CALCULUS III

Version: 2024.1.0

Objective: To provide the knowledge and calculation skills on infinite series and basic differential equations, one-sided Laplace transform, to formulate Mathematical foundations for students majored in technology, to provide mathematical tools for students.

Contents: Infinite number series, series of functions, Fourier series, first-order differential equations, second-order linear differential equations, systems of first-order differential equations, Laplace transforms, some models and modeling of technical problems.

1. GENERAL INFORMATION

Course title:	Calculus III
Unit in charge:	Faculty of Mathematics and Informatics
Course ID:	MI1130Q
Course Units:	3(2-2-0-6) - Lecture: 30 hours - Seminar: 30 hours
Previous module:	
Prerequisites:	- MI1110Q Calculus I
Companion module:	- MI1120Q Calculus II

2. DESCRIPTION

This course provides students with the basic knowledge on infinite series, differential equations, and the Laplace operator method.

3. OBJECTIVES AND EXPECTED OUTCOMES

Students who complete this module have the abilities to:

Objectives	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)
M1	Master the basic knowledge about series, ordinary	
	differential equations	
M1.1	Master the basic concepts	I/T
M1.2	Be able to apply the knowledge to solve exercises	T/U
M2	Achieve serious attitude and necessary skills for highly effective work	
M2.1	Be skilled at analyzing and solving problems with strong logical thinking; working independently and staying focused	T/U
M2.2	Identify some practical problems that can be solved by using tools of series, differential equations and Laplace operator method	I/T/U
M2.3	Gain serious working attitude, proactive creativity, adaptation to highly competitive working environment	I/T

4. COURSE MATERIALS

Textbooks

- [1] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2015). *Toán học cao cấp tập 3: Chuỗi và phương trình vi phân*. NXB Giáo dục VN.
- [2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2017). *Bài tập Toán học cao cấp tập 3: Chuỗi và phương trình vi phân*. NXB Giáo dục VN.
- [3] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh (2000). *Bài tập Toán học cao cấp tập II*. NXB Giáo dục.
- [4] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh (1999). Bài tập Toán học cao cấp tập III. NXB Giáo dục.

References

- [1] Nguyễn Thiệu Huy, Bùi Xuân Diệu, Đào Tuấn Anh: *Giải tích III, chuỗi vô hạn và phương trình vi phân*. NXB Bách Khoa Hà Nội, 2022.
- [2] Nguyễn Xuân Thảo (2010). Bài giảng Phương pháp Toán tử Laplace (tài liệu lưu hành nội bộ).
- [3] Nguyen Thieu Huy, Vu Thi Ngoc Ha: *Infinite series and differential equations*, Hanoi University of Science and Technology, Elite Technology program, 2022.
- [4] Trần Bình (2005). *Giải tích II và III*, NXB KH và KT.
- [5] J. Stewart, D. Clegg, S. Watson, *Multivariable Calculus*, 9th Edition, Cengage Learning, 2020.
- [6] W. E. Boyce, R.C. DiPrima, D.B. Meade, *Elementary Differential Equations and Boundary Value Problems*, 11th Edition, Wiley, 2017.
- [7] R. Bronson, G. B. Costa, *Differential Equations*, 4th Edition, The McGraw-Hill, 2014.

Components	Evaluation method	Description	Rated outcome standards	Proportion
[1]	[2]	[3]	[4]	[5]
A1. Attendance point	Learning attitude and attendance of the students during the course	Learning attitude of the students		20%
A2. Periodic test mark (*)	A2.1. 1 st periodic test (KT1 mark, 15 scale) (Content: From the 1 st week to the 5 th week)	Quizzes	M1.1, M1.2, M2.1, M2.2, M2.3	30%
	A2.2. 2 nd periodic test (KT2 mark, 15 scale) (Content: From the 6 th week to the 10 th week)			

5. ASSESSMENT

A3. Final exam	Final exam	Essay	M1.1, M1.2,	50%
mark			M2.1, M2.2,	
			M2.3	

(*) Periodic test mark (DKTDK) is calculated according to the formula DKTDK =1/3(KT1+KT2) and will be adjusted by adding points for the performance of students during the course which vary from -1 to +1 according to the Rule of Faculty of Mathematics and Informatics accompanied with the Regulations of Higher Education of Hanoi University of Science and Technology.

