t, x̄(t), ū(t), θ̄ (t)

)
stands for the gradient of Li (t, ·, ·, ·) at (x̄(t), ū(t), θ̄ (t)

)

and q is the conjugate number of p, that is, 1 < q < +∞ and 1/p + 1/q = 1.

When U = U or ū ∈ int U , we obtain the following corollary.

Corollary 4.1 Let w̄ = (ᾱ, θ̄ ) ∈ W , z̄ = (x̄, ū) ∈ H(w̄) be such that ȳ = f (w̄, z̄) ∈
F̃(w̄) and assumptions (A1)–(A3) be satisfied. Assume further that the domination
property holds for F around w̄ and F̂ admits a local upper Lipschitzian selection at
(w̄, ȳ, ȳ).

(i) Suppose that F, F + R
s+ are tangentially regular at (w̄, ȳ) and F is Fréchet

normally regular at (w̄, ȳ). Then for a vector (α∗, θ∗) ∈ R
n × Lq([0, 1],Rk),

(α∗, θ∗) ∈ D∗CF(w̄, ȳ)(y∗) with y∗ = (y∗1 , y∗2 , . . . , y∗s ) ∈ int Rs+, it is necessary
that there exists a function y ∈ W 1,q([0, 1],Rn) such that the following conditions
are satisfied:

α∗ =
s∑

i=1
(gi )′

(
x̄(1)

)
y∗i +

s∑

i=1

∫ 1

0
Li
x

(
t, x̄(t), ū(t), θ̄ (t)

)
y∗i dt

−
∫ 1

0
ϕx

(
t, x̄(t)

)
y(t)dt,

y(1) = −
s∑

i=1
(gi )′

(
x̄(1)

)
y∗i ,

and

(
ẏ(t)+ ϕx

(
t, x̄(t)

)
y(t), BT (t)y(t), θ∗(t)+ T T (t)y(t)

)

=
s∑

i=1
∇Li (t, x̄(t), ū(t), θ̄ (t)

)
y∗i a.e. t ∈ [0, 1]. (34)
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The above conditions are also sufficient for (α∗, θ∗) ∈ D∗CF(w̄, ȳ)(y∗) with
y∗ = (y∗1 , y∗2 , . . . , y∗s ) ∈ int Rs+ if F + R

s+ is tangentially regular at (w̄, ȳ),
F is Fréchet normally regular at this point, H is Fréchet normally regular at
(w̄, z̄) and H̃ admits a local upper Lipschitzian selection at (w̄, ȳ, z̄).

Recall that for 1 < p <∞, we have L p([0, 1],Rn)∗ = Lq([0, 1],Rn), where

1 < q < +∞, 1/p + 1/q = 1.

Besides, L p([0, 1],Rn) is pared with Lq([0, 1],Rn) by the formula

〈x∗, x〉 =
∫ 1

0
〈x∗(t), x(t)〉dt,

for all x∗ ∈ Lq([0, 1],Rn) and x ∈ L p([0, 1],Rn).
Also, we have W 1,p([0, 1],Rn)∗ = R

n × Lq([0, 1],Rn) and W 1,p([0, 1],Rn) is
pared with Rn × Lq([0, 1],Rn) by the formula

〈(a, u), x〉 = 〈a, x(0)〉 +
∫ 1

0
〈u(t), ẋ(t)〉dt,

for all (a, u) ∈ R
n × Lq([0, 1],Rn) and x ∈ W 1,p([0, 1],Rn) (see [15, p. 21]).

In the case of p = 2, W 1,2([0, 1],Rn) becomes a Hilbert space with the inner
product given by

〈x, y〉 = 〈x(0), y(0)〉 +
∫ 1

0
〈ẋ(t), ẏ(t)〉dt,

for all x, y ∈ W 1,2([0, 1],Rn).
Given x ∈ X , we put M = ‖x‖0 = maxt∈[0,1] |x(t)|. By assumption (A3), there

exists a constant lϕM > 0 such that |ϕx (t, x)| ≤ lϕM for a.e.t ∈ [0, 1], for all x ∈ R
n

satisfying |x | ≤ M . By the Taylor expansion, we get

|ϕ(t, x(t))| ≤ |ϕ(t, x(t))− ϕ(t, 0)| + |ϕ(t, 0)|
= |ϕx

(
t, θ(t)x(t)

)
x(t)| + |ϕ(t, 0)|

≤ lϕMM + |ϕ(t, 0)|.

