MI1120Q

CALCULUS II

Version: 2024.1.0

Objective: To provide students the basic knowledge about applications of differential calculus in geometry, parameter-dependent integrals, double integrals, triple integrals, line integrals, surface integrals, and vector fields. Students can understand the fundamental of computing technology and continue to study further.

Contents: Applications of differential calculus in geometry, parameter-dependent integrals, double integrals, triple integrals, line integrals, surface integrals, and vector fields.

1. GENERAL INFORMATION

Course title:	Calculus II
Unit in charge	Faculty of Mathematics and Informatics
Course ID:	MI1120Q
Course Units:	3(2-2-0-6)
	Lecture: 30 hoursSeminar: 30 hours
Previous module:	MI1110Q Calculus I
Prerequisites:	MI1110Q Calculus I
Companion module:	MI1130Q Calculus III

2. DESCRIPTION

This course provides some applications of differential calculus in geometry, the basic ideas and techniques of parameter-dependent integrals, double integrals and triple integrals, line integrals of scalar fields and vector fields, surface integrals of scalar fields and vector fields.

3. OBJECTIVES AND EXPECTED OUTCOMES

Students who complete this module have the abilities to:

Objectives	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)	
[1]	[2]	[3]	
M1	Master the basic knowledge of Caculus II and apply in practice to solve related exercises		
M1.1	Master the basic concepts such as: double integrals, triple integrals, line integrals, surface integrals, vector fields as well as applications of differential calculus	I/T	
M1.2	Be able to apply the knowledge to solve exercises	T/U	
M2	Achieve serious attitude and necessary skills for highly effective work		
M2.1	Be skilled at analyzing and solving problems with strong	T/U	

Objectives	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)	
	logical thinking; working independently and staying focused		
M2.2	Identify some practical problems that can be solved by using tools of calculus.	I/T/U	
M2.3	Gain serious working attitude, proactive creativity, adaptation to highly competitive working environment	I/T	

4. COURSE MATERIALS

Textbooks

- [1] James Stewart (2016). *Calculus: Concepts and Contexts, eighth edition*. Thomson, Brooks/Cole Publishing Company
- [2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2015). Toán học cao cấp tập 2. NXB Giáo dục.

References

- [1] Trần Bình (2005). *Giải tích II*. NXB Khoa học và Kỹ thuật.
- [2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2017). *Bài tập Toán học cao cấp tập 2*. NXB Giáo dục.
- [3] Trần Thị Kim Oanh, Phan Xuân Thành, Lê Chí Ngọc, Nguyễn Thị Thu Hương (2022), Giải tích II: Hàm số nhiều biến số (bài giảng dành cho sinh viên các trường kĩ thuật), NXB Bách Khoa Hà Nội.
- [4] Khoa Toán Tin (2023): Slides bài giảng Giải tích II (tài liệu lưu hành nội bộ).

5. ASSESSMENT

Components	Evaluation method	Description	Rated outcome standards	Proportion
[1]	[2]	[3]	[4]	[5]
A1. Attendance point	Learning attitude and attendance of the students during the course	Learning attitude of the students		20%
A2. Periodic test mark (*)	A2.1. 1 st periodic test (KT1 mark, 15 scale) (Content: From the 1 st week to the 5 th week) A2.2. 2 nd periodic test (KT2 mark, 15 scale) (Content: From the 6 th	Quizzes	M1.1, M1.2, M2.1, M2.2, M2.3	30%
A3. Final exam mark	week to the 10 th week) Final exam	Essay	M1.1,	50%

M1.2,
M2.1,
M2.2,
M2.3

(*) Periodic test mark (DKTDK) is calculated according to the formula DKTDK =1/3(KT1+KT2) and will be adjusted by adding points for the performance of students during the course which vary from -1 to +1 according to the Rule of Faculty of Mathematics and Informatics accompanied with the Regulations of Higher Education of Hanoi University of Science and Technology.

6. COURSE PLAN

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
1	Chapter 1: Applications of differential calculus in geometry 1.1. Applications in plane geometry - Normal vector and equations for tangent lines and normal lines of a curve at a point. - Curvature: mean curvature, curvature at a point, formula of curvature at a point (no proof) and examples. - Envelope of a family of parametric curves: definition, formula, examples. 1.2. Applications in spatial geometry - Vector functions, derivative of vector functions ($\vec{r}(t) = x(t)\vec{\iota} + y(t)\vec{j} + z(t)\vec{k}$) and properties.	M1.1 M1.2 M2.1 M2.3	Lecturer: - Self- introduce the course outline - Explain teaching and learning methods; and forms of subject assessment - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises according to the content and progress of the subject	A1, A2.1, A3
2	 Curves: equations of tangent lines and normal planes at a point of curves, curvature at a point of curves (formulas). Surfaces: equations of tangent planes 	M1.1 M1.2 M2.1 M2.3	Lecturer - Lecture, exchange questions and	A1, A2.1, A3