6. COURSE PLAN

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
1	Chapter 1. Series (11+11)	M1, M2	Lecturer:	A2.1
	1.1 Infinite number series		- Self-	A3
	- Definitions: Number series, general term,		introduce	
	partial sums, remainder, convergence,		- Introduce	
	divergence, sum of a series. Note: including		the course	
	geometric series $\sum_{n=1}^{+\infty} a a^n$		outline	
	$\sum_{n=0}^{\infty} uq$		- Explain	
	- Necessary condition for convergence		teaching	
	(with proof). Note: including the harmonic		methods:	
	$\sum_{n=1}^{\infty} \frac{1}{n}$		and forms	
	series $\sum_{n=1}^{\infty} \frac{n}{n}$		of subject	
	- Fundamental properties of convergent		assessment	
	series (proofs for self-study)		- Lecture,	
	1.2 Series of non-negative terms		exchange	
	Definition		and answers	
			with	
	- Comparison tests (including proof of the		students	
	one is for self-study)		during the	
	- Tests for convergence (D'Alambert's test,		lecture	
	Cauchy's test, integral test) (including the		Student:	
	proof of D'Alambert's test, the proofs of		- Read in	
	the other are for self-study). Note: $+\infty$ 1		advance the	
	including $\sum_{n=1}^{\infty} \frac{1}{n}$		- Master	
	$\prod_{n=1}^{n} n^{\alpha}$		the basic	
			concepts	
			and apply to	
			solve	
			according to	
			the content	
			and	
			progress of	

Week	Topics	Objective	Activities	Exercises		
[1]	[2]	[3]	[4]	[5]		
			the subject			
2	1.3 Series of sign-changing terms	M1, M2	Lecturer:	A2.1		
	 Series of sign-changing terms: definitions of absolute convergence, conditional convergence. Theorems on absolutely convergent series (proofs for self-study) Alternating series: definition, Leibniz's test (with proof) Properties of absolutely convergent series. Properties of rearrangement of terms and the product of two series (proofs for self-study) 		 Lecture, exchange questions and answers with students during the lecture Student: Read in advance the next lesson Master the basic concepts and apply to solve exercises as well as some practical models connected with the subject 	- Lecture, exchange questions and answers with students during the lecture Student: - Read in	 Lecture, exchange questions and answers with students during the lecture Student: Read in 	A3
3	 1.4 Series of functions Definitions: series of functions, domain of convergence (pointwise convergence), 	M1, M2		A2.1 A3		
	 sum of a function series Uniform convergence: definition, Cauchy's test, Weierstrass' test (without proof) Properties of uniformly convergent function series: continuity, differentiation, integration (proofs of the last two properties are for self-study) 					
4	 1.5 Power series Definition, Abel's theorem (with proof), radius, interval and domain of convergence Properties: uniform convergence, continuity of the sum, termwise differentiation and integration (proofs for self-study). Applications in finding sum of a series (one example, self-study) Representation of functions by power series (Taylor's series, Maclaurin's series). Theorems on expandability of a function in a power series (without proof) 	M1, M2		A2.1 A3		
5	- Expansion of some elementary functions. Applications in approximating the value of functions and definite integrals (for self- study)	M1, M2		A2.1 A3		
	1.6 Fourier series					
	 Trigonometric series, Fourier series Conditions for expanding a function to Fourier series. Dirichlet's theorem (without 					