This implies that ϕ(·, x) ∈ L p([0, 1],Rn).
Using the similar technique as in the proof of [36,Lemma7],weobtain the following

result.

Lemma 4.1 Suppose that assumptions (A2)–(A3) are valid. Then, function h is dif-
ferentiable around (z̄, w̄) = (x̄, ū, ᾱ, θ̄ ), ∇h is continuous at (z̄, w̄) and

∇zh(z̄, w̄)∗(u∗, a) =
(
a −

∫ 1

0
u∗(t)ϕx

(
t, x̄(t)

)
dt, u∗
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−
∫ 1

(·)
u∗(τ )ϕx

(
τ, x̄(τ )

)
dτ,−Bu∗

)
,

∇wh(z̄, w̄)∗(u∗, a) =
(
− a,−Tu∗

)
,

for any u∗ ∈ Lq([0, 1],Rn) and any a ∈ R
n.

Recall that our problem can be written in the form

MinRs+ J (z, w), subject to z ∈ H(w) ∩ K .

In the sequel, we shall need the following lemmas.

Lemma 4.2 ([34, Lemma 3.1]) Suppose that assumption (A1) is valid. Then, the func-
tion J is strictly differentiable at (z̄, w̄) and ∇ J (z̄, w̄) is given by

∇w J (z̄, w̄) =
(
∇w J 1(z̄, w̄),∇w J 2(z̄, w̄), . . . ,∇w J s(z̄, w̄)

)T
,

∇w J i (z̄, w̄) =
(
0, Li

θ

(·, x̄, ū, θ̄
))

, i = 1, 2, . . . , s,

∇z J (z̄, w̄) =
(
∇z J

1(z̄, w̄),∇z J
2(z̄, w̄), . . . ,∇z J

s(z̄, w̄)
)
,

∇z J
i (z̄, w̄) = (

J ix (x̄, ū, θ̄ ), J iu(x̄, ū, θ̄ )
)
, i = 1, 2, . . . , s,

with

J iu(x̄, ū, θ̄ ) = Li
u(·, x̄, ū, θ̄ )

and

J ix (x̄, ū, θ̄ ) =
(
(gi )′

(
x(1)

)+
∫ 1

0
Li
x

(
t, x̄(t), ū(t), θ̄ (t)

)
dt,

(gi )′
(
x(1)

)+
∫ 1

(·)
Li
x

(
τ, x̄(τ ), ū(τ ), θ̄ (τ )

)
dτ

)
.

We have

∇zh(z̄, w̄)z = (
ẋ − ϕx (x̄)x − Bu, x(0)

)
.

Using the similar technique as in the proof of [15, Corollary p. 52], we obtain the
following result.

Lemma 4.3 Suppose that assumptions (A2)–(A3) are valid. Then, ∇zh(z̄, w̄) is sur-
jective.

We now return to the proof of Theorem 4.1, our main result.
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By Lemma 4.1, h(x, u, α, θ) is differentiable around (x̄, ū, ᾱ, θ̄ ),∇h is continuous
at (x̄, ū, ᾱ, θ̄ ) and

∇h(
(ᾱ, θ̄ ), (x̄, ū)

)(
(α, θ), (x, u)

) = (
ẋ − ϕx (·, x̄)x − Bu − T θ, x(0)− α

)
.

By (32), the condition (22) is satisfied. Since Lemma 4.2, the function J is Fréchet
differentiable at (x̄, ū, ᾱ, θ̄ ). Thus, the assumptions of Theorem 3.1 are fulfilled. The-
orem 3.1 follows that if y∗ = (y∗1 , y∗2 , . . . , y∗s ) ∈ int Rs+ and w∗ = (α∗, θ∗) ∈
D∗CF(w̄, ȳ)(y∗) then there exist a function z∗ ∈ N (z̄; K ) and v∗ = (a, v) ∈
R
n × Lq([0, 1],Rn) such that

w∗ = �w J (z̄, w̄)T (y∗)−∇wh(z̄, w̄)∗v∗ and
�z J (z̄, w̄)T (y∗)+ z∗ = ∇zh(z̄, w̄)∗v∗. (35)

It is easy to see that z∗ = (0, u∗) for some u∗ ∈ N (ū;U). Since Lemma 4.2, we have

�w J (z̄, w̄)T (y∗) =
s∑

i=1
�w J i (z̄, w̄)y∗i and �z J (z̄, w̄)T (y∗) =

s∑

i=1
�z J

i (z̄, w̄)y∗i .