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	and normal lines at a point of surfaces		answers with	
	(formulas).		students during the lecture	
	Chapter 2. Multiple integrals			
	2.1. Double integrals		Student:	
	- Definition, geometric meaning,		- Read in	
	properties.		advance the	
	- Calculations of double integrals in the Cartesian coordinate system.		next lesson	
	•	271.1	- Master the basic concepts	
3	- Change of variables in double integrals: general change of variables	M1.1	and apply to	A1, A2.1, A3
	formula, change of variables in polar	M1.2	solve exercises	AJ
	coordinate system.	M2.1	according to	
		M2.3	the content and	
4	- Applications of double integrals:	M1.1	progress of the subject	A1, A2.1,
	Calculate the volume of an object, the	M1.2	subject	A3
	area of a plane domain, the area of a surface (formulas and examples).	M2.1		
	2.2. Triple integrals	M2.2		
	- Definition, geometric meaning,	M2.3		
	properties.			
5	- Calculations of triple integrals in the	M1.1		A1, A2.1,
	Cartesian coordinate system.	M1.2		A3
	- Change of variables in triple integrals:	M2.1		
	general change of variables formula, change of variables in cylindrical	M2.3		
	coordinate system, change of variables			
	in spherical coordinate system.			
6	- Applications: Calculate the volume of	M1.1		A1, A2.2,
	an object.	M1.2		A3
	Chapter 3. Parameter Dependent	M2.2		
	Intergrals	M2.1		
	3.1. Definite Intergrals depending on parameters	M2.3		
	- Definition			
	- Theorems on continuity.			
7	- Theorems on differentiation under	M1.1		A1, A2.2,
	integral sign, integration under integral	M1.2		A3
	sign.	M2.1		
	3.2. Improper Integrals depending on parameters	M2.3		
	- Definition			
	- Uniform convergence, Weierstrass			
	theorem.			
8	- Properties: continuity, differentiation	M1.1		A1, A2.2,

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	under integral sign, integration under	M1.2		A3
	integral sign.	M2.1		
	3.3. Euler's integrals	M2.3		
	- Introduce Gamma function $(\Gamma(p))$ and			
	properties: definiteness, continuity,			
	infinite differentiability.			
	$\Gamma(p+1) = p\Gamma(p) \forall p > 0,$			
	$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin(p\pi)} (0$			
	(no proof).			
	- Beta function: Introduce Beta function			
	(B(p,q)) with its two types and			
	properties (no proof): symmetry.			
	$B(p,q) = \frac{p}{p+q-1}B(p,q-1),$			
	F 1			
	$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$			
9	Chapter 4. Line Integrals	M1.1	- Lecture,	A1, A2.2,
	4.1. Line integrals of scalar fields	M1.2	exchange	A3
	- Definition	M2.1	questions and	
	- Calculation	M2.2	answers with	
	4.2. Line integrals of vector fields	M2.3	students during	
	- Definition, physical meaning.	112.5	the lecture	
	- Properties		Student:	
10	1		- Read in	
10	- Relation of line integrals of scalar	M1.1	advance the	A1, A2.2,
	fields and line integrals of vector fields.	M1.2	next lesson	A3
	- Calculation	M2.1	- Master the	
	- Green's Theorem (proof for the case of	M2.3	basic concepts	
	a simple region).		and apply to	
11	- Path independence of line integrals (no	M1.1	solve exercises according to	A1, A3
	proof); find a function $u(x, y)$ such that	M1.2	the content and	
	du = Pdx + Qdy.	M2.1	progress of the	
	Chapter 5. Surface integrals	M2.3	subject	
	5.1 Surface integrals of scalar fields		-	
	- Definition			
	- Calculation			
12	5.2 Surface integrals of vector fields	M1.1		A1,
12	-	M1.1 M1.2		A1, A3
	- Definition, properties.			AJ
	- Relation of surface integrals of scalar	M2.1		
	fields and surface integrals of vector fields	M2.3		
	fields.			

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	- Calculation			
13	- Ostrogradsky's Theorem, Stoke's	M1.1		A1,
	Theorem (no proof).	M1.2		A3
	Chapter 6. Field Theory	M2.1		
	6.1 Scalar Fields	M2.3		
	- Notions of scalar fields and level surfaces.			
	- Directional derivative: Definition, Theorem on relation between directional derivative and partial derivative.			
14	- Gradient: Definition of vector $\overrightarrow{\text{grad}u}$	M1.1		A1, A3
		M1.2		
	and theorem $\frac{\partial u}{\partial \vec{\ell}} = ch_{\vec{\ell}} \overline{\text{grad}}u$ (no proof)	M2.1		
	and properties.	M2.2		
	6.2 Vector Fields	M2.3		
	- Notions of vector fields and flow lines, system of differential equations of flow lines.			
	- The flux, div, incompressible fields: the flux of a vector field across oriented surface <i>S</i> , div (divergence), properties, incompressible fields, source (point), sink (point).			
15	- Circulation and curl vector: the	M1.1		A1, A3
	circulation of a vector field around an	M1.2		
	oriented closed curve, curl vector, curly point.	M2.1		
	- Conservative vector fields: notions of	M2.2		
	conservative vector fields \vec{F} , the	M2.3		
	potential function for \vec{F} , conditions_for			
	a vector field to be conservative,			
	conditions for an expression to be the			
	total differential, path independence of spatial line integrals.			
16	Summary			A1, A3

7. **RULES OF THE MODULE** (Regulations of the course if any)

8. DATE OF APPROVAL:

Faculty of Mathematics and Informatics