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	proof)			
6	- Fourier expansion of odd and even 2π periodic functions	M1, M2		A2.2 A3
	- Fourier expansion of 2π periodic functions, $2l$ period functions. Fourier expansion of functions defined on an interval $[a,b]$			
	Chapter 2. Ordinary differential equations (11+ 12)			
	2.1 Introduction			
	- Definition: ordinary differential equations (ODEs), order of an ODE, solutions to an ODE			
	2.2 First order ODEs			
	- Outlines about first order ODEs: general forms, existence and uniqueness theorem (without proof), Cauchy problem, general solutions, particular solutions. Introductory practical examples of first order ODEs			
7	- Equations without <i>x</i> or <i>y</i>	M1, M2		A2.2
	- Separable equations			A3
	- Homogeneous equations			
	- Linear equations			
	- Bernoulli equations			
	- Exact equations			
8	2.3 Second order differential equations	M1, M2		A2.2
	- Outlines about first order ODEs: general forms, existence and uniqueness theorem (without proof), Cauchy problem, general solutions, particular solutions. Introductory practical examples of second order ODEs			A3
	- Equations without <i>y</i> and <i>y</i> '; Equations without <i>y</i> ; Equations without <i>x</i>			
	- Linear equations			
	y'' + p(x)y' + q(x) = f(x)			
	promogeneous linear equations: structure of general solutions (proofs of the theorem yielding the formula $y = C_1 y_1(x) + C_2 y_2(x)$)			
9	Nonhomogeneous linear equations: structure of general solutions (proof for	M1, M2	Lecturer:	A2.2

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	self-study) Lagrange method of variation of parameters Superposition principle - Second order linear ODEs with constant coefficients Homogeneous linear equations		- Lecture, exchange questions and answers with students during the lecture	A3
			Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises as well as some practical models connected with the subject	
10	Nonhomogeneous linear equations with right-hand side of the forms $f(x) = e^{\alpha x} P_n(x)$ $f(x) = e^{\alpha x} [P_n(x) \cos \beta x + Q_m(x) \sin \beta x]$	M1, M2	Lecturer: - Lecture, exchange questions and answers	A2.2 A3
11	 Euler equations (introduction by examples) 2.4 Systems of first order ODEs Definition, general form, solutions, convert higher order ODEs into systems of first order equations and vice versa. Existence and uniqueness theorem. Solving by substitution: illustrated by a simple example (this part is for self-study) 	M1, M2	with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts	A3
12	Chapter 3. Laplace transform and applications (8+7)3.1 Laplace transform and inverse Laplace transform	M1, M2	and apply to solve exercises as well as some	A3

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	 Laplace transform, linearity property, tables of Laplace transform, piecewise continuous functions, existence of Laplace transform. Examples Inverse Laplace transform, uniqueness of inverse Laplace transform. Examples 		practical models connected with the subject	
13	3.2 Transform of initial value problems	M1, M2		A3
	- Transform of the derivative of a function, solutions of initial value problems, examples of solving second order linear ODEs with constant coefficients			
	 Systems of second order linear ODEs, introduction to mathematical modeling Transform of the integral of a function 			
14	3.3 Shifting properties and partial fractions	M1, M2		A3
	⁻ Linear partial fractions, irreducible quadratic partial fractions, <i>s</i> - shifting			
	- Solving higher order (greater than or equal to 3) ODEs with constant coefficients			
15	3.4 Derivatives, integrals and product of Laplace transforms	M1, M2		A3
	- Convolution of two functions, Laplace transform of convolution			
	- Derivative of Laplace transform			
	- Integral of Laplace transform			
	- Solving homogeneous linear second order ODEs with variable coefficients			
	- Solving linear second order ODEs with constant coefficients and piecewise continuous righthand side			
16	Summary - Revision	M1, M2		A3

7. COURSE REGULATIONS

(Regulations of the course if any)

8. DATE OF APPROVAL:

Faculty of Mathematics and Informatics