Combining this and the equation (35), we have

(
α∗, θ∗ −

s∑

i=1
J iθ (z̄, w̄)y∗i

) = −∇wh(z̄, w̄)∗(a, v) and

s∑

i=1
�z J

i (z̄, w̄)y∗i + z∗ = ∇zh(z̄, w̄)∗(a, v). (36)

Combining this and Lemmas 4.1, 4.2, we get

(36)⇔

⎧
⎪⎨

⎪⎩

α∗ = a; θ∗ −∑s
i=1 J iθ (z̄, w̄)y∗i = T T (·)v(·)

( ∑s
i=1 J ix (z̄, w̄)y∗i ,

∑s
i=1 J iu(z̄, w̄)y∗i + u∗

)

= (∇xh(z̄, w̄)∗(a, v),∇uh(z̄, w̄)∗(a, v)
)
.

⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α∗ = a

θ∗ =∑s
i=1 Li

θ

(·, x̄(·), ū(·), θ̄ (·))y∗i + T T (·)v(·)
∑s

i=1(gi )′
(
x̄(1)

)
y∗i +

∑s
i=1

∫ 1
0 Li

x

(
t, x̄(t), ū(t), θ̄ (t)

)
y∗i dt

= a − ∫ 1
0 ϕx (t, x̄(t))v(t)dt

∑s
i=1(gi )′

(
x̄(1)

)
y∗i +

∑s
i=1

∫ 1
(·) L

i
x

(
τ, x̄(τ ), ū(τ ), θ̄ (τ )

)
y∗i dτ

= v(·)− ∫ 1
(·) ϕx (τ, x̄(τ ))v(τ )dτ

∑s
i=1 Li

u

(·, x̄(·), ū(·), θ̄ (·))y∗i + u∗ = −BT (·)v(·).
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⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α∗ = a

θ∗ =∑s
i=1 Li

θ

(·, x̄(·), ū(·), θ̄ (·))y∗i + T T (·)v(·)
∑s

i=1(gi )′
(
x̄(1)

)
y∗i +

∑s
i=1

∫ 1
0 Li

x

(
t, x̄(t), ū(t), θ̄ (t)

)
y∗i dt

= a − ∫ 1
0 ϕx (t, x̄(t))v(t)dt

∑s
i=1(gi )′

(
x̄(1)

)
y∗i −

∑s
i=1

∫ (·)
1 Li

x

(
τ, x̄(τ ), ū(τ ), θ̄ (τ )

)
y∗i dτ

= v(·)+ ∫ (·)
1 ϕx (τ, x̄(τ ))v(τ )dτ

∑s
i=1 Li

u

(·, x̄(·), ū(·), θ̄ (·))y∗i + u∗ = −BT (·)v(·).

⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v ∈ W 1,q([0, 1], Rn)

θ∗ − T T (·)v(·) =∑s
i=1 Li

θ

(·, x̄(·), ū(·), θ̄ (·))y∗i
α∗ =∑s

i=1(gi )′
(
x̄(1)

)
y∗i +

∑s
i=1

∫ 1
0 Li

x

(
t, x̄(t), ū(t), θ̄ (t)

)
y∗i dt

+ ∫ 1
0 ϕx (t, x̄(t))v(t)dt

v(1) =∑s
i=1(gi )′

(
x̄(1)

)
y∗i

−v̇(·)− ϕx (·, x̄(·)v(·) =∑s
i=1 Li

x

(·, x̄(·), ū(·), θ̄ (·))y∗i
−BT (·)v(·) =∑s

i=1 Li
u

(·, x̄(·), ū(·), θ̄ (·))y∗i + u∗.

(37)

Putting y = −v, we obtain

(37)⇔

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α∗ =∑s
i=1(gi )′

(
x̄(1)

)
y∗i +

∑s
i=1

∫ 1
0 Li

x

(
t, x̄(t), ū(t), θ̄ (t)

)
y∗i dt

− ∫ 1
0 ϕx (t, x̄(t))y(t)dt

y(1) = −∑s
i=1(gi )′

(
x̄(1)

)
y∗i(

ẏ(t)+ ϕx (t, x̄(t)y(t), BT (t)y(t)− u∗(t), θ∗(t)+ T T (t)y(t)
)

=∑s
i=1 ∇Li

(
t, x̄(t), ū(t), θ̄ (t)

)
y∗i ,

for a.e. t ∈ [0, 1]. This is the first assertion of theorem. Using the second conclusion of
Theorem3.1,we also obtain the second assertion of theorem.The proof of Theorem4.1
is complete. ��

To illustrate Theorem 4.1, we provide the following example.

