Objective: To provide the knowledge and calculation skills on infinite series and basic differential equations, one-sided Laplace transform, to formulate Mathematical foundations for students majored in technology, to provide mathematical tools for students.
Contents: Infinite number series, series of functions, Fourier series, first-order differential equations, second-order linear differential equations, systems of first-order differential equations, Laplace transforms, some models and modeling of technical problems.

1. GENERAL INFORMATION

Course title:
Unit in charge:
Course ID:
Course Units:

Calculus III
Faculty of Mathematics and Informatics
MI1131E
3(2-2-0-6)

- Lecture: 30 hours
- Seminar: 30 hours

Previous module:
Prerequisites:

- MI1111E Calculus I

Companion module:

- MI1121E Calculus II

2. DESCRIPTION

This course provides students with the basic knowledge on infinite series, differential equations, and the Laplace operator method.

3. OBJECTIVES AND EXPECTED OUTCOMES

Students who complete this module have the abilities to:

Objectives	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)
M1	Master the basic knowledge about series, ordinary differential equations	
M1.1	Master the basic concepts	I / T
M1.2	Be able to apply the knowledge to solve exercises	T/U
M2	Achieve serious attitude and necessary skills for highly effective work	
M2.1	Be skilled at analyzing and solving problems with strong logical thinking; working independently and staying focused	T / U
M2.2	Identify some practical problems that can be solved by using tools of series, differential equations and Laplace operator method	I/T/U
M2.3	Gain serious working attitude, proactive creativity, adaptation to highly competitive working environment	I/T

4. COURSE MATERIALS

Textbooks

[1] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2015). Toán học cao cấp tập 3: Chuỗi và phuoong trình vi phân. NXB Giáo dục VN.
[2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2017). Bài tập Toán học cao cấp tập 3: Chuỗi và phuoơng trình vi phân. NXB Giáo dục VN.
[3] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh (2000). Bài tập Toán học cao cấp tập II. NXB Giáo dục.
[4] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh (1999). Bài tập Toán học cao cấp tập III. NXB Giáo dục.

References

[1] Nguyễn Thiệu Huy, Bùi Xuân Diệu, Đào Tuấn Anh: Giải tích III, chuỗi vô hạn và phương trình vi phân. NXB Bách Khoa Hà Nội, 2022.
[2] Nguyễn Xuân Thảo (2010). Bài giảng Phương pháp Toán tư Laplace (tài liệu lưu hành nội bộ).
[3] Nguyen Thieu Huy, Vu Thi Ngoc Ha: Infinite series and differential equations, Hanoi University of Science and Technology, Elite Technology program, 2022.
[4] Trần Bình (2005). Giải tich II và III, NXB KH và KT.
[5] J. Stewart, D. Clegg, S. Watson, Multivariable Calculus, ${ }^{\text {th }}$ Edition, Cengage Learning, 2020.
[6] W. E. Boyce, R.C. DiPrima, D.B. Meade, Elementary Differential Equations and Boundary Value Problems, 11 ${ }^{\text {th }}$ Edition, Wiley, 2017.
[7] R. Bronson, G. B. Costa, Differential Equations, 4 ${ }^{\text {th }}$ Edition, The McGraw-Hill, 2014.

5. ASSESSMENT

Components	Evaluation method	Description	Rated outcome standards	Proportion
[1]	[2]	[3]	[4]	[5]
A1. Attendance point	Learning attitude and attendance of the students during the course	Learning attitude of the students		20\%
A2. Periodic test mark (*)	A2.1. $1^{\text {st }}$ periodic test (KT1 mark, 15 scale) (Content: From the $1^{\text {st }}$ week to the $5^{\text {th }}$ week) A2.2. $2^{\text {nd }}$ periodic test (KT2 mark, 15 scale) (Content: From the $6^{\text {th }}$	Quizzes	M1.1, M1.2, M2.1, M2.2, M2.3	30\%

	week to the $10^{\text {th }}$ week)			
A3. Final exam mark	Final exam	Essay	M1.1, M1.2, M2.1, M2.2, M2.3	$\mathbf{5 0 \%}$

(*) Periodic test mark (DKTDK) is calculated according to the formula DKTDK $=1 / 3(K T 1+K T 2)$ and will be adjusted by adding points for the performance of students during the course which vary from -1 to +1 according to the Rule of Faculty of Mathematics and Informatics accompanied with the Regulations of Higher Education of Hanoi University of Science and Technology.
6. COURSE PLAN

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
1	Chapter 1. Series (11+11) 1.1 Infinite number series - Definitions: Number series, general term, partial sums, remainder, convergence, divergence, sum of a series. Note: including geometric series $\sum_{n=0}^{+\infty} a q^{n}$. - Necessary condition for convergence (with proof). Note: including the harmonic series $\sum_{n=1}^{+\infty} \frac{1}{n}$. - Fundamental properties of convergent series (proofs for self-study) 1.2 Series of non-negative terms - Definition - Comparison tests (including proof of the first comparison test, proof of the second one is for self-study) - Tests for convergence (D'Alambert's test, Cauchy's test, integral test) (including the proof of D'Alambert's test, the proofs of the other are for self-study). Note: $\text { including } \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$	M1, M2	Lecturer: - Selfintroduce - Introduce the course outline - Explain teaching and learning methods; and forms of subject assessment - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises according to	$\begin{gathered} \text { A2.1 } \\ \text { A3 } \end{gathered}$