Example 4.1 Let X = W 1,2([0, 1],R2), U = L2([0, 1],R2), � = L2([0, 1],R2),

W = R
2 ×�. Consider the problem Min

R
2+ J (x, u, w)

subject to

{
ẋ1 = t + 2x1 + u1 + θ1, ẋ2 = sin x2,

x1(0) = α1, x2(0) = α2,

where J (x, u, w) = (
J 1(x, u, w), J 2(x, u, w)

)
,

J 1(x, u, w) =
∫ 1

0

(
u21 +

1

1+ u21
+ u22 + θ21

)
dt
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and

J 2(x, u, w) =
∫ 1

0

(
u21 + u22 + θ22

)
dt .

Then, for w̄ = (ᾱ, θ̄ ), ᾱ = (1, 0), θ̄ = (0, 0), x̄ =
(
5
4e

2t − t
2 − 1

4 , 0
)
, ū = (0, 0)

and ȳ = J (w̄, x̄, ū) = (1, 0), we have

D∗CF(w̄, ȳ)(y∗) ⊂ {(0R2 , 0L2([0,1],R2))}, y∗ = (y∗1 , y∗2 ) ∈ int R2+.

In [35, Example 3.1], it was shown that assumption (A1) is satisfied. It is easy to
show that assumptions (A2)–(A3) are also satisfied. We have

H(w) =
{
(x, u) = (

(x1, x2), (u1, u2)
) ∈ X ×U : ẋ1 − 2x1 − t − u1

− θ1 = 0, x1(0) = α1; x2 = 2 arctan
(
tan(

α2

2
)et

)}
,

gph H =
{
(w, z) ∈ W × Z : w = (α, θ), z = (x, u),

α = (α1, α2), θ = (θ1, θ2), x = (x1, x2), u = (u1, u2),

ẋ1 − 2x1 − t − u1 − θ1 = 0, x1(0) = α1;
x2 = 2 arctan

(
tan(

α2

2
)et

)}
.

It is also easy to check that

F(w) =
{
y = J (w, z) : z ∈ H(w)

}

=
{
y = (

J 1(x, u, w), J 2(x, u, w)
) : z = (x, u) ∈ H(w)

}

⊂ Min
R
2+F(w)+ R

2+
= [1+ ‖θ1‖2,+∞)× [‖θ2‖2,+∞)

and

F(w) =
(
1+

∫ 1

0
θ21 (t)dt,

∫ 1

0
θ22 (t)dt

)

for all w = (α, θ) ∈ W , α = (α1, α2) ∈ R
2, θ = (θ1, θ2) ∈ L2([0, 1],R2). So, the

domination property holds for F around w̄ and F̂(w, y) = F(w) ∩ (y −R
2+) admits

a local upper Lipschitzian selection at (w̄, ȳ, ȳ). We also get

gph F =
{
(w, y) ∈ W × R

2 : y = (
J 1(x, u, w), J 2(x, u, w)

)
, z = (x, u) ∈ H(w)

}
.

So, we can show that F , F+R
2+ are tangentially regular andF are normally regular at

(w̄, ȳ). Thus, all assumptions of Corollary 4.1 are satisfied. Take any y∗ = (y∗1 , y∗2 ) ∈
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int R2+ and w∗ = (α∗, θ∗) ∈ D∗CF(w̄, ȳ)(y∗). By Corollary 4.1 there exists y =
(y1, y2) ∈ W 1,2([0, 1],R2) such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α∗ = (
α∗1 , α∗2) = (

∫ 1
0 2y1(t)dt,

∫ 1
0 y2(t)dt

)

y1(1) = 0, y2(1) = 0

ẏ(t)+ ϕx (t, x̄(t))y(t) = 0

BT y(t) = 0

θ∗(t) = −T T (t)y(t).

This is equivalent to α∗ = (0, 0) and θ∗ = (0, 0).
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