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
			the content and progress of the subject	
2	1.3 Series of sign-changing terms - Series of sign-changing terms: definitions of absolute convergence, conditional convergence. Theorems on absolutely convergent series (proofs for self-study) - Alternating series: definition, Leibniz's test (with proof) - Properties of absolutely convergent series. Properties of rearrangement of terms and the product of two series (proofs for self-study)	M1, M2	Lecturer: - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises as well as some practical models connected with the subject	$\begin{gathered} \text { A2.1 } \\ \text { A3 } \end{gathered}$
3	1.4 Series of functions - Definitions: series of functions, domain of convergence (pointwise convergence), sum of a function series - Uniform convergence: definition, Cauchy's test, Weierstrass' test (without proof) - Properties of uniformly convergent function series: continuity, differentiation, integration (proofs of the last two properties are for self-study)	M1, M2		$\begin{gathered} \hline \text { A2.1 } \\ \text { A3 } \end{gathered}$
4	1.5 Power series - Definition, Abel's theorem (with proof), radius, interval and domain of convergence - Properties: uniform convergence, continuity of the sum, termwise differentiation and integration (proofs for self-study). Applications in finding sum of a series (one example, self-study) - Representation of functions by power series (Taylor's series, Maclaurin's series). Theorems on expandability of a function in a power series (without proof)	M1, M2		$\begin{gathered} \text { A2.1 } \\ \text { A3 } \end{gathered}$
5	- Expansion of some elementary functions. Applications in approximating the value of functions and definite integrals (for selfstudy) 1.6 Fourier series	M1, M2		$\begin{gathered} \text { A2.1 } \\ \text { A3 } \end{gathered}$

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	- Trigonometric series, Fourier series - Conditions for expanding a function to Fourier series. Dirichlet's theorem (without proof)			
6	- Fourier expansion of odd and even 2π periodic functions - Fourier expansion of 2π periodic functions, $2 l$ period functions. Fourier expansion of functions defined on an interval $[a, b]$ Chapter 2. Ordinary differential equations (11+12) 2.1 Introduction - Definition: ordinary differential equations (ODEs), order of an ODE, solutions to an ODE 2.2 First order ODEs - Outlines about first order ODEs: general forms, existence and uniqueness theorem (without proof), Cauchy problem, general solutions, particular solutions. Introductory practical examples of first order ODEs	M1, M2		$\begin{gathered} \text { A2. } 2 \\ \text { A3 } \end{gathered}$
7	- Equations without x or y - Separable equations - Homogeneous equations - Linear equations - Bernoulli equations - Exact equations	M1, M2		$\begin{gathered} \text { A2.2 } \\ \text { A3 } \end{gathered}$
8	2.3 Second order differential equations - Outlines about first order ODEs: general forms, existence and uniqueness theorem (without proof), Cauchy problem, general solutions, particular solutions. Introductory practical examples of second order ODEs - Equations without y and y^{\prime}; Equations without y; Equations without x - Linear equations $y^{\prime \prime}+p(x) y^{\prime}+q(x)=f(x)$ Homogeneous linear equations: structure of general solutions (proofs of the theorem	M1, M2		$\begin{gathered} \text { A2.2 } \\ \text { A3 } \end{gathered}$

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	yielding the formula $\left.y=C_{1} y_{1}(x)+C_{2} y_{2}(x)\right)$			
9	Nonhomogeneous linear equations: structure of general solutions (proof for self-study) Lagrange method of variation of parameters Superposition principle - Second order linear ODEs with constant coefficients Homogeneous linear equations	M1, M2	Lecturer: - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises as well as some practical models connected with the subject	$\begin{gathered} \mathrm{A} 2.2 \\ \mathrm{~A} 3 \end{gathered}$
10	Nonhomogeneous linear equations with right-hand side of the forms $\begin{aligned} & f(x)=e^{\alpha x} P_{n}(x) \\ & f(x)=e^{\alpha x}\left[P_{n}(x) \cos \beta x+Q_{m}(x) \sin \beta x\right] \end{aligned}$	M1, M2	Lecturer: - Lecture, exchange questions and answers	$\begin{gathered} \text { A2. } 2 \\ \text { A3 } \end{gathered}$
11	- Euler equations (introduction by examples) 2.4 Systems of first order ODEs - Definition, general form, solutions, convert higher order ODEs into systems of first order equations and vice versa. Existence and uniqueness theorem. - Solving by substitution: illustrated by a simple example (this part is for self-study)	M1, M2	with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts	A3
12	Chapter 3. Laplace transform and applications (8+7)	M1, M2	and apply to solve	A3

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	3.1 Laplace transform and inverse Laplace transform - Laplace transform, linearity property, tables of Laplace transform, piecewise continuous functions, existence of Laplace transform. Examples - Inverse Laplace transform, uniqueness of inverse Laplace transform. Examples		exercises as well as some practical models connected with the subject	
13	3.2 Transform of initial value problems - Transform of the derivative of a function, solutions of initial value problems, examples of solving second order linear ODEs with constant coefficients - Systems of second order linear ODEs, introduction to mathematical modeling - Transform of the integral of a function	M1, M2		A3
14	3.3 Shifting properties and partial fractions - Linear partial fractions, irreducible quadratic partial fractions, s - shifting - Solving higher order (greater than or equal to 3) ODEs with constant coefficients	M1, M2		A3
15	3.4 Derivatives, integrals and product of Laplace transforms - Convolution of two functions, Laplace transform of convolution - Derivative of Laplace transform - Integral of Laplace transform - Solving homogeneous linear second order ODEs with variable coefficients - Solving linear second order ODEs with constant coefficients and piecewise continuous righthand side	M1, M2		A3
16	Revision - Summary	M1, M2		A3

7. COURSE REGULATIONS

(Regulations of the course if any)

8. DATE OF APPROVAL:

Faculty of Mathematics and Informatics

